LECTURE 13 ( October gth)

_—

Maximom Flows & Minimum Cuts

’IEdqy we ave g’adng’ #0 look af f/ows , whith m@'ht be aq more ]ﬁml'h'a/ —tcm:toy

Given a graph with some dato associated to ¢t , we want to Compute some Structive
within that graph

You mfg’ht have seen velated eXam/)Ies in Previous courses kke €225 vheve you saw
minimum sflannir}g trees 4 Dikstra’s alérari'ﬂ')m , CS37 where you saw all faim chortest
path algorcthm . Thoce structures that you are comeﬂbg — shortess- path, painimum
sfahning tree , ete. — are xulvgmyi)s o yoor c'n}wt- g’ra/:h

In }Jart/‘cular, yov want o pick ot a sob(so’rq/)h of your graph that saticly Some
ophim aLély Pro?crtim
TZda)z L We are gofng' to look at other kipds of oytfmal Structyre

Before we (ook at the dqﬁbz:bbn, let vs bake a detovr /o hictory c\’f the F'rablem
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@ Railway operating division

<ﬂsﬂ~— Copacity: 12 each way per doy.

Reguired flow of © per doy toword
destinations (in direction of arrow)
with equivalent number of returning
trains in opposite direction

All copaclties in ‘/',6:;8: of ,om}each way per day

Origins: Divisions 2, 3W, 3E, 28, I3N, 138,
12, 52 (USSR), and Roumania

pestinctions: Divisions 3, 6,9 (Poland);
B (Czechoslovavakia); and 2, 3 (Austria)

Alternative destinations: Germany or East |
Germuny

 Note 11X at Division 9, Poland

This s @ map of Eastern Furmpe after the sewond world war when cold war was [00hing

The circles Yefresent ciies & the labels ave Jost  rdentifier
The numbers on the box befween two cities fcfreJent the number of trains that
go between the citles dai/}z, think of & as the CZI})QC(:'E}/ of the rayl line



The nombexs outside the boxes and the arrow repreents @ schedile t& we
Some soTt of material which is mined ot the box (abeled drt'éru'U

So, we want to s*h[f material from Moscow to East- Berlin
Inslead of using the entie capactty, we Can send fever drains on a
ginle track

If you logk ot ahy c[ﬁ/ that (s hot Mosww ov Fast Berliy, then yov will
notice that the amount of Stuff poing- ito the cily s the same as the
amoont  of St go{)hg ot , s?nce. t does not make sense to have extra
SWif flowng into intermediate ety and by definition the matenal (s only
preduced  af he oripin,go it does not make sense for move stuff 4o leaye
the cﬁé}/ than what came

This s an ex::m/;le of the maximum  flow problem

The [nFut ;s a directed grql?/'l with two speoal verkces —source and ik
flow on —the edge

Ui T , > capa cify

5/15

- What (s the vale
(O— of ths flow ?

o Is this a moximom ffow?

>

10/10

Each edge has & number associated 4o X called the ca acc'?/ and yov went
to ompute a second nomber for every edpe called #e flow vale that
salisfies the wnservation Contraint at ‘all intermedate verkies, ie., the flow
oming in eguals the fiow coml'nda— ovt
Maximom Fow  Problem Given G=(V,E) directed

capacity function c: E — R,

two vefbices souvee S b taypet T

Want Flow which s a finction f:E = R,,
satisfying
» Any  functon &‘aﬁ‘rfyl‘n&v conservation «——— [ 3 f(usv) = § F1=W) Frzse
q

oNstrairte I s called a f/OW
2] 02 4) < cCe)

. Any flov Scrh'sﬁ/ing cafaaily constrants 2] & <«
called Ffeasible B Valve of fow Hl= g’f(s—aw) - £f(u-y
» Note that by Conservation / We want ‘L‘he. flow with the maximum valve

= Zfu-1) —WZf['ﬁ'-’N) @



Ore usefv/ analogy is to think of -the edoes as ft}oe: and the cafqa'zj/ as
+he quacit)/ of the /‘bl/oe befbre it explod’e:'

+ What s the valbe of this flow ?

o Is this o maximom ffow?

T0/70

We will see shottly why this 1= not a maximm v & how fo get ¥ a
Mmaximvm f]ow from here

Befre we dothat, let’s (ntroduce the ewl twin of the maximom flow problem
glled the minimom cot ;Dxfoblem
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Fig. 7 — Traffic pattern: entire
network available

Legend:
=+ = |nternctional boundary

@ Railway operating division

«Egﬂ-— Copacity: 12 each woy per doy.

Reguired flow of 9 per doy toword
destinations (in direction of arrow)
with equivalent number of returning
trains in opposite direction

All capaclties in J'IZ)%'S': of ,om}each way per daoy

Origins: Divisions 2, 3w, 3E, 25, I3N, 138,
12, 52 (USSR), and Roumanio

Pestinctions: Divisions 3, 6,9 (Poland);
B (Czechoslovavakia); and 2, 3 (Austria)

Alternative destinations: Germany or East R
Germuny

" Note 11X at Division 9, Poland

This map was fade ),), RAND corporation in the S0s — a lot of algofithm research
orfglhqfred there (h the 1350

“This map Was classtfied onktl 1999 , uhen an J}Dﬁ}‘néaérbn vesearcher [ex Schriver
nrote 4o the US govermment o deda.mjj/ it

The. bottleneck. is the smallest cost of deSfVinnéJ’ all the il lnes +to digconne o
Moscww from East Berlin — cost equals the cafaa%;/ of the wail line



This & called the minimum vt Problem, The t'nfut s exactly the same with
o suvce s ¢ target t o bot now we are trying to se/)qrat-e e source &
target , ie., divide the verhices (n two pafts where one contains s &
the other containe + . Such a Fa)’{:fbbn IS called a cot.

