# CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2021

# Polynomials, Convolutions and FFT

Lecture 2 Jan 26/28, 2021

## Outline

Discrete Fourier Transfor (DFT) and Fast Fourier Transform (FFT) have many applications and are connected to important mathematics.

"One of top 10 Algorithms of 20th Century" according to IEEE. Gilbert Strang: "The most important numerical algorithm of our lifetime".

#### Our goal:

- Multiplication of two degree n polynomials in  $O(n \log n)$  time. Surprising and non-obvious.
- Algorithmic ideas
  - change in representation
  - mathematical properties of polynomials
  - divide and conquer

## Part I

# Polynomials, Convolutions and FFT

# **Polynomials**

#### Definition

A polynomial is a function of one variable built from additions, subtractions and multiplications (but no divisions).

$$p(x) = \sum_{j=0}^{n-1} a_j x^j$$

The numbers  $a_0, a_1, \ldots, a_n$  are the coefficients of the polynomial. The degree is the highest power of x with a non-zero coefficient.

## Example

$$p(x) = 3 - 4x + 5x^3$$

$$a_0 = 3, a_1 = -4, a_2 = 0, a_3 = 5$$
 and  $deg(p) = 3$ 

# Polynomials **Polynomials**

#### **Definition**

A polynomial is a function of one variable built from additions, subtractions and multiplications (but no divisions).

$$p(x) = \sum_{j=0}^{n-1} a_j x^j$$

The numbers  $a_0, a_1, \ldots, a_n$  are the coefficients of the polynomial. The degree is the highest power of x with a non-zero coefficient.

## Coefficient Representation

Polynomials represented by vector  $\mathbf{a} = (a_0, a_1, \dots a_{n-1})$  of coefficients.

CS473 Spring 2021

# Operations on Polynomials

- Evaluate Given a polynomial p and a value  $\alpha$ , compute  $p(\alpha)$ 
  - Add Given (representations of) polynomials p, q, compute (representation of) polynomial p + q
- Multiply Given (representation of) polynomials p, q, compute (representation of) polynomial  $p \cdot q$ .
  - Roots Given p find all roots of p.

Compute value of polynomial  $a = (a_0, a_1, \dots a_{n-1})$  at  $\alpha$ 

```
egin{aligned} & 	ext{power} = 1 \ & 	ext{value} = 0 \ & 	ext{for} \ j = 0 \ & 	ext{to} \ n-1 \ & 	ext{//invariant:} \ & 	ext{power} = lpha^j \ & 	ext{value} = 	ext{value} + a_j \cdot & 	ext{power} \ & 	ext{power} = 	ext{power} \cdot lpha \ & 	ext{end for} \ & 	ext{return value} \end{aligned}
```

How many additions?

Compute value of polynomial  $a = (a_0, a_1, \dots a_{n-1})$  at  $\alpha$ 

```
egin{aligned} & 	ext{power} = 1 \ & 	ext{value} = 0 \ & 	ext{for} \ \emph{j} = 0 \ & 	ext{to} \ \emph{n} - 1 \ & 	ext{// invariant:} \ & 	ext{power} = lpha^{\emph{j}} \ & 	ext{value} = 	ext{value} + \emph{a}_{\emph{j}} \cdot 	ext{power} \ & 	ext{power} = 	ext{power} \cdot lpha \ & 	ext{end for} \ & 	ext{return value} \end{aligned}
```

How many additions? n

#### **Evaluation**

Compute value of polynomial  $a = (a_0, a_1, \dots a_{n-1})$  at  $\alpha$ 

```
egin{aligned} & \operatorname{power} = 1 \ & \operatorname{value} = 0 \ & \operatorname{for} \ j = 0 \ & \operatorname{to} \ n-1 \ & \ // \ & \operatorname{invariant:} \ & \operatorname{power} = lpha^j \ & \operatorname{value} = \operatorname{value} + a_j \cdot \operatorname{power} \ & \operatorname{power} = \operatorname{power} \cdot lpha \ & \operatorname{end} \ & \operatorname{for} \ & \operatorname{return} \ & \operatorname{value} \end{aligned}
```

How many additions? *n* How many multiplications?

#### **Evaluation**

Compute value of polynomial  $a = (a_0, a_1, \dots a_{n-1})$  at  $\alpha$ 

```
egin{aligned} & \operatorname{power} = 1 \ & \operatorname{value} = 0 \ & \operatorname{for} \ j = 0 \ & \operatorname{to} \ n-1 \ & \ // \ & \operatorname{invariant:} \ & \operatorname{power} = lpha^j \ & \operatorname{value} = \operatorname{value} + a_j \cdot \operatorname{power} \ & \operatorname{power} = \operatorname{power} \cdot lpha \ & \operatorname{end} \ & \operatorname{for} \ & \operatorname{return} \ & \operatorname{value} \end{aligned}
```

How many additions? *n* How many multiplications? *2n* 

Compute value of polynomial  $a = (a_0, a_1, \dots a_{n-1})$  at  $\alpha$ 

```
egin{aligned} & 	ext{power} = 1 \ & 	ext{value} = 0 \ & 	ext{for} \ \emph{j} = 0 \ & 	ext{to} \ \emph{n} - 1 \ & 	ext{// invariant:} \ & 	ext{power} = lpha^{\emph{j}} \ & 	ext{value} = 	ext{value} + \emph{a}_{\emph{j}} \cdot 	ext{power} \ & 	ext{power} = 	ext{power} \cdot lpha \ & 	ext{end for} \ & 	ext{return value} \end{aligned}
```

How many additions? n

How many multiplications? 2n

Horner's rule can be used to cut the multiplications in half

$$a(x) = a_0 + x(a_1 + x(a_2 + x(\cdots + xa_{n-1})\cdots))$$

## **Evaluation: Numerical Issues**

#### Question

How long does evaluation really take? O(n) time?

Bits to represent  $\alpha^n$  is  $n \log \alpha$  while bits to represent  $\alpha$  is only  $\log \alpha$ . Thus, need to pay attention to size of numbers and multiplication complexity.

Ignore this issue for now. Can get around it for applications of interest where one typically wants to compute  $p(\alpha) \mod m$  for some number m.

#### Addition

Compute the sum of polynomials 
$$a = (a_0, a_1, \dots a_{n-1})$$
 and  $b = (b_0, b_1, \dots b_{n-1})$ 

## Addition

Compute the sum of polynomials  $a=(a_0,a_1,\ldots a_{n-1})$  and  $b=(b_0,b_1,\ldots b_{n-1})$   $a+b=(a_0+b_0,a_1+b_1,\ldots a_{n-1}+b_{n-1})$ . Takes O(n) time.

## Multiplication

Compute the product of polynomials  $a = (a_0, a_1, \dots a_n)$  and  $b = (b_0, b_1, \dots b_m)$  Recall  $a \cdot b = (c_0, c_1, \dots c_{n+m})$  where

$$c_k = \sum_{i,j:\, i+j=k} a_i \cdot b_j$$

Takes  $\Theta(nm)$  time;  $\Theta(n^2)$  when n = m.

## Multiplication

Compute the product of polynomials  $a = (a_0, a_1, \dots a_n)$  and  $b = (b_0, b_1, \dots b_m)$  Recall  $a \cdot b = (c_0, c_1, \dots c_{n+m})$  where

$$c_k = \sum_{i,j:\, i+j=k} a_i \cdot b_j$$

Takes  $\Theta(nm)$  time;  $\Theta(n^2)$  when n=m. We will obtain a better algorithm!

