CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2021

CS 473: Algorithms, Spring 2021

Administrivia, Introduction

Lecture 1 Jan 26, 2021

Some of the slides are courtesy Prof. Chekuri

Ruta (UIUC) CS473 2 Spring 2021 2 / 21

Welcome!

Big hug to you all for surviving the pendemic physically and mentally

Ruta (UIUC) CS473 3 Spring 2021 3 / 2

Part I

Administrivia

Ruta (UIUC) CS473 4 Spring 2021 4 / 21

Instructional Staff

- Instructors: Ruta Mehta
- Teaching Assistants: Shant Boodaghian and Rucha Kulkarni
- Graders: TBD
- Office hours: See course webpage
- Email: Use private notes on Piazza to reach course staff.

Ruta (UIUC) CS473 5 Spring 2021 5 / 2:

Online resources

- Webpage: General information, lecture schedule/slides/notes, homeworks, course policies courses.engr.illinois.edu/cs473
- @ Gradescope: HW submission, grading, regrade requests
- Moodle: HW solutions, grades
- Piazza: Announcements, online questions and discussion, contacting course staff (via private notes)

See course webpage for links

Important: check Piazza/course web page at least once each day

Ruta (UIUC) CS473 6 Spring 2021 6 / 21

Prerequisites

- Prerequisites: CS 173 (discrete math), CS 225 (data structures), CS 374 (algorithms and models of computation) or sufficient mathematical maturity
- Oncretely:
 - Good ability to write formal proofs of correctness
 - 2 Comfort with recursive thinking/algorithms, reductions
 - Comfort with basic data structures: balanced binary search trees, priority queues, heaps, etc.
 - Basic graph algorithms: reachability (DFS/BFS), undirected vs directed, strong connected components, shortest paths and Dijkstra's algorithm, minimum spanning trees
 - Opening the probability: random variables, expectation, variance
 - Exposure to models of computation and NP-Completeness (optional but will help)

Ruta (UIUC) CS473 7 Spring 2021 7 / 2:

Textbooks and Resources

No one specific textbook for the course.

- Recommended books: (not required)
 - Algorithms by Dasgupta, Papadimitriou & Vazirani.
 Available online for free!
 - Algorithm Design by Kleinberg & Tardos
- Lecture notes/slides/pointers: available on course web-page
- Additional References
 - Lecture notes of Jeff Erickson, Timothy Chan, Sariel HarPeled, and others
 - 2 Computers and Intractability: Garey and Johnson.

Ruta (UIUC) CS473 8 Spring 2021 8 / 23

Grading Policy: Overview

- Homeworks: 25%
- Midterms: 45% (2 × 22.5%)
- Finals: 30% (covers the full course content)

Exam dates:

- Midterm 1: Mon, March 8, 7–9pm, online. 9–10pm upload.
- Midterm 2: Mon, Apr 12, 7-9pm, online. 9-10pm upload.
- Final Exam: TBD

No conflict exam offered unless you have a valid reason (see course webpage).

Ruta (UIUC) CS473 9 Spring 2021 9 / 2

Homeworks

- One homework every week: Due on Wednesday at 8pm. To be submitted electronically in pdf form in *Gradescope*. Assigned at least a week in advance.
- Homeworks can be worked on in groups of up to 3 and each group submits one written solution (except Homework 0).
- Important: academic integrity policies. See course web page.

Ruta (UIUC) CS473 10 Spring 2021 10 / 21

More on Homeworks

- No extensions or late homeworks accepted.
- To compensate, six problems will be dropped. Homeworks typically have three problems each.
- Important: Read homework faq/instructions on website.

Ruta (UIUC) CS473 11 Spring 2021 11 / 21

Advice

- Attend lectures, please ask plenty of questions.
- On't skip homework and don't copy homework solutions.
- Study regularly and keep up with the course.
- This is a course on problem solving. Solve as many as you can! Books/notes have plenty.
- Ask for help promptly. Make use of office hours/Piazza.
- This is an optional mixed undergrad/grad course.
 (Mathematical) maturity and independence are expected.

Ruta (UIUC) CS473 12 Spring 2021 12 / 21

Homework 0

- HW 0 is posted on the class website.
- HW 0 due on Wednesday Feb 3 at 8pm
- HW 0 to be done and submitted individually.

Miscellaneous

Please contact instructors if you need special accommodations.

Lectures are being taped. A link to the videos will be put up on course webpage.

