
LECTURE 12 (October 7th)

Entropy & Data Compression

=rprisal Suppose we have a biased coin that comes up heads

with probability p that is very small .

If we toss the coin and it comes up
tails

,
we

do not learn much because it is almost what we expect .
But if it comes up heads , we learn a lot more

.

Less likely events are more informative because they are
more surprising.

Let's try to define a function which captures the
amount of surprise in an event A.

What are the properties such a function should satisfy ?

⑦ S should be a function of the probability of the event
So
,
we can write S1p) where pe(0 , 1) is [A]

② s(p) should decrease asp increases since more likely
events are less surprising

& Scpl is a continuous function of p since we don't expect
the surprise value to suddenly jump

& For two events A , B ,

total surprise should be sum of individual

surprises :

S(PP(A ,B) = SIIPIAD + S(IP(BI)

OR S1p . P2) = Sp1 + S1P2) for P ,P2 - 10, 1)

TheoremThe only function satisfying the above properties is S(p) = logI
P

Remark Technically the base of the log can be chosen arbitrarily but we
-

will choose it to be 2 and measure the surprisal in bits

S(p)n
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&
I ①



Suppose we have a random variable XEntropy

surprise associated with the event X=X is

s (P(X =x)) = 109.x=x]-

Entropy of X is the average surprise on learning
the value of X

H(X) = [ (X =X 7 log=x) -

Basic properties of Entropy

# H(X) -0 and H(X) = 0 iff X is deterministic

# Suppose X = 1A ,
i
. e .

X is an indicator variable for
an event.A .

Let p = [[X = 1] and 1-p = 1(X= 0]

There H(X) =

p
. log + (t-p)log Where p - 20

, 1)

This is called the binary entropy function H(p) and looks like

H(p)4

average surpriseMarandom i
o +

& suppose X is uniform over 37
..... in 3

,
i . e. D(X = i]= fi

Then
,

H(X)=gm = logm

#CT For any random variable over [1
,
... m3

H(X) = log i
so uniform distribution over 21 , ... m 3 has

the largest entropy.

②



*int Entropy Given two random variables X & Y

their joint entropy

H(X ,x) = & #2X =X
,
y=y) logX

.
F= Y]

=. g . if X is uniform over E1 , ... my
and Y is uniform over E1

, ... 73

# (X = X , Y =y) = E

So
,
H(X ,Y)= logan = 10g (

Observe that H(X) = logmn & H(X) = logm
H(Xy) = H(X) + H(X)

#CT For any pair of random variables

H (X ,Y) = H(X) + H(Y)

↳
Equality holds if X & Y are

independent

# X & Y are independent ,

1P[X= x , Y = y] = (X=x]. [Y= y]

=> log*x=xix= y)
= log x] + 109Y]

So
·
H(X

,
Y) = & = X , Y=y] (log=x) + 18 y=y5)

= [P(x = x)(=]10g
1

+ [ [y =y] ./X=x() logy=y]Y

= H(X) +H(Y)

In general , for i independent random variables

H(X . .
. . (n) = H(X, ) + ... + H(Xn)

③



Prefix-free Encoding

To understand why we care about entropy and how it relates to data compression
let us consider the following problem :

Suppose we have a long segment of DNA that looksLike AGCCATTAC
....
CCGTA

How many bits do we need to represent it ?

-

We can Encode A =

%= =Mich UsesbiteAordscharacter

But if we knew something about the statistics of the sequence , we can do
better. For example ,

probability codeword encoding length
A /2 O 1

G 1/4 10 2

C 7/8 118 3

T 7/8 111 3

So
,
we assigned shorter codes to more frequent symbols

The above is aprefix-free code
,
i
.
e
., no

codeword is aI
prefix of another codeword. These are very easy to decode

by reading left to right .

For example, · 101101700 corresponds to the sequence-

What is the average code length , i.e . the expected number of bits
we need to encode each character ?

T = z .

7 + .
2 + 3 + 7 . 3

= 1 + 3 = which is better than 2 bitso

per character

Let's also compute the entropy of the distribution

H(x) = . (0g2 + log4 + log2 + =109 ,62

= + 2 + 3 +13T

This is not a coincidence as we will see in a second .
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One can wonder can we get a smaller code. For example , consider
Lengt

A 1/2 O 1

G 7/4 1I

C 1/8 01 2

T 1/8 11 2

Elength)= .