## Multiplication

Compute the product of polynomials  $a = (a_0, a_1, \dots a_n)$  and  $b = (b_0, b_1, \dots b_m)$  Recall  $a \cdot b = (c_0, c_1, \dots c_{n+m})$  where

$$c_k = \sum_{i,j:\, i+j=k} a_i \cdot b_j$$

Takes  $\Theta(nm)$  time;  $\Theta(n^2)$  when n=m. We will obtain a better algorithm!

Better/Efficient/Easy (today's lecture): preferably O(n+m), but  $O(n \log n)$  is also okay.

## Convolutions

#### **Definition**

The convolution of vectors  $a = (a_0, a_1, \ldots a_n)$  and  $b = (b_0, b_1, \ldots b_m)$  is the vector  $c = (c_0, c_1, \ldots c_{n+m})$  where

$$c_k = \sum_{i,j:\, i+j=k} a_i \cdot b_j$$

Convolution of vectors a and b is denoted by a \* b. In other words, the convolution is the coefficients of the product of the two polynomials.

# Revisiting Polynomial Representations

#### Representation

Polynomials represented by vector  $\mathbf{a} = (a_0, a_1, \dots a_{n-1})$  of coefficients.

# Revisiting Polynomial Representations

## Representation

Polynomials represented by vector  $\mathbf{a} = (a_0, a_1, \dots a_{n-1})$  of coefficients.

#### Question

Are there other useful ways to represent polynomials?

CS473 Spring 2021 12 / 55

Root of a polynomial p(x): r such that p(r) = 0. If  $r_1, r_2, \ldots, r_{n-1}$  are roots then  $p(x) = a_{n-1}(x - r_1)(x - r_2) \dots (x - r_{n-1}).$ 

Valid representation because of:

## Theorem (Fundamental Theorem of Algebra)

Every polynomial p(x) of degree d has exactly d roots  $r_1, r_2, \ldots, r_d$ where the roots can be complex numbers and can be repeated.

Ruta (UIUC) **CS473** Spring 2021 13 / 55

#### Representation

Polynomials represented by vector scale factor  $a_{n-1}$  and roots

 $r_1, r_2, \ldots, r_{n-1}$ 

#### Representation

Polynomials represented by vector scale factor  $a_{n-1}$  and roots  $r_1, r_2, \ldots, r_{n-1}$ .

• Evaluating p at a given x is easy. Why?

#### Representation

Polynomials represented by vector scale factor  $a_{n-1}$  and roots  $r_1, r_2, \ldots, r_{n-1}$ .

- Evaluating **p** at a given **x** is easy. Why?
- Multiplication: given p, q with roots  $r_1, \ldots, r_{n-1}$  and  $s_1, \ldots, s_{m-1}$  the product  $p \cdot q$  has roots  $r_1, \ldots, r_{n-1}, s_1, \ldots, s_{m-1}$ . Easy! O(n+m) time.

#### Representation

Polynomials represented by vector scale factor  $a_{n-1}$  and roots  $r_1, r_2, \ldots, r_{n-1}$ .

- Evaluating p at a given x is easy. Why?
- Multiplication: given p, q with roots  $r_1, \ldots, r_{n-1}$  and  $s_1, \ldots, s_{m-1}$  the product  $p \cdot q$  has roots  $r_1, \ldots, r_{n-1}, s_1, \ldots, s_{m-1}$ . Easy! O(n+m) time.
- Addition: requires  $\Omega(nm)$  time?

#### Representation

Polynomials represented by vector scale factor  $a_{n-1}$  and roots  $r_1, r_2, \ldots, r_{n-1}$ 

- Evaluating **p** at a given **x** is easy. Why?
- Multiplication: given p, q with roots  $r_1, \ldots, r_{n-1}$  and  $s_1, \ldots, s_{m-1}$  the product  $p \cdot q$  has roots  $r_1, \ldots, r_{n-1}, s_1, \ldots, s_{m-1}$ . Easy! O(n+m) time.
- Addition: requires  $\Omega(nm)$  time?
- Given coefficient representation, how do we go to root representation? No finite algorithm because of potential for irrational roots.

Ruta (UIUC) CS473 14 Spring 2021 14 / 55

# Representing Polynomials by Samples

```
Let p be a polynomial of degree n-1.
Pick n distinct samples x_0, x_1, x_2, \ldots, x_{n-1}
Let y_0 = p(x_0), y_1 = p(x_1), \ldots, y_{n-1} = p(x_{n-1}).
```

## Representation

Polynomials represented by  $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})$ .

# Representing Polynomials by Samples

```
Let p be a polynomial of degree n-1.
Pick n distinct samples x_0, x_1, x_2, \ldots, x_{n-1}
Let y_0 = p(x_0), y_1 = p(x_1), \ldots, y_{n-1} = p(x_{n-1}).
```

## Representation

Polynomials represented by  $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})$ .

Is the above a valid representation?

# Representing Polynomials by Samples

```
Let p be a polynomial of degree n-1.
Pick n distinct samples x_0, x_1, x_2, \ldots, x_{n-1}
Let y_0 = p(x_0), y_1 = p(x_1), \ldots, y_{n-1} = p(x_{n-1}).
```

#### Representation

Polynomials represented by  $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})$ .

Is the above a valid representation? Why do we use 2n numbers instead of n numbers for coefficient and root representation?

## Sample Representation

#### Theorem

Given a list  $\{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$  there is exactly one polynomial p of degree n-1 such that  $p(x_j) = y_j$  for  $j = 0, 1, \dots, n-1$ .

## Sample Representation

#### **Theorem**

Given a list  $\{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$  there is exactly one polynomial p of degree n-1 such that  $p(x_j) = y_j$  for  $j = 0, 1, \dots, n-1$ .

So representation is valid.

## Sample Representation

#### Theorem

```
Given a list \{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\} there is exactly one polynomial p of degree n-1 such that p(x_j) = y_j for j = 0, 1, \dots, n-1.
```

So representation is valid.

```
Can use same x_0, x_1, \ldots, x_{n-1} for all polynomials of degree n-1. No need to store them explicitly and hence need only n numbers y_0, y_1, \ldots, y_{n-1}.
```

## Lagrange Interpolation

Given  $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$  the following polynomial p satisfies the property that  $p(x_j) = y_j$  for  $j = 0, 1, 2, \ldots, n-1$ .

$$p(x) = \sum_{j=0}^{n-1} \left( \frac{y_j}{\prod_{k \neq j} (x_j - x_k)} \prod_{k \neq j} (x - x_k) \right)$$

## Lagrange Interpolation

Given  $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$  the following polynomial p satisfies the property that  $p(x_j) = y_j$  for  $j = 0, 1, 2, \ldots, n-1$ .

$$p(x) = \sum_{j=0}^{n-1} \left( \frac{y_j}{\prod_{k \neq j} (x_j - x_k)} \prod_{k \neq j} (x - x_k) \right)$$

For n = 3, p(x) =

$$y_0 \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + y_1 \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} + y_2 \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

## Lagrange Interpolation

Given  $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$  the following polynomial p satisfies the property that  $p(x_j) = y_j$  for  $j = 0, 1, 2, \ldots, n-1$ .

$$p(x) = \sum_{j=0}^{n-1} \left( \frac{y_j}{\prod_{k \neq j} (x_j - x_k)} \prod_{k \neq j} (x - x_k) \right)$$

For n = 3, p(x) =

$$y_0 \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + y_1 \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} + y_2 \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

Easy to verify that  $p(x_j) = y_j!$  Thus there exists one polynomial of degree n-1 that interpolates the values  $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$ .

#### Lagrange Interpolation

Given  $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$  there is a polynomial p(x) such that  $p(x_i) = y_i$  for  $0 \le i < n$ . Can there be two distinct polynomials?

Ruta (UIUC) CS473 18 Spring 2021 18 / 55

### Lagrange Interpolation

Given  $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$  there is a polynomial p(x) such that  $p(x_i) = y_i$  for  $0 \le i < n$ . Can there be two distinct polynomials?