Emergencies: see information at link http://police.illinois.edu/dpsapp/wp-content/uploads/2017/12/CEOP-2017.pdf

Ruta (UIUC) CS473 14 Spring 2021 14 / 21

Part II

Course Goals and Overview

Ruta (UIUC) CS473 15 Spring 2021 15 / 21

Course Structure

Course divided into four parts:

- Recursion, dynamic programming.
- Randomization in algorithms
- Ombinatorial and Discrete Optimization: flows/cuts, matchings, introduction to linear and convex programming
- Intractability and heuristics

Course Goals

Mostly algorithms:

- Some fundamental problems and algorithms
 - FFT, Hashing, Flows/Cuts, Matchings, LP, approximation, ...
- Broadly applicable techniques in algorithm design
 - Recursion, Divide and Conquer, Dynamic Programming
 - 2 Randomization in algorithms and data structures
 - Optimization via convexity and duality
 - 4 Approximation and heuristics
 - Role of mathematics in algorithm design: graph theory, (linear) algebra, geometry, convexity · · ·

Ruta (UIUC) CS473 17 Spring 2021 17 / 21

- P: class of problems that can solved in polynomial time
- EXP: class of problems that can be solved in exponential time
- *NP*: non-deterministic polynomial-time.
- **DECIDABLE**: class of problems that have an algorithm

- P: class of problems that can solved in polynomial time
- EXP: class of problems that can be solved in exponential time
- *NP*: non-deterministic polynomial-time.
- **DECIDABLE**: class of problems that have an algorithm

Theorem

There exist (many) undecidable problems.

- P: class of problems that can solved in polynomial time
- EXP: class of problems that can be solved in exponential time
- NP: non-deterministic polynomial-time.
- DECIDABLE: class of problems that have an algorithm

Theorem

There exist (many) undecidable problems.

Theorem

P is a strict subset of EXP.

- P: class of problems that can solved in polynomial time
- EXP: class of problems that can be solved in exponential time
- NP: non-deterministic polynomial-time.
- DECIDABLE: class of problems that have an algorithm

Theorem

There exist (many) undecidable problems.

Theorem

P is a strict subset of EXP.

 $P \subset NP \subset EXP$. Major open problem: Is P = NP?

Ruta (UIUC) CS473 18 Spring 2021 18 / 21

- P: class of problems that can solved in polynomial time
- EXP: class of problems that can be solved in exponential time
- *NP*: non-deterministic polynomial-time.
- **DECIDABLE**: class of problems that have an algorithm

Theorem

There exist (many) undecidable problems.

Theorem

P is a strict subset of EXP.

 $P \subseteq NP \subseteq EXP$. Major open problem: Is P = NP? Many useful and important problems are *intractable*: NPComplete, EXPComplete, UNDECIDABLE.

Goals of algorithm desgin.

- find the "best" possible algorithm for some spefic problems of interest
- develop broadly applicable techniques for algorithm design Goals of complexity:
 - prove lower bounds for specific problems
 - develop broadly applicable techniques for proving lower bounds
- develop complexity classes to characterize many problems
 Rich interplay between the two areas.

Ruta (UIUC) CS473 19 Spring 2021 19 / 21

Important Ingredients in Algorithm Design

- What is the problem (really)?
 - What is the input? How is it represented?
 - What is the output?
- What is the model of computation? What basic operations are allowed?
- Algorithm design
 - Understand the structure of the problem
 - Relate it to standard and known problems via reductions
 - Try algorithmic paradigms: recursion, divide and conquer, dynamic programming, greedy, convex optimization, · · ·
 - Failing, try to prove a lower bound via reduction to existing hard problems or settle for approximation, heuristics.
- Proving correctness of algorithm
- Analysis of time and space complexity
- Algorithmic engineering

Recall: Time (Space) Complexity and Notations

Representing running time of an algorithm on an n sized input:

- Upper bound O(f(n)): Takes at most $c \cdot f(n)$ time for some constant $c \in \mathbb{R}_+$.
- Lower bound $\Omega(f(n))$: Takes at least $c \cdot f(n)$ time for some constant $c \in \mathbb{R}_+$.
- Tight bound $\Theta(f(n))$: Takes at least $c \cdot f(n)$ and at most $c' \cdot f(n)$ time for some $c, c' \in \mathbb{R}_+$.

Ruta (UIUC) CS473 21 Spring 2021 21 / 21