
Lecture 11 (October 2"4)

#Hashing

How do we design hash functions that work well ?

We have a universe 21 of objects that we want to store in a hash table

We will take 11 to be the set of w-bit words
,

i
. e

.,

H = 50
,

7
. . . .,

24 - 13 = [2W] w- bit words

We will also have a table T[0 , m - 1) where m = 22
·

These correspond to
2-bit labels we want to hash to .

↑ Not a big assumption in practice

Then we have a hash function that maps elements of 11 to e-bit labels

G : 1) -+ []

What we would like is that ifwe apply the hash fruction to two different
objects in 1

,
we get different labels but if we apply the function to the

same value we get the same label

This is impossible ! So ,
collisions are inevitable a

There are some standard things that people suggest .

For example ,

h(x) = LX1modn where O is the golden ratio

This is used as an example of a good hash function in Knuth's art of

computer programming book. The argument he gives is the following :

suppose we start hashing 0
,

1
,

2
,

3, S Where s > m-1 then the

numbers are put in the table as far as possible ,
i

. e
.,
the smallest gap

between them is as large as it could be .
This is the property of the golden

ratio
.

But if we are just hashing integers [M-1 -
we can just use h(x)=X

,

i .e . an

array. We don't need hashing ! So ,

this is not a good hash function !

fact ,
it is easy for someone to design an input for this hash function that

all map to zero to slow down your algorithm. This is not just a theoretical exercise
.

Most of 21st century hashing was developed at AT& T. Why does AT& T care about

hashing ? It turns out that one of the things that AT& T does is that it maintains

rorters for the backbone of the internet. Packets come in these routers
, they have

addresses in them and the router needs to very quickly look up that address

①

and figure out where to send the packet next. There is a hash table in there

especially because the information about where to send things changes over time ,

so it's actually a dynamically changing hash table .
This decision is made billions of

time a second
,

so the hash function has to be fast. On the other hand ,
there are

malicious actors out there wo want to bring the network to its knees .

So
,

one

of the attacks that AT& T has to defend against is people sending packets through
the network looking for delays , literally, looking for collisions in the hash table .

So
,
the vorters are using complex sophisticated hash functions that we will see

today. These guarantee mathematically that calculations happen in microseconds but
also it is resistant to these kinds of denial of service attacks. You should just
let security experts implement these functions because it really has an effect on the

World
,
and it is quite complicated .

Here
,
we just focus on one aspect of hashing that we can explain in this class,

which is that hash function has to behave randomly. You might have seen

people saying this and writing down a deterministic algorithm .

So
,
the assumption

here is that the data we are hashing is somewhat random . This is a dangerous
assumption .

Data is not random. It could be chosen by a malicious party that
wants to attack your system .

Also
,
to figure out how your data is distributed even

when it is random is not easy.
So

,
we can't assume anything about the data .

That means if we want things to behave randomly ,
we have to supply the randomness

S
,
the right way to think about hashing is the following :

Imagine we have a family 7 of hash functions. This is fixed in the code .

When we initialize the hash table we choose a particular function from this set at
random

.
And then we use this for the lifetime of the data structure .

So
,
the data is not random but the hast function is a

The usual way to do this is via a two parameter hash function his, X)
Where X is the object we want to hash and s (called the salt) closes
a random hash fraction in the family

So
,
what properties do we want from our hash function (family

· Uniform #hey [hi(x) = i) = F for all x + 1) and for all it []
&

This is fairly intuitive as the hash fruction should distribute the
objects fairly uniformly ,

but this is not what we want asL h(s
,X) = > satisfies this but it is not really "hashing"

This is not enough !

②

·

UniversalThisischoruseproperty
Ne actually water

#hey [h(x) = h(y)] = I for all x+ y

Sometimes we want a stronger variant called 2-uniform

↑ex [h(x)
= i and h() =j) = E for all x+y

for all : &j
Here every pair of hast values are uniformly distributed .

M

You can generalize it to 3-uniform , 4-unform ,
etc.

The limit is the ideal case where all hash values are uniformly
and independently distributed ,

which is the same as K-uniform for all k.

This is what we would like but is not very practical since complete
independence is not efficient to achieve .