No! Use Fundamental Theorem of Algebra to prove it — exercise.

Ruta (UIUC) CS473 18 Spring 2021 18 / 55

• Let  $a = \{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$  and  $b = \{(x_0, y_0'), (x_1, y_1'), \dots (x_{n-1}, y_{n-1}')\}$  be two polynomials of degree n-1 in sample representation.

Ruta (UIUC) CS473 19 Spring 2021 19 / 55

- Let  $a = \{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$  and  $b = \{(x_0, y'_0), (x_1, y'_1), \dots (x_{n-1}, y'_{n-1})\}$  be two polynomials of degree n-1 in sample representation.
- a + b can be represented by

- Let  $a = \{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$  and  $b = \{(x_0, y'_0), (x_1, y'_1), \dots (x_{n-1}, y'_{n-1})\}$  be two polynomials of degree n-1 in sample representation.
- a + b can be represented by  $\{(x_0, (y_0 + y_0')), (x_1, (y_1 + y_1')), \dots (x_{n-1}, (y_{n-1} + y_{n-1}'))\}$ 
  - Thus, can be computed in O(n) time

- Let  $a = \{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$  and  $b = \{(x_0, y_0'), (x_1, y_1'), \dots (x_{n-1}, y_{n-1}')\}$  be two polynomials of degree n-1 in sample representation.
- a + b can be represented by  $\{(x_0, (y_0 + y'_0)), (x_1, (y_1 + y'_1)), \dots (x_{n-1}, (y_{n-1} + y'_{n-1}))\}$ • Thus, can be computed in O(n) time
- $a \cdot b$  can be evaluated at n samples

- Let  $a = \{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$  and  $b = \{(x_0, y_0'), (x_1, y_1'), \dots (x_{n-1}, y_{n-1}')\}$  be two polynomials of degree n-1 in sample representation.
- a + b can be represented by  $\{(x_0, (y_0 + y'_0)), (x_1, (y_1 + y'_1)), \dots (x_{n-1}, (y_{n-1} + y'_{n-1}))\}$ • Thus, can be computed in O(n) time
- $a \cdot b$  can be evaluated at n samples  $\{(x_0, (y_0 \cdot y_0')), (x_1, (y_1 \cdot y_1')), \dots (x_{n-1}, (y_{n-1} \cdot y_{n-1}'))\}$ • Can be computed in O(n) time.

- Let  $a = \{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$  and  $b = \{(x_0, y_0'), (x_1, y_1'), \dots (x_{n-1}, y_{n-1}')\}$  be two polynomials of degree n-1 in sample representation.
- a + b can be represented by  $\{(x_0, (y_0 + y'_0)), (x_1, (y_1 + y'_1)), \dots (x_{n-1}, (y_{n-1} + y'_{n-1}))\}$ • Thus, can be computed in O(n) time
- $a \cdot b$  can be evaluated at n samples  $\{(x_0, (y_0 \cdot y_0')), (x_1, (y_1 \cdot y_1')), \dots (x_{n-1}, (y_{n-1} \cdot y_{n-1}'))\}$ • Can be computed in O(n) time.

But what if p, q are given in coefficient form? Convolution requires p, q to be in coefficient form.

Ruta (UIUC) CS473 19 Spring 2021 19 / 55

#### Recall

**Goal:** given polynomials  $a = (a_0, \ldots, a_{n-1})$  and  $b = (b_0, \ldots, b_{n-1})$  in coefficient representation, compute  $a \cdot b$  in coefficient form (**convolution**).

#### Recall

**Goal:** given polynomials  $a = (a_0, \ldots, a_{n-1})$  and  $b = (b_0, \ldots, b_{n-1})$  in coefficient representation, compute  $a \cdot b$  in coefficient form (**convolution**).

Sample representation:

- Fix  $x_0, \ldots, x_{n-1}$ .
- $a' = (x_0, a(x_0)), \dots, (x_{n-1}, a(x_{n-1}))$ , similarly b' from b.
  - Theorem. Unique degree (n-1) polynomial corresponding to any given n samples.

**Goal:** given polynomials  $a = (a_0, \ldots, a_{n-1})$  and  $b = (b_0, \ldots, b_{n-1})$  in coefficient representation, compute  $a \cdot b$  in coefficient form (**convolution**).

Sample representation:

- Fix  $x_0, \ldots, x_{n-1}$ .
- $a' = (x_0, a(x_0)), \dots, (x_{n-1}, a(x_{n-1}))$ , similarly b' from b.
  - Theorem. Unique degree (n-1) polynomial corresponding to any given n samples. a' is a valid representation of a.
- $a' \cdot b'$  requires O(n) multiplications.

**Goal:** given polynomials  $a = (a_0, \ldots, a_{n-1})$  and  $b = (b_0, \ldots, b_{n-1})$  in coefficient representation, compute  $a \cdot b$  in coefficient form (**convolution**).

Sample representation:

- Fix  $x_0, \ldots, x_{n-1}$ .
- $a' = (x_0, a(x_0)), \dots, (x_{n-1}, a(x_{n-1}))$ , similarly b' from b.
  - Theorem. Unique degree (n-1) polynomial corresponding to any given n samples. a' is a valid representation of a.
- $a' \cdot b'$  requires O(n) multiplications.

**Plan.** Convert to sample representation. Multiply. Convert back to coefficient representation.

#### Coefficient representation to Sample representation

Given a polynomial a as  $(a_0, a_1, \ldots, a_{n-1})$  can we obtain a sample representation  $(x_0, y_0), \dots, (x_{n-1}, y_{n-1})$  quickly? Also can we *invert* the representation quickly?

Ruta (UIUC) CS473 Spring 2021 21 / 55

## Coefficient representation to Sample representation

Given a polynomial a as  $(a_0, a_1, \ldots, a_{n-1})$  can we obtain a sample representation  $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$  quickly? Also can we *invert* the representation quickly?

- Suppose we choose  $x_0, x_1, \ldots, x_{n-1}$  arbitrarily.
- Take O(n) time to evaluate  $y_j = a(x_j)$  given  $(a_0, \ldots, a_{n-1})$ .
- Total time is  $\Omega(n^2)$
- Inversion via Lagrange interpolation also  $\Omega(n^2)$

## Key Idea

Can choose  $x_0, x_1, \ldots, x_{n-1}$  carefully!

Total time to evaluate  $a(x_0), a(x_1), \ldots, a(x_{n-1})$  should be better than evaluating each separately.

## Key Idea

Can choose  $x_0, x_1, \ldots, x_{n-1}$  carefully!

Total time to evaluate  $a(x_0), a(x_1), \ldots, a(x_{n-1})$  should be better than evaluating each separately.

How do we choose  $x_0, x_1, \ldots, x_{n-1}$  to save work?

$$a(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots + a_{n-1}x^{n-1}$$

Assume n is a power of 2 for rest of the discussion.

Observation:  $(-x)^{2j} = x^{2j}$ . Can we exploit this?

$$a(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots + a_{n-1}x^{n-1}$$

Assume n is a power of 2 for rest of the discussion.

Observation:  $(-x)^{2j} = x^{2j}$ . Can we exploit this?

#### Example

$$3+4x+6x^2+2x^3+x^4+10x^5=(3+6x^2+x^4)+x(4+2x^2+10x^4)$$

$$a(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots + a_{n-1}x^{n-1}$$

Assume n is a power of 2 for rest of the discussion.

Observation:  $(-x)^{2j} = x^{2j}$ . Can we exploit this?

