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What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.

Dynamic Programming:
A recursion that when memoized leads to an efficient algorithm.

Key Questions:

Given a recursive algorithm, how do we analyze the complexity
when it is memoized?

How do we recognize whether a problem admits a (recursive)
dynamic programming based efficient algorithm?

How do we further optimize time and space of a dynamic
programming based algorithm?
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Dynamic Programming Template

1 Come up with a recursive algorithm to solve problem

2 Understand the structure/number of the subproblems generated
by recursion

3 Memoize the recursion

set up compact notation for subproblems
set up a data structure for storing subproblems

4 Iterative algorithm

Understand dependency graph on subproblems
Pick an evaluation order (any topological sort of the
dependency DAG)

5 Analyze time and space

6 Optimize
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Dynamic Programming on Trees

Fact: Many graph optimization problems are NP-Hard

Fact: The same graph optimization problems are in P on trees.

Why?

A significant reason: DP algorithm based on decomposability

Powerful methodology for graph algorithms via a formal notion of
decomposability called treewidth (beyond the scope of this class)
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Maximum Independent Set in a Graph

Definition
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is an
independent set (also called a stable set) if for there are no edges
between nodes in S . That is, if u, v ∈ S then (u, v) 6∈ E .

A

B

C

DE

F

Some independent sets in graph above: {D}, {A,C}, {B,E ,F}

Ruta (UIUC) CS473 5 Spring 2021 5 / 39



Maximum Independent Set Problem

Input Graph G = (V ,E)

Goal Find maximum sized independent set in G

A

B

C

DE

F
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Maximum Weight Independent Set Problem

Input Graph G = (V ,E), weights w(v) ≥ 0 for v ∈ V
Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15
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Maximum Weight Independent Set Problem

1 No one knows an efficient (polynomial time) algorithm for this
problem

2 Problem is NP-Hard and it is believed that there is no
polynomial time algorithm

Brute-force algorithm:

Try all subsets of vertices.
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A Recursive Algorithm

Let V = {v1, v2, . . . , vn}.
For a vertex u let N(u) be its neighbors.

Observation
v1: vertex in the graph.
One of the following two cases is true

Case 1 v1 is in some maximum independent set.

Case 2 v1 is in no maximum independent set.

We can try both cases to “reduce” the size of the problem

G1 = G − v1 obtained by removing v1 and incident edges from G
G2 = G − v1 − N(v1) obtained by removing N(v1) ∪ v1 from G

MIS(G) = max{MIS(G1),MIS(G2) + w(v1)}
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A Recursive Algorithm

RecursiveMIS(G):

if G is empty then Output 0
v ← a vertex of G
a = RecursiveMIS(G − v)
b = w(v) + RecursiveMIS(G − v − N(v))
Output max(a, b)
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Example
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Recursive Algorithms
..for Maximum Independent Set

Running time:

T (n) = T (n − 1) + T
(
n − 1− deg(v)

)
+ O(1 + deg(v))

where deg(v) is the degree of v . T (0) = T (1) = 1 is base case.

Worst case is when deg(v) = 0 when the recurrence becomes

T (n) = 2T (n − 1) + O(1)

Solution to this is T (n) = O(2n).
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Memoization

We can memoize the recursive algorithm.

Question: Does it lead to an efficient algorithm?

What are the sub-problems? Ans.: Subgraphs (subsets of nodes).

How many are they if G has n nodes to start with? A.: Exponential.

Exercise: Show that even when G is a cycle the number of
subproblems is exponential in n.
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Part I

Maximum Weighted Independent Set
in Trees
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Maximum Weight Independent Set in a Tree

Input Tree T = (V ,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in T

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Maximum weight independent set in above tree: ??
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A Recursive Algorithm

For an arbitrary graph G :

1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without vn (recurse on
G − vn) and with vn (recurse on G − vn − N(vn) & include
vn).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree?

Natural candidate for vn is root r of T?
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Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O :

Then O contains an optimum solution for each subtree
of T hanging at a child of r .

Case r ∈ O :None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them?O(n)
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Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3
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A Recursive Solution

T (u): subtree of T hanging at node u

OPT (u): max weighted independent set value in T (u)

OPT (u) =

max

{∑
v child of u OPT (v),

w(u) +
∑

v grandchild of u OPT (v)
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Iterative Algorithm

1 To evaluate OPT (u) need to have computed values of all
children and grandchildren of u. Compute OPT (u) bottom up.

2 What is an ordering of nodes of a tree T to achieve above?

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Ans.: Post-order traversal of a tree.
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Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi ] = max

( ∑
vj child of vi

M[vj ],

w(vi ) +
∑

vj grandchild of vi
M[vj ]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: Each M[Vi ] evaluation may take O(n).There are
n such evaluations – O(n2).