=+ .
1 + .

2+ 2 =
Which is a lot better than the previous scheme

.

But the catch is that this code is not good for sequences as

information is lost

AGT- 0111

CGG -> 0117

A code is called uniquely decodable if every sequence is mapped to
a distinct bit representation

Every prefix-free code is uniquely decodable using the algorithm above
.

#HoffmanCoding

Suppose we have a source that outputs a character from a probability
distribution. For example .

-caracterprobabilityA I 1/4G

C 7/8

T 7/8

How can we compress a long sequence of characters sampled from the
source ?

One can also think of it as a transmission problem :
Alice has the source .

She samples a long sequence from it and wants
to send Bob a message to convey the sequence while sending as few
bits as possible .

⑤



We will assume for simplicity that the probability of each character
is a power of 2 , i. e. of the form 2-k for some integer K0 .

Note : This is just for simplicity. The algorithm will work more generally

2character-robability O

: ) Inyou
7/8 2008

T48 + 8

The following algorithm due to Huffinan generates a prefix-free code :

·Create a tree with the leaves as the characters. Label the nodes by probabilities.
· Take the two smallest probabilities and add a parent with label

the sum of the two probabilities of its children
· Repeat until we are left with a node with probability 1. This will

be the root
.

· Give the two edges from each nodea 1 label

The codeword for a symbol corresponds to the 011 labels from
root to that symbol. For the above

,

A + 0

-> 10G

C -> 110

T - 111

This code is always prefix-free [Why ? ]
&

compute the expected length of the code. To see this
,
we noticeLet's

two things .

& If every probability is a power of two , then there must be at least
two elements with the minimum probability (if minimum probability (1)

The easiest way
to see this is to write the probabilities in

binary
1 = 1 . 00000 o

Yz = 0 . 100000

=000o



If there is only one element with minimum probability (<1) ,
then when we add them up , we can not get 1 as the least

significant bit will remain 1.

& The above means that when we create a new node by adding
the nodes with the minimum probability as children , the new
labels for the merged node will still be a power of two

The number of times there will be merge from a leafnade
until we hit the root is exactly k if I fleaf node) =2.
Note that here

k = logeatmodel

Therefore , the expected length of "Huffman" code is exactly

& P(X=X] . logx=x]
= H(X) = entropy of X

X

If the probabilities are not a power of two , then the length is

atmost H(X) + 1 (due to rounding effects)

It turns out that this is almost optimal .

#Kannon'sSource Coding Theorem

For any uniquely decodable code
, expected length is H(X) .

S
, Huffman coding is almost optimal up to the 1 bit additive

factor. That may not look significant but if one has to encode

billions of characters this starts to matter .

For example, suppose X is the source [H
,
T3 where [X=H) = 714

P[X =TT = 3/4

The Huffman code needs 1 bit, But the entropy is

= log4 + Blog = 0811 bits/ syml

This is 20 % smaller and adds up for long sequences
How to get around this ?
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We are interested in encoding sequences rather than

individual characters. Consider codewords for pairs of
characters

,
e.g.

& HH
,
HT

,
TH

, TTS
Probabilities to is is

Huffman codeword for each pair has length

1 . 69 bits per two symbols

So
, per symbol we need 0 . 845 bits which is closer

to the entropy .

In fact , we can encode a block of 11-symbols together
and get as close to entropy as we want.

Let's see a proof. Suppose we have X
. . . . Xn identically

distributed as X and independent.

Therefore
,
H(X . . . . . (n) = H(Xi) = nH(X)

We generate a Huffinan code for the block ofi symbols
X.... Xn by treating it as a super symbol .

The expected length of encoding this super symbol satisfies

H (X . . .. Xn) = Eflength] = H(X
,
. . . Xn) + 1

So
,
the expected number of bits per symbol is

#)-length
=> H(X) = Elegt]H(x) +

As n+ 0
,
the expected length/per symbol goes to H(X) ·

irs
, entropy of X is the minimum number of bits per source symbol

on average necessary
to encode a sequence of independent and

identically distributed symbols from the source
.

Note : This is also a part of Shannon's source coding theorem .
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