
CS 473 Homework 9 Solutions Fall 2024

1. A k-orientation of an undirected graph G is an assignment of directions to the edges
of G so that every vertex of G has at most k incoming edges. Describe and analyze an
algorithm that determines the smallest value of k such that G has a k-orientation, given
the undirected graph G as input.

Solution: Our algorithm performs a binary search for the smallest k such that G has
a k-orientation; for each value of k we consider, we intuitively look for an assignment
of at most k incoming edges to each vertex. More concretely, we solve the decision
problem as a generalized matching or pair-selection problem, where the two resource
sets are the vertices and edges of G.

Fix an arbitrary value of k. To decide whether G has a k-orientation, we construct
a flow network H = (V ′, E′) as follows:

• V ′ = V ∪ E ∪ {s, t}. Except for the source s and target t, the vertices of H
correspond to the vertices and edges of G. Clearly |V ′|= 2+ |V |+ |E|= O(E).

• E′ contains three types of edges:

– An edge s�v, for each vertex v ∈ V .
– An edge v�e, for each edge e ∈ E and each endpoint v of e.
– An edge e�t, for each edge e ∈ E.

Altogether we have |E′|= |V |+ 2|E|+ |E|= O(E).

• Each edge s�v has capacity k; all other edges have capacity 1.

The following figure shows the resulting flow network for the cube graph:

a
c

e
g

b
d

f
h

a

b

c

d

e

f

g

h

s

ac

ae

bf

cg

dh

ef

fh

gh

bd

eg

ab

cd
t

k

1

1

Our construction guarantees a correspondence between k-orientations of G and
integer (s, t)-flows in H that saturate every edge into t; specifically, each flow path
from s to t in H corresponds to a choice of direction for one edge in G.

• For any k-orientation of G, we can construct an integer flow f in H as follows.
For each directed edge u�v in the orientation of G, we send one unit of flow
through h along the path s�v�uv�t; the flow f is the sum of these E paths.

1

CS 473 Homework 9 Solutions Fall 2024

Because each vertex of G has at most k incoming edges, we have f (s�v)≤ k for
every vertex v. Because each edge uv is either oriented into v or not, we have
f (v�uv)≤ 1. Finally, because each edge of G has exactly one orientation, we
have f (e�t) = 1 for every edge E. We conclude that f is a feasible flow in H
that saturates every edge into t.

• On the other hand, let f be any integer flow in H that saturates every edge
into t. We can decompose f into E paths of the form s�v�uv�t, each carrying
one unit of flow. For each such path, assign edge uv the direction u�v. Because
f (e�t) = 1 for every edge e in G, every edge e in G is assigned a unique direction.
Because f (s�v)≤ k for every vertex v of G, at most k edges in G are directed
into v. So we have constructed a k-orientation of G.

Thus, to solve the decision problem for any fixed k, we construct the flow network H
as described above, compute a maximum (s, t)-flow f ∗ in H, and then report success
if and only if | f ∗|= E. If we use Orlin’s algorithm to compute the maximum flow, the
decision algorithm runs in O(V ′E′) = O(E2) time.a

Finally, to solve the optimization problem, we perform a binary search over all
possible values of k. Every graph has a V -orientation, and no graph has a (−1)-
orientation, so we can limit our search to the range 0 ≤ k ≤ V − 1. It follows that
our binary search requires O(log V) iterations, and thus our entire algorithm runs in
O(E2 log V) time. ■

aIf we used Ford-Fulkerson here, our decision algorithm would run in O(E2k) time, and so the
resulting optimization algorithm would run in O(E2V log V) time.

Rubric: 10 points; standard reduction rubric. The proof of correctness (in gray) is not required for full
credit. Max 8 points for correctO(E2V) time algorithm. +5 for a correctO(E2)-time algorithm. Even
this is not the fastest algorithm for this problem.

Solution (extra credit: parametric flow): Instead of performing a binary search
over all possible values of k, computing a maximum flow from scratch at each iteration,
we consider all k from 1 up to the maximum, updating a maximum flow at each
iteration.

We essentially the same flow network H = (V ′, E′) as in the previous solution:

• V ′ = V ∪ E ∪ {s, t}. Except for the source s and target t, the vertices of H
correspond to the vertices and edges of G. Clearly |V ′|= 2+ |V |+ |E|= O(E).

• E′ contains three types of edges:

– An edge s�v, for each vertex v ∈ V .
– An edge v�e, for each edge e ∈ E and each endpoint v of e.
– An edge e�t, for each edge e ∈ E.

Altogether we have |E′|= |V |+ 2|E|+ |E|= O(E).

• Initially every edge in this network has capacity 1.

2

CS 473 Homework 9 Solutions Fall 2024

We now proceed in several rounds. In the kth round, we set the capacity of all edges
into t to k and compute a maximum flow, starting with the maximum flow from the
previous round. If the maximum flow saturates all edges into t, that flow corresponds
to a k-orientation of G, so we can stop and return k. Otherwise, G does not have a
k-orientation, so we proceed to the (k+ 1)th round.

MinOrientation(V, E):
Build the graph H as described above
f ← 0 〈〈flow corresponding to partial orientation〉〉
for k← 1 to V − 1

for every vertex v ∈ v
c(s�v)← k

while H f contains a path from s to t
P ← any path in H f from s to t
f = f + P 〈〈push 1 unit of flow along P〉〉

if f (e�t) = 1 for every edge e ∈ E
return k

Finding each path P takes O(V ′ + E′) = O(E) time. Each time we push along a path
P from s to t, we saturate one of the edges into t. Thus, the total number of pushes
in the entire algorithm is at most E, the number of edges into t. (Equivalently: Every
push increases the value of the flow by 1, and the maximum value of the flow is at
most E, because the total capacity of all edges into t is E.) So the entire algorithm
runs in O(E2) time. ■

Solution (extra credit; greedy improvement): The following algorithm is due to
Venkateswaran [2] with some later simplifications by Asahiro et al. [1].

