CS 473 Practice Midterm 1 Solutions Fall 2022

1. Suppose we are given an array A[1..n] of n distinct integers, which could be positive,
negative, or zero, sorted in increasing order.

(@) Describe a fast algorithm that either computes an index i such that A[i] =i or
correctly reports that no such index exists.

Solution: We can solve the problem in O(logn) time using a variant of (or
a reduction to) binary search. Here are two pseudocode descriptions of the
algorithm, one recursive and one iterative.

((Find index j such thati < j < kand A[j] = j)) FINDINDEX(A[1..n]):
FinDINDEX(i, k): lo—1; hi<n
ifi >k while lo < hi
return NONE mid < [(lo + hi)/2]
je—[(i+k)/2] if Almid] = mid
ifA[j1=j return mid
return j else if Almid] > mid
else if A[j]> j hi < mid—1
return FINDINDEX(Z, j — 1) else
else lo —mid+1
return FINDINDEX(j + 1, k) return NONE

The key observation is that because A is a sorted array of distinct integers,
we have A[j] > A[i]+ (j —1i) for all indices i < j. In particular, if A[i] > i, then
A[j]>jforall j >i.

Equivalently, suppose we (implicitly) define a new array B[1..n] by setting
B[i] = A[i]—1i for all i. Then the elements of B are sorted in non-decreasing
order (but they are not necessarily distinct), and we are looking for an index i
such that B[i] = 0. [|

Rubric: 8 points max. For an explicit algorithm: 1 for binary search idea + 1 for base case + 4 for
recursive cases + 2 for time analysis. —1 for each off-by-one error. —1 for returning TRUE/FALSE
instead of index. —1 for stating running time as a recurrence without solving it. A reduction
to binary search is worth full credit. Max 3 points for a ©(n)-time algorithm; max 2 points for
anything slower; scale partial credit.

(b) Suppose we know in advance that A[1] > 0. Describe an even faster algorithm that
either computes an index i such that A[i] =i or correctly reports that no such index
exists.

Solution: If A[1] =1, we can clearly return 1 immediately. On the other hand,
if Al1] > 1 then A[i] > i for all i, so we can return NoNE immediately. So we
can solve this problem in O(1) time! []

Rubric: 2 points: 1 for algorithm + 1 for running time

CS 473 Practice Midterm 1 Solutions Fall 2022

2. Let G be a directed acyclic graph, in which every edge e € E has a weight w(e), which could
be positive, negative, or zero. The alternating length of any path P = vy—v;—vy— - =V,
in G is defined as

=1
AltLen(P) = » (1) - w(v; V).
i=0
Describe an algorithm to find a path from s to t with the largest alternating length, given
the graph G, the edge weights w(e), and vertices s and t as input.

Solution (dynamic programming, from the start): Let G = (V, E) be the input dag,
with edge weights w(e). We define two functions over the vertices of G:

* MaxAL(u) is the maximum alternating length among all paths from u to t.
e MinAL(u) is the minimum alternating length among all paths from u to t.

We need to compute MaxAL(s). These two functions satisfy the following mutual

recurrences:
0 ifu=t
MaxAL(u) = { —o0 if u # t is a sink
max {w(u—>v) — MinAL(v) | u—v e E} otherwise
0 ifu=t
MinAL(u) = { +00 if u # t is a sink

min {w(u—>v) — MaxAL(v) | u—v e E} otherwise

We can memoize these functions into two new fields u.minAL and u.maxAL of each
vertex u € V. We compute all function values using a single loop over the vertices u in
reverse topological order (or equivalently, depth-first postorder); in each iteration of
the loop we compute both functions of u.

The resulting dynamic programming algorithm runs in O(V + E) time. [|

Solution (dynamic programming, from the end): Let G = (V, E) be the input dag,
with edge weights w(e).

For any vertex v € V and any sign o € {+1,—1}, let MaxAL(v, o) denote the
maximum alternating length among all paths from s to v where the number of edges
is even if 0 = —1 and odd if 0 = +1. Equivalently, MaxAL(v, o) is the maximum
alternating length among all paths P from s to v where the last edge u—v in P
contributes o - w(u—v) to the alternating length of P.

We need to compute max{MaxAL(t,+1), MaxAL(t,—1)}.

CS 473 Practice Midterm 1 Solutions Fall 2022

Thus function obeys the following recurrence:

0 ifv=sand o =-1

Y () —00 ifv=sand o =+1
axAL(v,0) =

—00 if v # s is a source

max {MaxAL(u, —0)+ o - w(u—v) | u—v e E} otherwise

We can memoize this function into two new fields of each vertex in V. We compute
all function values using a single loop over the vertices v in topological order; in each
iteration of the loop we compute both functions of v.

The resulting dynamic programming algorithm runs in O(V + E) time. |

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct DP solutions.