2 Better bound: Value M[vj ] is accessed by who all? Parent and
grand-parent. So in total O(n).
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Why did DP work on trees?

Each node (including the root) is a separator!

Definition
Given a graph G = (V ,E) a set of nodes S ⊂ V is a separator for
G if G − S has at least two connected components.

Definition
S is a balanced separator if each connected component of G − S
has at most 2|V (G)|/3 nodes.

Exercise: Prove that every tree T has a balanced separator
consisting of a single node.
Aside: O(2

√
n) algorithm to find MIS in planar graphs using, (i)

balanced-separators, (ii) DP algorithm on trees.
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Part II

Minimum Dominating Set in Trees
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Minimum Dominating Set in a Graph

Definition
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is a
dominating set if for all v ∈ V , either v ∈ S or a neighbor of v is in
S .

A

B

C

DE

F

Some dominating sets in graph above: {A,B,C ,D,E ,F},
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Minimum Weight Dominating Set Problem

Input Graph G = (V ,E), weights w(v) ≥ 0 for v ∈ V
Goal Find minimum weight dominating set in G

A

B

C

DE

F

20

5

2

2

10

15

NP-Hard problem
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Minimum Weight Dominating Set in a Tree

Input Tree T = (V ,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find minimum weight dominating set in T

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Minimum weight dominating set in above tree: ??
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Recursive Algorithm

r is root of T . Let O be an optimum solution for T .

Case r 6∈ O : Then O must contain some child of r . Which one?

Case r ∈ O : None of the children of r need to be in O because r
can dominate them. However, they may have to be.
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Recursive Algorithm: Understanding Dependence

Let u1, u2, . . . , uk be children of root r of T

What “information” do Tu1
, . . . ,Tuk need to know about r ’s status

in an optimum solution in order to become “independent”

Whether r is included in the solution

If r is not included then which of the children is going to cover
it. Equivalently, Tui needs to know whether it should cover r or
some other child will.
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Recursive Algorithm: Introducing Variables

u: node in tree

pi : boolean variable to indicate whether parent is in solution.
pi = 0 means parent is not included. pi = 1 means it is
included.

cp: boolean variable to indicate whether node needed to cover
parent. cp = 1 means parent needs to be covered. cp = 0
means not needed.

OPT (u, pi , cp): value of minimum dominating set in Tu with
booleans pi and cp with meaning above.
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Recursive Algorithm: Sub-problem

u: node in tree

pi indicates if the parent is included or not.

cp indicates if the parent needs to be covered or not.

OPT (u, pi , cp): opt value in Tu with pi and cp as above.

OPT (u, 0, 0): opt value in Tu when parent of u is not included
and u need not cover it.

OPT (u, 0, 1): opt value in Tu when parent of u is not included
and u need to cover it.
OPT (u, 1, 0): opt value in Tu when parent of u is included and u
need not cover it.
OPT (u, 1, 1): NOT NEEDED!

OPT (r , 0, 0): value of minimum dominating set in T .
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Recursive Solution

Can we express OPT (u, pi , cp) recursively via children of u?

OPT (u, 0, 0): Value of a minimum dominating set in Tu where we
assume that u’s parent is not included and u does not need to cover
its parent.Let Cu be children of u.

Case u is included: Then u does not need to be covered by any
child. Include u and recurse.
OPT (u, 0, 0) = w(u) +

∑
v∈Cu

OPT (v , 1, 0)

Case u is not included: Then u needs to be covered by some child.
We do a min over all children.
OPT (u, 0, 0) =
minv∈Cu (OPT (v , 0, 1) +

∑
v ′∈Cu−v OPT (v ′, 0, 0))

Since one of these cases has to be true, we take the min of the values
in the above two cases to compute OPT (u, 0, 0).
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Recursive Solution

OPT (u, 0, 1) : Value of a minimum dominating set in Tu where we
assume that u’s parent is not included and u needs to cover its
parent. Let Cu be children of u.

Case u is included: Then u does not need to covered by any child.
Include u and recurse.
OPT (u, 0, 1) = w(u) +

∑
v∈Cu

OPT (v , 1, 0)

Case u is not included: This does not arise because u has to cover
its parent.
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Recursive Solution

OPT (u, 1, 0) : Value of a minimum dominating set in Tu where we
assume that u’s parent is included and u does not need to cover its
parent. Let Cu be children of u.

Case u is included: Then u does not need to covered by any child.
Include u and recurse.
OPT (u, 1, 0) = w(u) +

∑
v∈Cu

OPT (v , 1, 0)

Case u is not included: u’s parent is included. Now, does u need to
be covered by its children? No. Thus we have,
OPT (u, 1, 0) =

∑
v∈Cu

OPT (v , 0, 0)

Take the min of the values in the above two cases to compute
OPT (u, 1, 0).
Caution: Not including u may appear to be always advantageous
but it is not true.

