
CS 473 Practice Midterm 1 Solutions Fall 2022

1. Suppose we are given an array A[1 .. n] of n distinct integers, which could be positive,
negative, or zero, sorted in increasing order.

(a) Describe a fast algorithm that either computes an index i such that A[i] = i or
correctly reports that no such index exists.

Solution: We can solve the problem in O(logn) time using a variant of (or
a reduction to) binary search. Here are two pseudocode descriptions of the
algorithm, one recursive and one iterative.
〈〈Find index j such that i ≤ j ≤ k and A[j] = j〉〉
FindIndex(i, k):

if i > k
return None

j← ⌈(i + k)/2⌉
if A[j] = j

return j
else if A[j]> j

return FindIndex(i, j − 1)
else

return FindIndex(j + 1, k)

FindIndex(A[1 .. n]):
lo← 1; hi← n
while lo≤ hi

mid← ⌈(lo+ hi)/2⌉
if A[mid] =mid

return mid
else if A[mid]>mid

hi←mid− 1
else

lo←mid+ 1

return None

The key observation is that because A is a sorted array of distinct integers,
we have A[j]≥ A[i] + (j − i) for all indices i < j. In particular, if A[i]> i, then
A[j]> j for all j > i.

Equivalently, suppose we (implicitly) define a new array B[1 .. n] by setting
B[i] = A[i]− i for all i. Then the elements of B are sorted in non-decreasing
order (but they are not necessarily distinct), and we are looking for an index i
such that B[i] = 0. ■

Rubric: 8 points max. For an explicit algorithm: 1 for binary search idea + 1 for base case + 4 for
recursive cases + 2 for time analysis. −1 for each off-by-one error. −1 for returning True/False
instead of index. −1 for stating running time as a recurrence without solving it. A reduction
to binary search is worth full credit. Max 3 points for aΘ(n)-time algorithm; max 2 points for
anything slower; scale partial credit.

(b) Suppose we know in advance that A[1]> 0. Describe an even faster algorithm that
either computes an index i such that A[i] = i or correctly reports that no such index
exists.

Solution: If A[1] = 1, we can clearly return 1 immediately. On the other hand,
if A[1] > 1 then A[i] > i for all i, so we can return None immediately. So we
can solve this problem in O(1) time! ■

Rubric: 2 points: 1 for algorithm + 1 for running time

1

CS 473 Practice Midterm 1 Solutions Fall 2022

2. Let G be a directed acyclic graph, in which every edge e ∈ E has a weight w(e), which could
be positive, negative, or zero. The alternating length of any path P = v0�v1�v2� · · ·�vℓ
in G is defined as

AltLen(P) =
ℓ−1
∑

i=0

(−1)i ·w(vi�vi+1).

Describe an algorithm to find a path from s to t with the largest alternating length, given
the graph G, the edge weights w(e), and vertices s and t as input.

Solution (dynamic programming, from the start): Let G = (V, E) be the input dag,
with edge weights w(e). We define two functions over the vertices of G:

• MaxAL(u) is the maximum alternating length among all paths from u to t.
• MinAL(u) is the minimum alternating length among all paths from u to t.

We need to compute MaxAL(s). These two functions satisfy the following mutual
recurrences:

MaxAL(u) =











0 if u= t

−∞ if u ̸= t is a sink
max
�

w(u�v)−MinAL(v)
�

� u�v ∈ E
	

otherwise

MinAL(u) =











0 if u= t

+∞ if u ̸= t is a sink
min
�

w(u�v)−MaxAL(v)
�

� u�v ∈ E
	

otherwise

We can memoize these functions into two new fields u.minAL and u.maxAL of each
vertex u ∈ V . We compute all function values using a single loop over the vertices u in
reverse topological order (or equivalently, depth-first postorder); in each iteration of
the loop we compute both functions of u.

The resulting dynamic programming algorithm runs in O(V + E) time. ■

Solution (dynamic programming, from the end): Let G = (V, E) be the input dag,
with edge weights w(e).

For any vertex v ∈ V and any sign σ ∈ {+1,−1}, let MaxAL(v,σ) denote the
maximum alternating length among all paths from s to v where the number of edges
is even if σ = −1 and odd if σ = +1. Equivalently, MaxAL(v,σ) is the maximum
alternating length among all paths P from s to v where the last edge u�v in P
contributes σ ·w(u�v) to the alternating length of P.

We need to compute max{MaxAL(t,+1),MaxAL(t,−1)}.

2

CS 473 Practice Midterm 1 Solutions Fall 2022

Thus function obeys the following recurrence:

MaxAL(v,σ) =



















0 if v = s and σ = −1

−∞ if v = s and σ = +1

−∞ if v ̸= s is a source
max
�

MaxAL(u,−σ) +σ ·w(u�v)
�

� u�v ∈ E
	

otherwise

We can memoize this function into two new fields of each vertex in V . We compute
all function values using a single loop over the vertices v in topological order; in each
iteration of the loop we compute both functions of v.

The resulting dynamic programming algorithm runs in O(V + E) time. ■

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct DP solutions.