#### Example

$$3+4x+6x^2+2x^3+x^4+10x^5=(3+6x^2+x^4)+x(4+2x^2+10x^4)$$

$$a(c) = (3 + 6c^2 + c^4) + c(4 + 2c^2 + 10c^4)$$

$$a(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots + a_{n-1}x^{n-1}$$

Assume n is a power of 2 for rest of the discussion.

Observation:  $(-x)^{2j} = x^{2j}$ . Can we exploit this?

#### Example

$$3+4x+6x^2+2x^3+x^4+10x^5=(3+6x^2+x^4)+x(4+2x^2+10x^4)$$

$$a(c) = (3 + 6c^2 + c^4) + c(4 + 2c^2 + 10c^4)$$
  
 $a(-c) =$ 

$$a(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots + a_{n-1}x^{n-1}$$

Assume n is a power of 2 for rest of the discussion.

Observation:  $(-x)^{2j} = x^{2j}$ . Can we exploit this?

#### Example

$$3+4x+6x^2+2x^3+x^4+10x^5=(3+6x^2+x^4)+x(4+2x^2+10x^4)$$

$$a(c) = (3 + 6c^2 + c^4) + c(4 + 2c^2 + 10c^4)$$
  

$$a(-c) = (3 + 6c^2 + c^4) - c(4 + 2c^2 + 10c^4)$$

## Odd and Even Decomposition

- Let  $a = (a_0, a_1, \dots a_{n-1})$  be a polynomial.
- Let  $a_{\text{odd}} = (a_1, a_3, a_5, ...)$  be the (n/2 1) degree polynomial defined by the odd coefficients; so

$$a_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + \cdots$$

## Odd and Even Decomposition

- Let  $a = (a_0, a_1, \dots a_{n-1})$  be a polynomial.
- Let  $a_{\text{odd}} = (a_1, a_3, a_5, ...)$  be the (n/2 1) degree polynomial defined by the odd coefficients; so

$$a_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + \cdots$$

• Similarly, let  $a_{\text{even}}(x) = a_0 + a_2 x + \dots$  be the (n/2 - 1) degree polynomial defined by the even coefficients.

## Odd and Even Decomposition

- Let  $a = (a_0, a_1, \dots a_{n-1})$  be a polynomial.
- Let  $a_{\text{odd}} = (a_1, a_3, a_5, ...)$  be the (n/2 1) degree polynomial defined by the odd coefficients; so

$$a_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + \cdots$$

- Similarly, let  $a_{\text{even}}(x) = a_0 + a_2 x + \dots$  be the (n/2 1) degree polynomial defined by the even coefficients.
- Observe

$$a(x) = a_{\text{even}}(x^2) + xa_{\text{odd}}(x^2)$$

 Thus, evaluating a at x can be reduced to evaluating lower degree polynomials plus constantly many arithmetic operations.

$$a(x) = a_{\text{even}}(x^2) + xa_{\text{odd}}(x^2)$$

Choose *n* samples

$$x_0, x_1, x_2, \ldots, x_{n/2-1}, -x_0, -x_1, \ldots, -x_{n/2-1}$$

• Evaluate  $a_{\text{even}}$  and  $a_{\text{odd}}$  at  $x_0^2, x_1^2, x_2^2, \dots, x_{n/2-1}^2$ .

$$a(x) = a_{\text{even}}(x^2) + xa_{\text{odd}}(x^2)$$

Choose *n* samples

$$x_0, x_1, x_2, \ldots, x_{n/2-1}, -x_0, -x_1, \ldots, -x_{n/2-1}$$

- Evaluate  $a_{\text{even}}$  and  $a_{\text{odd}}$  at  $x_0^2, x_1^2, x_2^2, \dots, x_{n/2-1}^2$ .
- $egin{aligned} \bullet & ext{For each } i=0 ext{ to } (n/2-1), ext{ evaluate} \ a(x_i) = a_{ ext{even}}(x_i^2) + x_i a_{ ext{odd}}(x_i^2) \ a(-x_i) = a_{ ext{even}}(x_i^2) x_i a_{ ext{odd}}(x_i^2) \end{aligned}$

$$a(x) = a_{\text{even}}(x^2) + xa_{\text{odd}}(x^2)$$

• Choose *n* samples

$$x_0, x_1, x_2, \ldots, x_{n/2-1}, -x_0, -x_1, \ldots, -x_{n/2-1}$$

- Evaluate  $a_{\text{even}}$  and  $a_{\text{odd}}$  at  $x_0^2, x_1^2, x_2^2, \dots, x_{n/2-1}^2$ .
- For each i=0 to (n/2-1), evaluate  $a(x_i)=a_{\mathrm{even}}(x_i^2)+x_ia_{\mathrm{odd}}(x_i^2) \ a(-x_i)=a_{\mathrm{even}}(x_i^2)-x_ia_{\mathrm{odd}}(x_i^2)$  Total of O(n) work!

$$a(x) = a_{\text{even}}(x^2) + xa_{\text{odd}}(x^2)$$

Choose *n* samples

$$x_0, x_1, x_2, \ldots, x_{n/2-1}, -x_0, -x_1, \ldots, -x_{n/2-1}$$

- Evaluate  $a_{\text{even}}$  and  $a_{\text{odd}}$  at  $x_0^2, x_1^2, x_2^2, \dots, x_{n/2-1}^2$ .
- For each i=0 to (n/2-1), evaluate  $a(x_i)=a_{\mathrm{even}}(x_i^2)+x_ia_{\mathrm{odd}}(x_i^2)$   $a(-x_i)=a_{\mathrm{even}}(x_i^2)-x_ia_{\mathrm{odd}}(x_i^2)$  Total of O(n) work!
- Suppose we can make this work recursively. Then

$$T(n) = 2T(n/2) + O(n)$$
 which implies  $T(n) = O(n \log n)$ 

#### Collapsible sets

#### Definition

Given a set X of numbers square(X) (for square of X) is the set  $\{x^2 \mid x \in X\}$ .

### Collapsible sets

#### Definition

Given a set X of numbers square (X) (for square of X) is the set  $\{x^2 \mid x \in X\}$ .

#### **Definition**

A set X of n numbers is collapsible if square(X)  $\subset$  X and |square(X)| = n/2.

## Collapsible sets

#### Definition

Given a set X of numbers square (X) (for square of X) is the set  $\{x^2 \mid x \in X\}$ .

#### Definition

A set X of n numbers is collapsible if square(X)  $\subset$  X and |square(X)| = n/2.

#### **Definition**

A set X of n numbers (for n a power of n) is recursively collapsible if n = 1 or if n is collapsible and square n is recursively collapsible.

Given a recursively collapsible set X of size n, compute sample representation of polynomial a of degree (n-1) as follows:

```
SampleRepresentation(a, X, n) 
 If n=1 return a(x_0) where X=\{x_0\} 
 Compute square(X) in O(n) time %note:|square(X)| = n/2
```

Given a recursively collapsible set X of size n, compute sample representation of polynomial a of degree (n-1) as follows:

```
\begin{aligned} & \text{SampleRepresentation}(a, \ X, \ n) \\ & \text{If} \ n=1 \ \text{return} \ a(x_0) \ \text{where} \ X=\{x_0\} \\ & \text{Compute square}(X) \ \text{in} \ O(n) \ \text{time \note:} | \text{square}(X)| = n/2 \\ & \{y_0, y_1, \dots, y_{n/2-1}\} = & \text{SampleRepresentation}(a_{\circ dd}, \text{square}(X), n/2) \\ & \{y_0', y_1', \dots, y_{n/2-1}'\} = & \text{SampleRepresentation}(a_{\circ ven}, \text{square}(X), n/2) \end{aligned}
```