Ruta (UIUC) CS473 34 Spring 2021 34 / 39



Recursive Solution

OPT (u, 1, 0) : Value of a minimum dominating set in Tu where we
assume that u’s parent is included and u does not need to cover its
parent. Let Cu be children of u.

Case u is included: Then u does not need to covered by any child.
Include u and recurse.
OPT (u, 1, 0) = w(u) +

∑
v∈Cu

OPT (v , 1, 0)

Case u is not included: u’s parent is included. Now, does u need to
be covered by its children? No. Thus we have,
OPT (u, 1, 0) =

∑
v∈Cu

OPT (v , 0, 0)

Take the min of the values in the above two cases to compute
OPT (u, 1, 0).
Caution: Not including u may appear to be always advantageous
but it is not true.

Ruta (UIUC) CS473 34 Spring 2021 34 / 39



Recursive Solution

OPT (u, 1, 0) : Value of a minimum dominating set in Tu where we
assume that u’s parent is included and u does not need to cover its
parent. Let Cu be children of u.

Case u is included: Then u does not need to covered by any child.
Include u and recurse.
OPT (u, 1, 0) = w(u) +

∑
v∈Cu

OPT (v , 1, 0)

Case u is not included: u’s parent is included. Now, does u need to
be covered by its children?

No. Thus we have,
OPT (u, 1, 0) =

∑
v∈Cu

OPT (v , 0, 0)

Take the min of the values in the above two cases to compute
OPT (u, 1, 0).
Caution: Not including u may appear to be always advantageous
but it is not true.

Ruta (UIUC) CS473 34 Spring 2021 34 / 39



Recursive Solution

OPT (u, 1, 0) : Value of a minimum dominating set in Tu where we
assume that u’s parent is included and u does not need to cover its
parent. Let Cu be children of u.

Case u is included: Then u does not need to covered by any child.
Include u and recurse.
OPT (u, 1, 0) = w(u) +

∑
v∈Cu

OPT (v , 1, 0)

Case u is not included: u’s parent is included. Now, does u need to
be covered by its children? No. Thus we have,
OPT (u, 1, 0) =

∑
v∈Cu

OPT (v , 0, 0)

Take the min of the values in the above two cases to compute
OPT (u, 1, 0).

Caution: Not including u may appear to be always advantageous
but it is not true.

Ruta (UIUC) CS473 34 Spring 2021 34 / 39



Recursive Solution

OPT (u, 1, 0) : Value of a minimum dominating set in Tu where we
assume that u’s parent is included and u does not need to cover its
parent. Let Cu be children of u.

Case u is included: Then u does not need to covered by any child.
Include u and recurse.
OPT (u, 1, 0) = w(u) +

∑
v∈Cu

OPT (v , 1, 0)

Case u is not included: u’s parent is included. Now, does u need to
be covered by its children? No. Thus we have,
OPT (u, 1, 0) =

∑
v∈Cu

OPT (v , 0, 0)

Take the min of the values in the above two cases to compute
OPT (u, 1, 0).
Caution: Not including u may appear to be always advantageous
but it is not true.

Ruta (UIUC) CS473 34 Spring 2021 34 / 39



Recursive Solution

OPT (u, 1, 1) : Value of a minimum dominating set in Tu where we
assume that u’s parent is included and u needs to cover its parent.

This subproblem does not make sense since if u’s parent is included
then u does not need to cover it.
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Base Cases

Leaves are base cases. If u is a leaf.

OPT (u, 0, 0) =

w(u)

OPT (u, 0, 1) = w(u)

OPT (u, 1, 0) = 0
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DP Algorithm

Minimum weight dominating set value in T is OPT (r , 0, 0)

To compute OPT (r , 0, 0) we need to compute recursively
OPT (u, 0, 0),OPT (u, 0, 1),OPT (u, 1, 0) for all u ∈ T .
Thus number of subproblems is O(n).

Nodes should be traveresed in what order? Ans.: bottom up
from leaves to root.

In particular? Ans.: post-order traversal.
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Iterative Algorithm

DominatingSet-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T
Allocate array M[1..n, 0..1, 0..1] to store OPT (vi , pi , cp) values

for i = 1 to n do
Compute OPT (vi , 0, 0), OPT (vi , 1, 0) and OPT (vi , 0, 1) using

values of children of vi stored in M,

or via base cases if vi is leaf

Store computed values in M for use by parent of vi.

return OPT (vn, 0, 0) (* Note: vn is the root of T *)

Exercise: Work out details and prove an O(n) time implementation.
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Recap

To obtain recursive solution we introduced additional variables
based on “information” needed to decompose

Decomposition depends both on structure (trees decompose via
separators) and objective function

Subproblems and recursion are almost defined hand in hand
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