
CS 473 Homework 8 Solutions Fall 2024

1. Given an undirected graph G = (V, E) with three special vertices u, v, and w, describe and
analyze an algorithm to determine whether there is a simple path from u to w that passes
through v.

[Hint: Do not try to modify a standard graph traversal algorithm like DFS or BFS. This
problem is on this homework for a reason.]

Solution (disjoint paths): We construct a new graph G′ from G by adding one new
vertex t and two new edges ut and wt. We compute the maximum number of
vertex-disjoint paths between v and t, as described in the textbook. Finally, we return
True if we find exactly two vertex-disjoint paths, and False otherwise.

The analysis in the textbook implies that our algorithm runs in O(V E) time, but
we can improve this time bound. The disjoint-paths algorithm ultimately reduces to
computing a maximum flow in a related directed graph H with integer edge capacities.
In particular, the number of paths is equal to the value of this maximum flow. Because
there are at most 2 vertex-disjoint paths in G′, the value of the maximum flow in H is
at most 2. It follows that Ford-Fulkerson needs only two iterations to compute the
maximum flow in H. We conclude that our algorithm actually runs in O(E) time.

Proof of correctness: Because t has only two incident edges in G′, there are at most
two vertex-disjoint paths from v to t in G′. If there are two vertex-disjoint paths,
concatenating them and removing the edges ut and wt yields a simple path between u
and w that passes through v. On the other hand, is there is a simple path between u
and w that contains v, then adding the edges ut and wt to this path creates a simple
cycle through v and t, which can be decomposed into two disjoint paths between v
and t. ■

Solution (maximum flows): First we construct a new directed graph G′ = (V ′, E′)
as follows:

• V ′ contains two vertices vin and vout for each vertex v ∈ V , plus a new target
vertex t.

• E′ contains three types of edges:
– E′ contains one edge xin�xout, with capacity 1, for each vertex x ∈ V .
– E′ contains two directed edges xout�yin and yout�xin, each with capacity 1,

for each edge x y ∈ E.
– Finally, E′ contains edges uout�t and wout�t, each with capacity 1.

Then we compute a maximum flow from vout to t in G′. If the value of this maximum
flow is 2, we return True; otherwise, we return False. The maximum flow value is at
most 2. Thus, if we compute the maximum flow using off-the-shelf Ford-Fulkerson,
our algorithm runs in O(E′ · | f ∗|) = O(E′) = O(V + E) time. ■

Rubric: 10 points: standard reduction rubric. No penalty for implicitly assuming that the input graph
is connected, by claiming the algorithm runs in O(E) time. Max 8 points for O(V E) time; scale partial
credit.

1

CS 473 Homework 8 Solutions Fall 2024

2. (a) Prove that a directed graph G with no isolated vertices is Eulerian if and only if
(1) G is strongly connected and (2) the in-degree of each vertex of G is equal to its
out-degree. [Hint: Flow decomposition!]

Solution: First, suppose G is Eulerian. Let W be a closed walk in G that traverses
each edge exactly once. Because G has no isolated vertices, W visits every vertex
of G. In particular, for any two vertices u and v, we can follow W from u to v,
and symmetrically, we can follow W from v back to u. Thus, G is strongly
connected. For each vertex v, the walk W must enter v and leave v the same
number of times; thus, the in-degree and out-degree of v are equal.

On the other hand, suppose G is strongly connected and has balanced degrees.
Consider the function f : E→ R that assigns the value 1 to every edge. Because
every vertex has equal in- and out-degrees, f is a circulation in G. The flow
decomposition theorem implies that f is the sum of a finite set of edge-disjoint
cycles C1, C2,

We can systematically merge the cycles C1, C2, . . . into a single closed walk
as follows. We maintain a single closed walk W , which is initially the cycle C1,
and an arbitrary starting vertex s in C1. Then as long as W does not traverse
every edge of G, repeat the following:
• Let x�y be any edge that is not traversed by W .
• Let π be any path from s to y that ends with the edge x�y; this path must

exist because G is strongly connected.
• Let p�q be the first edge of π that is not traversed by W . Our closed walk W

must visit p, since otherwise, we could have chosen an earlier edge of π.
We could combine these three steps by letting p�q be any edge that is not
traversed by W , but whose tail vertex p is visited by W . But then we’d have
to prove that such an edge exists!