So
,

we need limited notions of

independence so we can compute it quickly .

Again there are going tobe collisions even if we pick a hash function randomly .

So
,
what can we do ?

· We can use chained hashing, where Til-linked list of items with hash
value i

& thenA

But we can use any secondary data structure as well. Assuming it
is a linked list,

Expected time to search for x = 0(length (T(h(x))])
So

,
let's compute this .

Let's suppose our hash table stores y.. -- Yn
and x is not in the table yet. To compute the expected time,

we are going to compute the above expectation via indicator variables ·

E(len(TCh(x)))) = E(1(h() = h(xi))] = P(h(x) =H(yi)]

= Cuniversal Kashingt

③

This means thattime for unsuccessful search) = 0(i +=)
↑
Load factor of
hash table

So
, if load factor = 0(1) & h is universal

,
then E[time] = O(1)

The last thing we need to guarantee is a universal hash family ·
We are going to state some examples of universal hash families (proof in the notes)

~ h(x)= (ax + b modp) mod m This is weakly universal
14 ↑ prime #> m

1P(h(x) = k(y)] =salt
0 = a

,
b = p -7

Random Matrix hashing

We want a function from [2W] to (21]
We can think of it as a function from 20,13h to 20 ,

13

Then hash function family is
exw

hm = My mod 2 ME 20
,
13 is a matrixwhere

chosen at random

= [M
,
x] God 2

I I Where M is the ith row of M

<Me
,
x) mod 2

One can show that I(h(x) = h(x)] = for allx 0

(Proof left as exercise

Stronger Guarantees

That
we saw above gives that ifI = #(1) e

/Time to search)=all xL forX

④

But we would like to say something stronger ideally
E [max Time to search for x] = 0()
-

: = T(x)

But infact ,
this does not work as above even if we assume ideal hash

functions. If n = m
,

(max chain length) = 0 ognt
=> items being hashed => cells of the hash table
- -

Lema If we tossi balls uniformly into n bins
,
then whp the fullest bin

CONTAINS

X One can also prove that
·(blue

fullest bin contains atleast

~(g balls but itis

more complicated

#roof Let Xj = number of balls in bin j

E(X;] = 1 for all j

What is the probability that bin j contains - K balls

1P(X; k] - (1)(
> # of each choice

↳# choices of K balls

-

Taking K=log ,

kk = el
g1 (gloglognze

C

= 1

⑤

So
,
PTX; for all bi

By union bound
,

#[max X, =Xog for somea
-[i]

So
,
what do we do ? The technique is calledPerfect Hashing .

#PerfectHashing - due to Komlos-Szemeredi

The idea is to replace linked lists with secondary hash tables

Each item i points to a secondary hast table

of size Mi = h : " where ni = E#xET 1k(X) = 13i i. e. number of items with hash value i

Why quadratic size ?

ma If m=2 then IE[#collisions] < 1 assuming universal hashing.

#of C# collisions] = & D(h(x) =h(y)]
X+ Y

- (2)=

So
,

Markov's inequality implies that[1 collision] <

Most of the times there will not be any collision .

So
, after two tries there are no collisions ! This is why we choose

a second nash table
·

We first look in the first hash table for xany
then the second ,

either x is there or not but no collisions

⑥

Lookup(x)

i h(x)= Primary Hash Fraction
-

j = hi(x) < SecondaryHast Function associated with TTi)

If Ti(j] = X

return TRUE The obvious disadvantage is that

else this seems to be using a lot

return FALSE more space , quadratic in 1.

But mi depends on items

hashed to i which is random
,

so the question is :

What is the expected size of this
table ?

turns out that it is not too bad
.

#(TotalSpace) = EE(Sni2] = Elric)

What is ni ? ni = #[h(x) = i]

So,

E[i] = [E[1[h(x) = :]1Chyli7]
X,Y

= &E(H [h(x) = i)] + &[h(x) = i AND hyl = :)
XFY

So
, E[Total Space] = S [H(h(x)= i]) + 24 [#[h(x) = i

, h(y) = i)
i x<y
-

= 1 (because we are hashingn items)

= table

= n + z(z) = 2n - 1 = 0()

& Linear space
⑰