Solution (graph reduction): Given a dag G = (V,E) and edge weights w(e), we
construct a new dag G’ = (V’,E’) and edge weights w’(e’) as follows:

e V' =V x {+,—}. I'll write vt and v~ as shorthand for (v, +) and (v,—).

e E'= {u+—>v_,u_—>v+ { u—v € E}

e For each edge u—v € E, let w'(ut—v") = w(u—v) and w'(u"—v*) = —w(u—v).
For any topological order v;,v,, ..., v, for G, the permutation v, v, vy, vy, ..., v, v

is a topological order for G’, so G’ is in fact a dag.

Let length’(P") =). ,.cp, W'(€’) denote the length of any path P’ in G’.

For any path P = vy—Vv;—V,— -+ =V, in G, there is a corresponding path P’
Vg oV oV, = —>vtft, always starting with a positive vertex, such that length’(P’) =
AltLen(P). Conversely, every path P’ in G’ that starts with a positive vertex projects
to a path P in G such that AltLen(P) = length’(P’).

Thus, finding the maximum-AltLen path in G from s to t is equivalent to finding
the maximum-length’ path in G’ from s* to either t™ or t~. We can find these
longest paths in G’, using the LLP algorithm described in class and in the textbook, in
O(V'+ E") = O(V + E) time. [|

Rubric: Also worth 10 points. This is not the only correct graph-reduction solution.

CS 473 Practice Midterm 1 Solutions Fall 2022

3. (a) Describe and analyze an efficient algorithm to compute the number of inversions in a
given boolean array B[1..n].

Solution: The following algorithm runs in O(n) time. We scan through the
array, maintaining two counters; whenever we encounter a FALSE, we add the
number of TRUES seen so far to the inversion counter.

CouNTINVERSIONS(B[1..n]):
invs < 0
trues < 0
fori<1ton
if B[i] = TRUE
trues < trues + 1
else
invs « invs + trues
return invs

Rubric: 3 points. A correct O(n log n)-time algorithm is worth 2 points; a correct O(n?)-time
algorithm is worth 1 point.

(b) Describe and analyze an efficient algorithm to compute, for every integer 1 </ < n—1,
the number of inversions of length £ in a given boolean array B[1..n].

Solution: The number of inversions of length £ is given by the formula
> [Bli] = TruE] - [B[j] = FaLsE]
j—i=t

This is essentially the convolution of B with the bitwise negation of the reversal
of B. The following algorithm runs in O(n logn) time if we use the FFT algorithm
to compute convolutions.

CoUNTINVERSIONLENGTHS(B[1..1n]):
fori—Oton—1
if B[i] = TRUE
X[i—1]«1
Y[n—i]«<0
else
X[i—1]« 0
Y[n—i]«1
Z < CoNvOLUTION(X[0..n—1],Y[0..n—1])

for{ —1ton—1
I[]—Z[n—1+/]
return I[1..n—1]

Rubric: 7 points = 2 for attempting to use FFTs + 3 for other algorithmic details + 2 for time
analysis. A correct O(n?)-time algorithm is worth 4 points.

CS 473

Practice Midterm 1 Solutions Fall 2022

4.

Describe and analyze an algorithm to compute, given a sequence of integers separated by
@ signs, the smallest possible value the expression can take by adding parentheses. Your
input is an array A[1..n] listing the sequence of integers.

Solution: Let A[1..n] be the input array. For any indices i < k, let MinAve(i, k)
denote the largest possible value that can be obtained from the interval A[i.. k] by

adding parentheses. We need to compute MinAve(1,n). This function satisfies the
following recurrence:

Ai] ifi=k

MinAve(i, k) =
(&5) {min {MinAve(i,j) @ MinAve(j + 1, k) | i<j< k} otherwise

k—>

|
b

We memoize using two nested loops, one decreasing i and the other increasing k.
(It doesn’t matter which of these is the inner loop and which is the outer loop.)
Each entry MinAve[i, k] in our memoization array takes O(n) time to compute, so the
resulting dynamic programming algorithm runs in O(n?®) time. [|

Rubric: 10 points: standard dynamic programming rubric. This is not the only correct evaluation
order. This is the fastest algorithm Jeff knows for this problem.

Non-solution: Consider the following greedy algorithm: Merge the adjacent pair of
numbers with the smallest average (breaking ties arbitrarily), replace them with their
average, and recurse. For example:

8@6@7@5@3@0@9
7@7@5@3@0@9
7@5@3@0@9
6@3e0e9
6@3@4.5

4.5@4.5
4.5

With the right data structures, this algorithm can be implemented to run in O(nlogn)
time; the only real bottleneck is maintaining a priority queue of adjacent pairs.

Unfortunately, this greedy algorithm does not always compute the optimal
expression. Consider the input 2 @ 5 @ 0 @ 6. The greedy algorithm outputs
(2 @5) @ (0e6)=3.25, but the optimal expressionis 2 @ (5 @ (0 @ 6)) = 3. &