Given a recursively collapsible set X of size n, compute sample representation of polynomial a of degree (n-1) as follows:

```
SampleRepresentation(a, X, n)

If n=1 return a(x_0) where X=\{x_0\}

Compute square(X) in O(n) time %note:|square(X)| = n/2

\{y_0, y_1, \ldots, y_{n/2-1}\} = SampleRepresentation(a_{odd}, square(X), n/2)

\{y_0', y_1', \ldots, y_{n/2-1}'\} = SampleRepresentation(a_{even}, square(X), n/2)

For each i from 0 to (n-1) compute

z_i = a_{even}(x_i^2) + x_i a_{odd}(x_i^2)

Return \{z_0, z_1, \ldots, z_{n-1}\}
```

Given a recursively collapsible set X of size n, compute sample representation of polynomial a of degree (n-1) as follows:

```
\begin{aligned} & \text{SampleRepresentation}(a, \ X, \ n) \\ & \text{If } n = 1 \ \text{return } a(x_0) \ \text{where } X = \{x_0\} \\ & \text{Compute square}(X) \ \text{in } O(n) \ \text{time } \text{%note:} | \text{square}(X)| = n/2 \\ & \{y_0, y_1, \dots, y_{n/2-1}\} = & \text{SampleRepresentation}(a_{\circ dd}, \text{square}(X), n/2) \\ & \{y_0', y_1', \dots, y_{n/2-1}'\} = & \text{SampleRepresentation}(a_{\circ ven}, \text{square}(X), n/2) \end{aligned} For each i from 0 to (n-1) compute z_i = a_{\circ ven}(x_i^2) + x_i a_{\circ dd}(x_i^2) Return \{z_0, z_1, \dots, z_{n-1}\}
```

**Exercise:** show that algorithm runs in  $O(n \log n)$  time

## Are there collapsible sets?

- n samples  $x_0, x_1, x_2, \dots, x_{n/2-1}, -x_0, -x_1, \dots, -x_{n/2-1}$
- Next step in recursion  $x_0^2, x_1^2, \dots, x_{n/2-1}^2$

# Are there collapsible sets?

- n samples  $x_0, x_1, x_2, \ldots, x_{n/2-1}, -x_0, -x_1, \ldots, -x_{n/2-1}$
- Next step in recursion  $x_0^2, x_1^2, \dots, x_{n/2-1}^2$
- To continue recursion, we need

$$\{x_0^2, x_1^2, \dots, x_{\frac{n}{2}-1}^2\} = \{z_0, z_1, \dots, z_{\frac{n}{4}-1}, -z_0, -z_1, \dots, -z_{\frac{n}{4}-1}\}$$

# Are there collapsible sets?

- n samples  $x_0, x_1, x_2, \dots, x_{n/2-1}, -x_0, -x_1, \dots, -x_{n/2-1}$
- Next step in recursion  $x_0^2, x_1^2, \dots, x_{n/2-1}^2$
- To continue recursion, we need

$$\{x_0^2, x_1^2, \dots, x_{\frac{n}{2}-1}^2\} = \{z_0, z_1, \dots, z_{\frac{n}{4}-1}, -z_0, -z_1, \dots, -z_{\frac{n}{4}-1}\}$$

• If  $z_0 = x_0^2$  and  $-z_0 = x_{n/4}^2$  then  $x_0 = \sqrt{-1}x_{n/4}$  That is  $x_0 = ix_{n/4}$  where i is the imaginary number.

# Are there collapsible sets?

- n samples  $x_0, x_1, x_2, \dots, x_{n/2-1}, -x_0, -x_1, \dots, -x_{n/2-1}$
- Next step in recursion  $x_0^2, x_1^2, \dots, x_{n/2-1}^2$
- To continue recursion, we need

$$\{x_0^2, x_1^2, \dots, x_{\frac{n}{2}-1}^2\} = \{z_0, z_1, \dots, z_{\frac{n}{4}-1}, -z_0, -z_1, \dots, -z_{\frac{n}{4}-1}\}$$

- If  $z_0 = x_0^2$  and  $-z_0 = x_{n/4}^2$  then  $x_0 = \sqrt{-1}x_{n/4}$  That is  $x_0 = ix_{n/4}$  where i is the imaginary number.
- Can continue recursion but need to go to complex numbers.

# Complex Numbers

#### Notation

For the rest of lecture, *i* stands for  $\sqrt{-1}$ 

## **Definition**

Complex numbers are points lying in the complex plane represented as

Cartesian 
$$a + ib = \sqrt{a^2 + b^2}e^{(\arctan(b/a))i}$$

Polar 
$$re^{\theta i} = r(\cos \theta + i \sin \theta)$$

Thus, 
$$e^{\pi i}=-1$$
 and  $e^{2\pi i}=1$ .

# Power Series for Functions (Recall)

What is  $e^z$  when z is a real number? When z is a complex number?

$$e^z = 1 + z/1! + z^2/2! + \dots + z^j/j! + \dots$$

Therefore

$$e^{i\theta} = 1 + i\theta/1! + (i\theta)^2/2! + (i\theta)^3/3! + \dots$$
  
=  $(1 - \theta^2/2! + \theta^4/4! - \dots +) + i(\theta - \theta^3/3! + \dots +)$   
=  $\cos \theta + i \sin \theta$ 

Ruta (UIUC) CS473 30 Spring 2021 30 / 55

What are the roots of the polynomial  $x^k - 1$ ?

 $(e^{2\pi i}=1)$ 

• Clearly **1** is a root.

What are the roots of the polynomial  $x^k - 1$ ? (e

 $(e^{2\pi i}=1)$ 

- Clearly **1** is a root.
- Suppose  $re^{\theta i}$  is a root then  $r^k e^{k\theta i} = 1$  which implies that r = 1 and  $k\theta = 2\pi \Rightarrow \theta = 2\pi/k$

What are the roots of the polynomial  $x^k - 1$ ?  $(e^{2\pi i} = 1)$ 

- Clearly 1 is a root.
- Suppose  $re^{\theta i}$  is a root then  $r^k e^{k\theta i} = 1$  which implies that r = 1 and  $k\theta = 2\pi \Rightarrow \theta = 2\pi/k$
- Let  $\omega_k = e^{2\pi i/k}$ . The roots are  $1 = \omega_k^0, \omega_k^2, \dots, \omega_k^{k-1}$  where  $\omega_k^j = e^{2\pi ji/k}$ .

What are the roots of the polynomial  $x^k - 1$ ?

$$(e^{2\pi i}=1)$$

- Clearly 1 is a root.
- Suppose  $re^{\theta i}$  is a root then  $r^k e^{k\theta i} = 1$  which implies that r = 1 and  $k\theta = 2\pi \Rightarrow \theta = 2\pi/k$
- Let  $\omega_k = e^{2\pi i/k}$ . The roots are  $1 = \omega_k^0, \omega_k^2, \dots, \omega_k^{k-1}$  where  $\omega_k^j = e^{2\pi j i/k}$ .

## Proposition

Let  $\omega_k$  be  $e^{2\pi i/k}$ . The equation  $x^k = 1$  has k distinct complex roots given by  $\omega_k^j = e^{(2\pi j)i/k}$  for  $j = 0, 1, \ldots k - 1$ 

## Proof.

$$(\omega_k^j)^k = (e^{2\pi ji/k})^k = e^{2\pi ji} = (e^{2\pi i})^j = (1)^j = 1$$

Ruta (UIUC) CS473 31 Spring 2021 31 / 55

Observation 1:  $\omega_k^j = \omega_k^{j \bmod k}$ 

Observation 1: 
$$\omega_k^j = \omega_k^{j \mod k}$$

## Lemma

Assume n is a power of 2. The n'th roots of unity are a recursively collapsible set.