MinOrientation(G):
arbitrarily orient the edges of G
repeat forever

k←max{indeg(v) | v ∈ V}
Hi← {v ∈ V | indeg(v) = k}
Lo← {v ∈ V | indeg(v)≤ k− 2}
if there is no directed path in G from Lo to Hi

return k
P ← any directed path in G from Lo to Hi
reverse every edge of P

The integer k never increases between iterations of the main loop, so the set Lo
never grows. At every iteration of the algorithm, the in-degree of one vertex in Lo
increases, and the in-degree of one node in Hi decreases; otherwise, all in-degrees
remain unchanged. As long as a vertex is in the set Lo, its in-degree can only increase.
Thus, the number of iterations is at most the sum of the degrees (both in- and out-)
of the vertices in the initial set Lo, which is trivially at most 2E. Each iteration takes
O(E) time, so the overall algorithm runs in O(E2) time.

3

CS 473 Homework 9 Solutions Fall 2024

Orienting the cube. Green square vertices are in Lo; red diamond vertices are in Hi.

We can prove this algorithm is correct as follows. Let U be the subset of vertices
that are not reachable from the final set Lo in the final directed graph G. (In particular,
if Lo = ∅, then U = V .) Let EU be the set of directed edges in G whose heads (and
therefore tails) are in U . Because the algorithm halted, we have Hi ⊆ U; every vertex
in U has in-degree k − 1 or k, and at least one vertex in T has in-degree k. Thus,
(k− 1) · |U |< |EU | ≤ k · |U |, which implies k = ⌈|EU |/|U |⌉. We conclude that in every
orientation of G, some vertex in U has in-degree at least k. (In particular, some vertex
in U has incoming edges from at least k other vertices in U .) ■

[1] Yuichi Asahiro, Eiji Miyano, Hirotaka Ono, and Kouhei Zenmyo. Graph orientation
algorithms to minimize the maximum outdegree. Int. J. Found. Comput. Sci
18(2):197–215, 2007.

[2] Venkat Venkateswaran. Minimizing maximum indegree. Discrete Appl. Math.
143(1-3): 374–378, 2004.

4

https://doi.org/10.1142/S0129054107004644
https://doi.org/10.1142/S0129054107004644
https://doi.org/10.1016/j.dam.2003.07.007

CS 473 Homework 9 Solutions Fall 2024

2. Describe and analyze an algorithm to choose a subset of the SPU faculty to fill the Post-
Factotum Mascot Symbol Committee, or correctly report that no valid committee is possible.
Your input is a bipartite graph indicating which professors belong to which departments;
each professor vertex is labeled with that professor’s rank (assistant, associate, or full).
Assume that there are n professors and 3k departments.

Solution: Arbitrarily index the academic ranks from 1 to 3 (for example, 1= assistant,
2= associate, and 3= full), the professors from 1 to n, and the departments from 1
to 3k. Construct a graph G with nodes s, R1, R2, R3, S1, . . . , Sn, D1, . . . , D3k, t, and the
following edges:

• An edge s�Ri with capacity k for all i.

• An edge Ri�Pj with capacity 1 if and only if professor j has rank i

• An edge Pj�Dℓ with capacity 1 if and only if professor j is affiliated with
department ℓ.

• An edge Dℓ�t with capacity 1 for all ℓ.

Let f be a maximum (s, t)-flow in G. If | f | < 3k, no legal committee assignment is
possible. If | f |= 3k, any edge Pj�Dℓ with flow 1 indicates that professor j should be
assigned to the committee as the representative of department ℓ.

The graph has O(n + k) = O(n) vertices and O(nk) edges—in principle, every
professor could be affiliated with every department—and the maximum flow value is
at most 3k. Thus, the standard Ford-Fulkerson algorithm computes a maximum flow
in O(E · | f ∗|) = O(nk2) time. Once we have the flow, we can extract the committee
membership in O(k) additional time. ■

Rubric: 10 points: standard reduction rubric

5

CS 473 Homework 9 Solutions Fall 2024

3. (a) Describe a linear program whose solution (a, b) describes the line with minimum L1

error.

Solution:

minimize
n
∑

i=1

Ri

subject to ax i + b+ Ri ≥ yi for all i

ax i + b− Ri ≤ yi for all i

For each index i, the two constraints involving x i and yi are equivalent to the
non-linear inequality

Ri ≥ |yi − ax i − b| .

If we fix the variables a and b, the objective function
∑

i Ri is minimized by
setting Ri = |yi − ax i − b| for every i. In other words, in the optimum solution,
each variable Ri is the residue |yi − ax i − b| of the ith point with respect to
the regression line y = ax + b, and the objective function is the sum of these
residues, as required. ■

Rubric: 5 points = 1 for variables + 2 for objective + 2 for constraints. The proof is not required
for full credit.

(b) Describe a linear program whose solution (a, b) describes the line with minimum L∞
error.

Solution:
minimize R

subject to ax i + b+ R ≥ yi for all i

ax i + b− R ≤ yi for all i

For each index i, the two constraints involving x i and yi are equivalent to the
non-linear inequality

R≥ |yi − ax i − b| .

Thus, the constraints are collectively equivalent to the inequality

R≥max
i
|yi − ax i − b| .

For any fixed values of a and b, the variable R is obviously minimized when
R=maxi |yi − ax i − b|. Thus, in any optimal solution, the objective function is
the L∞ error of the line y = ax + b, as required. ■

Rubric: 5 points = 1 for variables + 2 for objective + 2 for constraints. The proof is not required
for full credit.

6