Cot Partition \/= SuT wWhere seT & teT & snr=;g

Capacity of a cub (s, T)| = is cCu— )

veT L— We only cre about
flow Arom & to t
not the other Way

aqvound

What is the ca};au}/
of the cot (SuT)?

This edge s jrrelevant

We want the Cut with the smallest capact@/ , e, the smallest cost
to disconnect & from t

The max-flow min-cot theorem , whose proof ve will see & foday ‘s
ectore says that h a ériveh oraph

MO -flow Valve = Min ~ cot quac@v

May - flovv  Min-cot Theorem

max lfl = min \(S,T)k
'ﬁOV‘]c SuT

The fYOOf' of this theorem \Nl‘“ also nge Js on a]f’ow:H'wm to Con\f)l)te
both the. maximum ‘ﬂOw 8 Ahe mipmom  cot

Let’s see the easy direction of the proof first max [l £ min [(S,T)|
Pick any feasible flow £ and any cot (S,T)
Value of £ is )fl= %f(s—»w) — 2 flu—s)



Since ol vertices excest s, 4 have the same of flow going (n 4
Coml'ng ovt . we have

¥ vfst wﬁ fv—u) — Sf(u—sv) =0
u
7505/ ada(c'ng i to the %/qnirév above

ifl= 2 flsow) -5 fu=s)
+ D (ff(v'?w) —ijCu—)ﬂ))

: - ves\ |\ v u
e = 2 Zfwouw) — 2 E’f(u-)v)
. ; % VES W ves Y
Constder an edge XYy, st. both x &ly are o S
Nete that F(xX-y) appears in the first sum when v=x 4 w=y

& —-—JC(?(—-)y) ayfcars Ih the Second Sum wheh u=x b

V-';]’
= £ 2 Jrow) - S = flus)
VES WES VES WwgS
- £ 5 fwow — 2 = flusv)
Veés WET ves WeT
— —— o Tte S
o Yo S T S
< £ =2 flvaw) < |(s,7)]
VES WGTL’_\/___J
< c(v9 W)

Theefore,  IF1 € ST for any flow £ & cot SuT

= max If[ £ min|§T)|

We have used all —he rYo?em‘es of- the flov

— 'value Of the Flow
—  Conservation

—  non-negativiy

— era.sibt'lt'ﬂ'
Bot one of the thing- this cmplies that ift pe find a flov
h a cot that have dhe same value, then -the flow most be

Q. maximom Flow 4 wt most be the minimum cot- and dll
the nequalties must be tHight



¥ 1= 18,7 , then

*f is a max-flow

e SuT is a min-cut %

o flasv) = clav) Aor all u€s ,veT
o f(uV) = 0 for all ueT, ves

Lets see the proof of the other direckton

moX (f| = min (ep]

“The FYoof will be easiey If we assime here ts ot mogk one edge
betweeh ar\y wo vertices — this « easy to handle [\Alhy?]

Pick yowr favorite flow f ,we define a new {flow )Dw’oblem using’

residual capacities & vesidual graphs

/‘ > These cqptre how much of the
capacity is rot being~ ured

Define  vesidual Carac@&)/ o flowi § by

Cplu—v] = clu—ov) — Flu=v) W u—v € E
A (V) if voueE
o 0/

Residval Cq]’ac{{ies are alwa/-‘» non-negQUVe [\/\Jhy?]

10/10

There s still @pacety lefe on s edpe



r—) called an czugme!ﬁ"‘ng PG'H“
Case 1 : fhere is a path from s 1o t (n the vesidval Zroph

Residual

GﬂﬂPh 5 (T\
10 2 10/20
10 10
—> 10 L 50 |5 —> 5/10
5
10 i 5/10 '
Consder any asgmenting” path , the moximom  flow we can

push 'ﬂwough the pocth is the min regidoal ca])qufy of
any edge on the path

>
10/10

Let Q. > Ath - ca]mci’? (vc edgcs alohg’ any j?a‘bh P from s To t
If we push ¢y, Units of flw along” hat “path
we Ot o new flow {" <t If1 = '] + Cuy, EWh\/?Y
L ' s feom)ale D\)by )

= § 5 hot a mox flow!

Case 2 Theve (8 ho augmen{fng 790% j‘rorn s 16 £t (n the yescdual grqlvh G

Of——'? O-_5 lS’
‘-@/ j /(8 of(o @ ?
Sho %

1o /lo

S T

Y

b

Let S<= all vertices 7eachable ]“rom s GJL-
T= V\S

'OK'_O__/ @___) No augmerrhng Fafb

]% from s to

o

lo

Fov every veftex yesS ,ve T
£ uoy €E |, 4hen £Udv) = C(u0)

fu-od €E, then f(uv) = o



Recall, what we caw earler

£ [fl1= 16,1 , then

*§ is a max-flow N
® SuT is a min-cut

o flasv) = cluv) Aor all uEs Ve T
o £(uv) = 0 for all ueT,ves

Thes, s a max-flow & S,T) (5 a min- ot
“This Ctlgof'cthm was discovered 17/ Ford- Folkerson 1 9%

Avg mentin o Paths AlgOﬂlthm

Intialize f<0
Cp <G

While there s a fcrt‘h p from s to ¢ (n jS
Fush Flaw a|0n£y P
vebuild Gy

Retym £

Runtime of this algonthm ? NEXT LECTURE