## Proof.

Let 
$$X_n = \{1, \omega_n, \omega_n^2, \dots, \omega_n^{n-1}\}.$$

Observation 1: 
$$\omega_k^j = \omega_k^{j \mod k}$$

#### Lemma

Assume n is a power of 2. The n'th roots of unity are a recursively collapsible set.

## Proof.

Let 
$$X_n = \{1, \omega_n, \omega_n^2, \dots, \omega_n^{n-1}\}$$
.  $(\omega_n^{n/2+j})^2 = \omega_n^{n+2j} = \omega_n^{2j}$ ,

Observation 1: 
$$\omega_k^j = \omega_k^{j \mod k}$$

## Lemma

Assume n is a power of 2. The n'th roots of unity are a recursively collapsible set.

## Proof.

Let 
$$X_n=\{1,\omega_n,\omega_n^2,\ldots,\omega_n^{n-1}\}$$
.  $(\omega_n^{n/2+j})^2=\omega_n^{n+2j}=\omega_n^{2j}$ , for each  $j< n/2$ .

Observation 1:  $\omega_k^j = \omega_k^{j \mod k}$ 

## Lemma

Assume n is a power of 2. The n'th roots of unity are a recursively collapsible set.

## Proof.

Let 
$$X_n = \{1, \omega_n, \omega_n^2, \dots, \omega_n^{n-1}\}$$
.  $(\omega_n^{n/2+j})^2 = \omega_n^{n+2j} = \omega_n^{2j}$ , for each  $j < n/2$ .

- $X_1 = \{1\}, X_2 = \{1, -1\}$
- $X_4 = \{1, -1, i, -i\}$
- $X_8 = \{1, -1, i, -i, \frac{1}{\sqrt{2}}(\pm 1 \pm i)\}$

## Discrete Fourier Transform

## **Definition**

Given vector  $a = (a_0, a_1, \ldots, a_{n-1})$  the Discrete Fourier Transform (DFT) of a is the vector  $a' = (a'_0, a'_1, \ldots, a'_{n-1})$  where  $a'_j = a(\omega_n^j)$  for  $0 \le j < n$ .

a' is a sample representation of polynomial with coefficient reprentation a at n'th roots of unity.

Ruta (UIUC) CS473 33 Spring 2021 33 / 55

## Discrete Fourier Transform

## **Definition**

Given vector  $a = (a_0, a_1, \ldots, a_{n-1})$  the Discrete Fourier Transform (DFT) of a is the vector  $a' = (a'_0, a'_1, \ldots, a'_{n-1})$  where  $a'_j = a(\omega_n^j)$  for  $0 \le j < n$ .

a' is a sample representation of polynomial with coefficient reprentation a at n'th roots of unity.

We have shown that a' can be computed from a in  $O(n \log n)$  time. This divide and conquer algorithm is called the Fast Fourier Transform (FFT).

Ruta (UIUC) CS473 33 Spring 2021 33 / 55

# Back to Convolutions and Polynomial Multiplication

## Convolutions (products)

Compute convolution 
$$c = (c_0, c_1, ..., c_{2n-2})$$
 of  $a = (a_0, a_1, ..., a_{n-1})$  and  $b = (b_0, b_1, ..., b_{n-1})$ 

- Evaluate a and b at some n sample points.
- ② Compute sample representation of product. That is  $c' = (a'_0b'_0, a'_1b'_1, \dots, a'_{n-1}b'_{n-1}).$
- **3** Compute coefficients of unique polynomial associated with sample representation of product. That is compute c from c'.

# Back to Convolutions and Polynomial Multiplication

## Convolutions (products)

Compute convolution 
$$c = (c_0, c_1, ..., c_{2n-2})$$
 of  $a = (a_0, a_1, ..., a_{n-1})$  and  $b = (b_0, b_1, ..., b_{n-1})$ 

- Evaluate a and b at the nth roots of unity.
- 2 Compute sample representation of product. That is  $c' = (a'_0b'_0, a'_1b'_1, \dots, a'_{n-1}b'_{n-1}).$
- **3** Compute coefficients of unique polynomial associated with sample representation of product. That is compute c from c'.

Can we really compute c from c'?

# Back to Convolutions and Polynomial Multiplication

## Convolutions (products)

Compute convolution 
$$c = (c_0, c_1, ..., c_{2n-2})$$
 of  $a = (a_0, a_1, ..., a_{n-1})$  and  $b = (b_0, b_1, ..., b_{n-1})$ 

- Evaluate a and b at the nth roots of unity.
- 2 Compute sample representation of product. That is  $c' = (a'_0b'_0, a'_1b'_1, \dots, a'_{n-1}b'_{n-1}).$
- **3** Compute coefficients of unique polynomial associated with sample representation of product. That is compute c from c'.

Can we really compute c from c'? We only have n sample points and c' has 2n - 1 coefficients!

# Convolutions and Polynomial Multiplication

#### Convolutions

Compute convolution 
$$c = (c_0, c_1, ..., c_{2n-2})$$
 of  $a = (a_0, a_1, ..., a_{n-1})$  and  $b = (b_0, b_1, ..., b_{n-1})$ 

• Pad a with n zeroes to make it a (2n-1) degree polynomial  $a = (a_0, a_1, \ldots, a_{n-1}, a_n, a_{n+1}, \ldots, a_{2n-1})$ . Similarly for b.

Ruta (UIUC) CS473 35 Spring 2021 35 / 55

# Convolutions and Polynomial Multiplication

#### Convolutions

- Compute convolution  $c = (c_0, c_1, \dots, c_{2n-2})$  of  $a = (a_0, a_1, \dots a_{n-1})$  and  $b = (b_0, b_1, \dots b_{n-1})$ 
  - 1 Pad a with n zeroes to make it a (2n-1) degree polynomial  $a = (a_0, a_1, \dots, a_{n-1}, a_n, a_{n+1}, \dots, a_{2n-1})$ . Similarly for b.
  - Compute values of a and b at the 2nth roots of unity.
  - Compute sample representation of product. That is  $c' = (a'_0 b'_0, a'_1 b'_1, \dots, a'_{n-1} b'_{n-1}, \dots, a'_{2n-1} b'_{2n-1}).$
  - Compute coefficients of unique polynomial associated with sample representation of product. That is compute c from c'.

CS473 35 Spring 2021 35 / 55

# Convolutions and Polynomial Multiplication

## Convolutions

Compute convolution 
$$c = (c_0, c_1, ..., c_{2n-2})$$
 of  $a = (a_0, a_1, ..., a_{n-1})$  and  $b = (b_0, b_1, ..., b_{n-1})$ 

- Pad a with n zeroes to make it a (2n-1) degree polynomial  $a = (a_0, a_1, \ldots, a_{n-1}, a_n, a_{n+1}, \ldots, a_{2n-1})$ . Similarly for b.
- Compute values of a and b at the 2nth roots of unity.
- **3** Compute sample representation of product. That is  $c' = (a'_0b'_0, a'_1b'_1, \ldots, a'_{n-1}b'_{n-1}, \ldots, a'_{2n-1}b'_{2n-1}).$
- ullet Compute coefficients of unique polynomial associated with sample representation of product. That is compute c from c'.
  - Step 2 takes  $O(n \log n)$  using divide and conquer algorithm
- Step 3 takes O(n) time
- Step 4?

## Part II

# Inverse Fourier Transform

Ruta (UIUC) CS473 36 Spring 2021 36 / 55

## Inverse Fourier Transform

Input Given the evaluation of a n - 1-degree polynomial a on the nth roots of unity specified by vector a'
 Goal Compute the coefficients of a

We saw that a' can be computed from a in  $O(n \log n)$  time. Can we compute a from a' in  $O(n \log n)$  time?