Solution (graph reduction): Given a dag G = (V, E) and edge weights w(e), we
construct a new dag G′ = (V ′, E′) and edge weights w′(e′) as follows:

• V ′ = V × {+,−}. I’ll write v+ and v− as shorthand for (v,+) and (v,−).
• E′ =
�

u+�v−, u−�v+
�

� u�v ∈ E
	

• For each edge u�v ∈ E, let w′(u+�v−) = w(u�v) and w′(u−�v+) = −w(u�v).

For any topological order v1, v2, . . . , vn for G, the permutation v+1 , v−1 , v+2 , v−2 , . . . , v+n , v−n
is a topological order for G′, so G′ is in fact a dag.

Let length′(P ′) =
∑

e′∈P ′ w
′(e′) denote the length of any path P ′ in G′.

For any path P = v0�v1�v2� · · ·�vℓ in G, there is a corresponding path P ′ =
v+0 �v−1 �v+2 � · · ·�v±

ℓ
, always starting with a positive vertex, such that length′(P ′) =

AltLen(P). Conversely, every path P ′ in G′ that starts with a positive vertex projects
to a path P in G such that AltLen(P) = length′(P ′).

Thus, finding the maximum-AltLen path in G from s to t is equivalent to finding
the maximum-length′ path in G′ from s+ to either t+ or t−. We can find these
longest paths in G′, using the LLP algorithm described in class and in the textbook, in
O(V ′ + E′) = O(V + E) time. ■

Rubric: Also worth 10 points. This is not the only correct graph-reduction solution.

3

CS 473 Practice Midterm 1 Solutions Fall 2022

3. (a) Describe and analyze an efficient algorithm to compute the number of inversions in a
given boolean array B[1 .. n].

Solution: The following algorithm runs in O(n) time. We scan through the
array, maintaining two counters; whenever we encounter a False, we add the
number of Trues seen so far to the inversion counter.

CountInversions(B[1 .. n]):
invs← 0
trues← 0
for i← 1 to n

if B[i] = True
trues← trues+ 1

else
invs← invs+ trues

return invs

■

Rubric: 3 points. A correct O(n log n)-time algorithm is worth 2 points; a correct O(n2)-time
algorithm is worth 1 point.

(b) Describe and analyze an efficient algorithm to compute, for every integer 1≤ ℓ≤ n−1,
the number of inversions of length ℓ in a given boolean array B[1 .. n].

Solution: The number of inversions of length ℓ is given by the formula
∑

j−i=ℓ

[B[i] = True] · [B[j] = False]

This is essentially the convolution of B with the bitwise negation of the reversal
of B. The following algorithm runs in O(n logn) time if we use the FFT algorithm
to compute convolutions.

CountInversionLengths(B[1 .. n]):
for i← 0 to n− 1

if B[i] = True
X [i − 1]← 1
Y [n− i]← 0

else
X [i − 1]← 0
Y [n− i]← 1

Z ← Convolution(X [0 .. n− 1], Y [0 .. n− 1])
for ℓ← 1 to n− 1

I[ℓ]← Z[n− 1+ ℓ]
return I[1 .. n− 1]

■

Rubric: 7 points = 2 for attempting to use FFTs + 3 for other algorithmic details + 2 for time
analysis. A correct O(n2)-time algorithm is worth 4 points.

4

CS 473 Practice Midterm 1 Solutions Fall 2022

4. Describe and analyze an algorithm to compute, given a sequence of integers separated by
@ signs, the smallest possible value the expression can take by adding parentheses. Your
input is an array A[1 .. n] listing the sequence of integers.

Solution: Let A[1 .. n] be the input array. For any indices i ≤ k, let MinAve(i, k)
denote the largest possible value that can be obtained from the interval A[i .. k] by
adding parentheses. We need to compute MinAve(1, n). This function satisfies the
following recurrence:

MinAve(i, k) =

¨

A[i] if i = k

min
�

MinAve(i, j) @ MinAve(j + 1, k)
�

� i ≤ j < k
	

otherwise

i

k

We memoize using two nested loops, one decreasing i and the other increasing k.
(It doesn’t matter which of these is the inner loop and which is the outer loop.)
Each entry MinAve[i, k] in our memoization array takes O(n) time to compute, so the
resulting dynamic programming algorithm runs in O(n3) time. ■

Rubric: 10 points: standard dynamic programming rubric. This is not the only correct evaluation
order. This is the fastest algorithm Jeff knows for this problem.

Non-solution: Consider the following greedy algorithm: Merge the adjacent pair of
numbers with the smallest average (breaking ties arbitrarily), replace them with their
average, and recurse. For example:

8 @ 6 @ 7 @ 5 @ 3 @ 0 @ 9

7 @ 7 @ 5 @ 3 @ 0 @ 9

7 @ 5 @ 3 @ 0 @ 9

6 @ 3 @ 0 @ 9

6 @ 3 @ 4.5

4.5 @ 4.5

4.5

With the right data structures, this algorithm can be implemented to run in O(n log n)
time; the only real bottleneck is maintaining a priority queue of adjacent pairs.

Unfortunately, this greedy algorithm does not always compute the optimal
expression. Consider the input 2 @ 5 @ 0 @ 6. The greedy algorithm outputs
(2 @ 5) @ (0 @ 6) = 3.25, but the optimal expression is 2 @ (5 @ (0 @ 6)) = 3. ♣

5