Ruta (UIUC) CS473 37 Spring 2021 37 / 55

## A Matrix Point of View

$$a(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$$

$$a'_0 = a(x_0), a'_1 = a(x_1), \ldots, a'_{n-1} = a(x_{n-1}).$$

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_j & x_j^2 & \dots & x_j^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \dots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_j \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} a'_0 \\ a'_1 \\ \vdots \\ a'_j \\ \vdots \\ a'_{n-1} \end{bmatrix}$$

Ruta (UIUC) CS473 38 Spring 2021 38 / 55

## A Matrix Point of View

$$a(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$$

Denote 
$$\omega = \omega_n^1 = e^{2\pi/n}$$
. Let  $x_j = \omega^j$   $a_0' = a(1), a_1' = a(\omega), \dots, a_{n-1}' = a(\omega^{n-1})$ .

$$\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^{2} & \dots & \omega^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{j} & \omega^{2j} & \dots & \omega^{j(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{j} \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} a'_{0} \\ a'_{1} \\ \vdots \\ a'_{j} \\ \vdots \\ a'_{n-1} \end{bmatrix}$$

Ruta (UIUC) CS473 39 Spring 2021 39 / 55

# Inverting the Matrix

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_j \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^j & \omega^{2j} & \dots & \omega^{j(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{bmatrix}^{-1} \begin{bmatrix} a'_0 \\ a'_1 \\ \vdots \\ a'_j \\ \vdots \\ a'_{n-1} \end{bmatrix}$$

# Inverting the Matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^j & \omega^{2j} & \dots & \omega^{j(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{bmatrix}^{-1} = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \dots & \omega^{-(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-j} & \omega^{-2j} & \dots & \omega^{-j(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \dots & \omega^{-(n-1)(n-1)} \end{bmatrix}$$

Replace  $\omega$  by  $\omega^{-1}$  which is also a root of unity! Since  $\omega^j = \omega^j \mod n$ , we get  $\omega^{-j} = e^{-j2\pi/n} = \omega^{(n-j)2\pi/n}$ .

# Inverting the Matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^j & \omega^{2j} & \dots & \omega^{j(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{bmatrix}^{-1} = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \dots & \omega^{-(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-j} & \omega^{-2j} & \dots & \omega^{-j(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \dots & \omega^{-(n-1)(n-1)} \end{bmatrix}$$

Replace  $\omega$  by  $\omega^{-1}$  which is also a root of unity! Since  $\omega^j = \omega^j \mod n$ , we get  $\omega^{-j} = e^{-j2\pi/n} = \omega^{(n-j)2\pi/n}$ .

Inverse matrix is simply a permutation of the original matrix modulo scale factor 1/n.

Check  $VV^{-1} = I$  where I is the  $n \times n$  identity matrix.

Check  $VV^{-1} = I$  where I is the  $n \times n$  identity matrix.

Observation: 
$$\sum_{s=0}^{n-1} (\omega^j)^s = (1 + \omega^j + \omega^{2j} + \ldots + \omega^{(n-1)j}) = 0, j \neq 0$$

Check  $VV^{-1} = I$  where I is the  $n \times n$  identity matrix.

Observation: 
$$\sum_{s=0}^{n-1} (\omega^j)^s = (1 + \omega^j + \omega^{2j} + \ldots + \omega^{(n-1)j}) = 0, j \neq 0$$

- $\omega^j$  is root of  $x^n 1 = (x 1)(x^{n-1} + x^{n-2} + \ldots + 1)$
- Thus,  $\omega^j$  is root of  $(x^{n-1} + x^{n-2} + \ldots + 1)$

Check  $VV^{-1} = I$  where I is the  $n \times n$  identity matrix.

Observation: 
$$\sum_{s=0}^{n-1} (\omega^j)^s = (1 + \omega^j + \omega^{2j} + \ldots + \omega^{(n-1)j}) = 0, j \neq 0$$

- $\omega^j$  is root of  $x^n 1 = (x 1)(x^{n-1} + x^{n-2} + \ldots + 1)$
- Thus,  $\omega^j$  is root of  $(x^{n-1} + x^{n-2} + \ldots + 1)$

$$(1, \omega^{j}, \omega^{2j}, \dots, \omega^{j(n-1)}) \cdot (1, \omega^{-k}, \omega^{-2k}, \dots, \omega^{-k(n-1)}) = \sum_{s=0}^{n-1} \omega^{s(j-k)}$$

Note that  $\omega^{j-k}$  is a n'th root of unity. If j=k then sum is n, otherwise by previous observation sum is 0.

Check  $VV^{-1} = I$  where I is the  $n \times n$  identity matrix.

Observation: 
$$\sum_{s=0}^{n-1} (\omega^j)^s = (1+\omega^j+\omega^{2j}+\ldots+\omega^{(n-1)j}) = 0, j \neq 0$$

- $\omega^j$  is root of  $x^n 1 = (x 1)(x^{n-1} + x^{n-2} + \ldots + 1)$
- Thus,  $\omega^j$  is root of  $(x^{n-1} + x^{n-2} + \ldots + 1)$

$$(1, \omega^{j}, \omega^{2j}, \dots, \omega^{j(n-1)}) \cdot (1, \omega^{-k}, \omega^{-2k}, \dots, \omega^{-k(n-1)}) = \sum_{s=0}^{n-1} \omega^{s(j-k)}$$

Note that  $\omega^{j-k}$  is a n'th root of unity. If j=k then sum is n, otherwise by previous observation sum is 0.

Rows of matrix V (and hence also those of  $V^{-1}$ ) are *orthogonal*. Thus a' = Va can be thought of transforming the vector a into a new Fourier basis with basis vectors corresponding to rows of V.

## Inverse Fourier Transform

Input Given the evaluation of a n-1-degree polynomial a on the nth roots of unity specified by vector a'

Goal Compute the coefficients of a

We saw that a' can be computed from a in  $O(n \log n)$  time. Can we compute a from a' in  $O(n \log n)$  time?

Yes!  $a = V^{-1}a'$  which is simply a permuted and scaled version of DFT. Hence can be computed in  $O(n \log n)$  time.

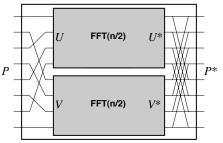
## Convolutions Once More

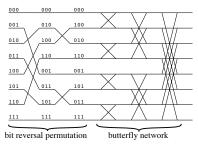
## Convolutions

Compute convolution of  $a = (a_0, a_1, \dots a_{n-1})$  and  $b = (b_0, b_1, \dots b_{n-1})$ 

- Compute values of a and b at the 2nth roots of unity
- ② Compute sample representation c' of product  $c = a \cdot b$
- Compute c from c' using inverse Fourier transform.
  - Step 1 takes  $O(n \log n)$  using two FFTs
  - Step 2 takes O(n) time
  - Step 3 takes  $O(n \log n)$  using one FFT

### FFT Circuit





The recursive structure of the FFT algorithm.

### Numerical Issues

- As noted earlier evaluating a polynomial p at a point x makes numbers big
- Are we cheating when we say  $O(n \log n)$  algorithm for convolution?
- Can get around numerical issues work in finite fields and avoid numbers growing too big.
- Outside the scope of lecture
- We will assume for reductions that convolution can be done in O(n log n) time.

### Numerical Issues: Puzzle

Ruta (UIUC) CS473 47 Spring 2021 47 / 55

### Part III

# Application to String Matching

Ruta (UIUC) CS473 48 Spring 2021 48 / 55

Basic string matching problem:

Input Given a pattern string P on length m and a text string T of length n over a fixed alphabet  $\Sigma$ 

Goal Does **P** occur as a substring of **T**? Find all "matches" of **P** in **T**.

### Basic string matching problem:

- Input Given a pattern string P on length m and a text string T of length n over a fixed alphabet  $\Sigma$ 
  - Goal Does **P** occur as a substring of **T**? Find all "matches" of **P** in **T**.

Several generalizations. Matching with don't cares.

- Input Given a pattern string P on length m over  $\Sigma \cup \{*\}$  (\* is a don't care) and a text string T of length n over  $\Sigma$ 
  - Goal Find all "matches" of P in T. \* matches with any character of  $\Sigma$

Basic string matching problem:

- Input Given a pattern string P on length m and a text string T of length n over a fixed alphabet  $\Sigma$ 
  - Goal Does **P** occur as a substring of **T**? Find all "matches" of **P** in **T**.

Several generalizations. Matching with don't cares.

- Input Given a pattern string P on length m over  $\Sigma \cup \{*\}$  (\* is a don't care) and a text string T of length n over  $\Sigma$
- Goal Find all "matches" of P in T. \* matches with any character of  $\Sigma$

Example: P = a \* \*, T = aardvark

Matches?

# Shifted products via Convolution

```
Given two arrays A and B with say with A[0..m-1] and B[0..n-1] with m \le n
Input Two arrays: A[0..(m-1)] and B[0..(n-1)].

Goal Compute all shifted products in array C[0..(n-m-1)] where C[i] = \sum_{j=0}^{m-1} A[j]B[i+j].
```

Ruta (UIUC) CS473 50 Spring 2021 50 / 55

# Shifted products via Convolution

```
Given two arrays A and B with say with A[0..m-1] and B[0..n-1] with m \leq n
Input Two arrays: A[0..(m-1)] and B[0..(n-1)].

Goal Compute all shifted products in array C[0..(n-m-1)] \text{ where } C[i] = \sum_{j=0}^{m-1} A[j]B[i+j].
Example: A = [0,1,1,0], B = [0,0,1,1,1,0,1]
C = [0,1,1,0], B = [0,0,1,1,1,0,1]
```

Ruta (UIUC) CS473 50 Spring 2021 50 / 55

# Shifted products via Convolution

Given two arrays A and B with say with A[0..m-1] and B[0..n-1] with  $m \leq n$ 

Input Two arrays: A[0..(m-1)] and B[0..(n-1)].

Goal Compute all shifted products in array

$$C[0..(n-m-1)]$$
 where  $C[i] = \sum_{j=0}^{m-1} A[j]B[i+j]$ .

Example: A = [0, 1, 1, 0], B = [0, 0, 1, 1, 1, 0, 1]

C =

#### Lemma

Reverse of C is the convolution of the vectors A and reverse of B.

### Proof.

Exercise.

Assume first that  $\Sigma = \{0, 1\}$ 

#### Goal:

- Convert  $P = a_0 a_1 \dots a_{m-1}$  to binary array A of size m.
- Convert  $T = b_0 b_1 \dots b_{n-1}$  to binary array B of size n.
- So that we can use shifted product C of A and B to count "mismatches".

Ruta (UIUC) CS473 51 Spring 2021 51 / 55

Assume first that  $\Sigma = \{0, 1\}$ 

#### Goal:

- Convert  $P = a_0 a_1 \dots a_{m-1}$  to binary array A of size m.
- Convert  $T = b_0 b_1 \dots b_{n-1}$  to binary array B of size n.
- So that we can use shifted product C of A and B to count "mismatches".
- Type 1 mismatches: C[i] counts # j's where P[j] = 0 and T[i+j] = 1, when P is aligned with T at T[i].

Ruta (UIUC) CS473 51 Spring 2021 51 / 55

Assume first that  $\Sigma = \{0, 1\}$ 

#### Goal:

- Convert  $P = a_0 a_1 \dots a_{m-1}$  to binary array A of size m.
- Convert  $T = b_0 b_1 \dots b_{n-1}$  to binary array B of size n.
- So that we can use shifted product C of A and B to count "mismatches".
- Type 1 mismatches: C[i] counts # j's where P[j] = 0 and T[i+j] = 1, when P is aligned with T at T[i].

Example: 
$$T = 10110010...$$
  
 $P = 010$ 

Assume first that  $\Sigma = \{0, 1\}$ 

#### Goal:

- Convert  $P = a_0 a_1 \dots a_{m-1}$  to binary array A of size m.
- Convert  $T = b_0 b_1 \dots b_{n-1}$  to binary array B of size n.
- So that we can use shifted product C of A and B to count "mismatches".
- Type 1 mismatches: C[i] counts # j's where P[j] = 0 and T[i+j] = 1, when P is aligned with T at T[i].

Example: 
$$T = 10110010...$$
  
 $P = 010$ 

- Finding Type 1 mismatches:
  - $\bullet \ B[j] = T[j]$
  - If P[j] = 0 set A[j] = 1, if P[j] = 1 or \* set A[j] = 0.

Ruta (UIUC) CS473 51 Spring 2021 51 / 55

• Type 2 mismatches: C[i] counts # j's where P[j] = 1 and T[i+j] = 0, when P is aligned with T at T[i].

Ruta (UIUC) CS473 52 Spring 2021 52 / 55

• Type 2 mismatches: C[i] counts # j's where P[j] = 1 and T[i+j] = 0, when P is aligned with T at T[i].

Example: 
$$T = 10110010...$$
  
 $P = 010$ 

Ruta (UIUC) CS473 52 Spring 2021 52 / 55

• Type 2 mismatches: C[i] counts # i's where P[i] = 1 and T[i+j]=0, when P is aligned with T at T[i].

Example: 
$$T = 10110010...$$
  
 $P = 010$ 

- Finding Type 2 mismatches:
  - B[j] = (1 T[j]) (flip the bits)
  - If P[j] = 0 or \* set A[j] = 0, if P[j] = 1 set A[j] = 1.

CS473 Spring 2021 52 / 55

• Type 2 mismatches: C[i] counts # i's where P[i] = 1 and T[i+j]=0, when P is aligned with T at T[i].

Example: 
$$T = 10110010...$$
  
 $P = 010$ 

- Finding Type 2 mismatches:
  - B[i] = (1 T[i]) (flip the bits)
  - If P[j] = 0 or \* set A[j] = 0, if P[j] = 1 set A[j] = 1.

There is a match at position i of T iff both types of mismatches are 0.

CS473 Spring 2021 52 / 55

### Running time analysis

- Reducing to shift product is O(n).
- Need to compute two convolutions with polynomials of size n and m. Total run time is  $O(n \log n)$  (here we assume  $m \leq n$ ).

Ruta (UIUC) CS473 53 Spring 2021 53 / 55

## Running time analysis

- Reducing to shift product is O(n).
- Need to compute two convolutions with polynomials of size n and m. Total run time is  $O(n \log n)$  (here we assume  $m \leq n$ ).
- Can reduce to  $O(n \log m)$  as follows. Break text T into O(n/m) overlapping substrings of length 2m each and compute matches of P with these substrings. Total time is  $O(n \log m)$ .

**Exercise:** work out the details of this improvement.

### General Alphabet

If  $\Sigma$  is not binary replace each character  $\alpha \in \Sigma$  by its binary representation. Need  $s = \lceil \log |\Sigma| \rceil$  bits. Running time increases to  $O(n \log m \log s)$ .

Can remove dependence on s and obtain  $O(n \log m)$  time where m = |P| using more advanced ideas and/or randomization.

Ruta (UIUC) CS473 54 Spring 2021 54 / 55

### Trivia

FFT algorithm is used billions of times everyday: image/sound processing – jpeg, mp3, MRI scans, etc.

Even your brain is running FFT!

A fun video on FFT applications:

https://www.youtube.com/watch?v=aqa6vyGSdos

Ruta (UIUC) CS473 55 Spring 2021 55 / 55