• Let Ci be the decomposition cycle that contains edge p�q.
• Let W ′ be the closed walk that starts at p, walks all the way around W back

to p, and then walks all the way around Ci (starting with the edge p�q)
back to p.

• Finally, set W ←W ′.
Each iteration of this loop adds at least one vertex to W , so the loop eventually
terminates, at which point W is an Euler tour of G. ■

Rubric: 10 points = 5 for each direction. A full-credit solution must include an algorithm to
merge the decomposition cycles into a single closed walk. But we don’t need a running time,
because the problem only asks for an existence proof.

2

CS 473 Homework 8 Solutions Fall 2024

(b) Suppose that we are given a strongly connected directed graph G with no isolated
vertices that is not Eulerian, and we want to make G Eulerian by duplicating existing
edges. Each edge e has a duplication cost ((e)≥ 0. We are allowed to add as many
copies of an existing edge e as we like, but we must pay ((e) for each new copy. On
the other hand, if G does not already have an edge from vertex u to vertex v, we
cannot add a new edge from u to v.

Describe an algorithm that computes the minimum-cost set of edge-duplications
that makes G Eulerian.

Solution: Let G be the given input graph. Assign the lower bound ℓ(e) = 1,
infinite capacity c(e) =∞, and cost ((e) to each edge e. Let φ be a minimum-
cost feasible circulation in G. Because all the lower bounds are integral, we can
assume that the circulation φ is also integral.

Let Φ be the graph with the same vertices as G but with φ(e) copies of each
edge e of G. We can interpret φ as a circulation that has value 1 on every edge
of Φ. Following the algorithm in part (a), we can decompose φ into a set of
cycles in Φ, which we can then recombine into a an Euler tour of Φ.

The duplication cost to transform G into Φ is
∑

e(φ(e)− 1) ·((e), which is
exactly
∑

e ((e) more than the cost of the circulation φ. Thus, minimizing the
cost of φ is equivalent to minimizing the cost of duplicating edges to get from G
to Φ.

Suppose we initialize φ by setting φ(e) = 1 for every edge e (to get rid of
the positive lower bounds) and then use the successive shortest-path algorithm
to compute a minimum-cost feasible flow in the residual graph Gφ . The initial
residual graph has a total imbalance of at most O(E), so the successive shortest
path algorithm ends after O(E) iterations. Thus, our overall algorithm runs in
O(E2 log V) time. ■

Rubric: 5 points extra credit, standard graph reduction rubric (scaled). This is not the only
correct solution. No penalty for using a slower polynomial-time min-cost flow algorithm.

3

CS 473 Homework 8 Solutions Fall 2024

3. (a) Describe and analyze an efficient algorithm that either rounds a given m× n matrix
A, or correctly reports that no such rounding is possible.

Solution: Assume without loss of generality that every row and every column
of A sums to an integer, because no legal rounding is possible otherwise. To
simplify the problem, we write A as the sum of two m× n arrays I (“integer”)
and F (“fractional”) by setting

I[i, j] :=
�

A[i, j]
�

and F[i, j] = A[i, j]− I[i, j]

for each i and j. If F ′ is a legal rounding for F , then I + F ′ is a legal rounding
for A. So we only need to compute a legal rounding of the fractional matrix F .
For example:




1.2 3.4 2.4
3.9 4.0 2.1
7.9 1.6 0.5



=





1 3 2
3 4 2
7 1 0



+





.2 .4 .4

.9 .0 .1

.9 .6 .5





w

�





1 3 2
3 4 2
7 1 0



+





0 1 0
1 0 0
1 0 1



=





1 4 2
4 4 2
8 1 1





To find a legal rounding for the fractional matrix F , we construct a flow
network G with the following vertices and edges:
• A source s, a vertex ri for each row i, a vertex c j for each column j, and a

target t;
• An edge s�ri with capacity

∑

k F[i, k] for each row i;
• An edge c j�t with capacity

∑

k F[k, j] for each column j;
• An edge ri�c j with capacity 1 for each row i and column j such that

F[i, j]> 0.
Next we compute a maximum flow f ∗ in G from s to t. Because every edge
capacity is an integer, we can assume without loss of generality that f ∗ is an
integer flow; in particular, every flow value f ∗(ri�c j) is either 0 or 1. Finally, for
each row i and column j, set F∗[i, j]← f ∗(ri�c j).

Correctness: I claim that F∗ is a legal rounding of F if and only if the maximum
flow f ∗ saturates every edge leaving s (and therefore saturates every edge
entering t). We prove each implication separately:
(⇐) Suppose f ∗ saturates every edge leaving s and every edge entering t. Then

for each row index i, we have
∑

k

F∗[i, k] =
∑

k

f ∗(ri�c j) [definition of F∗[i, k]]

= f ∗(s�ri) [flow conservation at ri]
= c(s�ri) [definition of saturated]

4

CS 473 Homework 8 Solutions Fall 2024

=
∑

k

F[i, k] [definition of c(s�ri)]

In short, every row of F∗ has the same sum as the corresponding row of F .
A symmetric argument implies that each column of F∗ has the same sum as
the corresponding column of F . Finally, every entry F∗[i, j] is either 0 or 1.
We conclude that F∗ is a legal rounding of F .

(⇒) On the other hand, suppose F∗ is a legal rounding of F . Then for each row
index i, we have

f ∗(s�ri) =
∑

k

f ∗(ri�c j) [conservation at ri]

=
∑

k

F∗[i, k] [definition of F∗[i, k]]

=
∑

k

F[i, k] [definition of rounding]

= c(s�ri) [definition of c(s�ri)]

We conclude that f ∗ saturates every edge leaving s. A symmetric argument
implies that f ∗ saturates every edge entering t.

Running time: Our network has O(m+ n) vertices and O(mn) edges. Thus, if
we compute the maximum flow using Orlin’s algorithm, our algorithm runs in
O(V E) = O(mn(m+n)) time. Alternatively, the value of the maximum flow is at
most O(mn), so Ford-Fulkerson finds the maximum flow in O(| f ∗|·E) = O(m2n2)
time. ■

Rubric: 7 points: standard graph-reduction rubric (scaled-ish). The running time must be
reported as a function of the input parameters n and m.

5

CS 473 Homework 8 Solutions Fall 2024

(b) Prove that a legal rounding is possible if and only if the sum of entries in each row is
an integer, and the sum of entries in each column is an integer. In other words, prove
that either your algorithm from part (a) returns a legal rounding, or a legal rounding
is obviously impossible.

Solution: One direction is trivial: If any row or column has a non-integer sum,
then there is no legal rounding. So suppose each row sum and column sum is
an integer.

Consider the non-integral flow f defined by setting f (ri�c j) = F[i, j] for
every row i and column j, and saturating every edge s�ri and c j�t. Straightfor-
ward definition-chasing implies that f is indeed a flow with value

∑

i, j F[i, j].
Moreover, f is actually amaximum flow, because it saturates every edge leaving s.

It follows that any integral maximum flow f ∗ also has value
∑

i, j F[i, j],
because all maximum flows have the same value. Thus, f ∗ also saturates every
edge leaving s and every edge entering t. Integrality implies that every flow
value f ∗(ri�c j) is either 0 or 1. Because f ∗ saturates every edge out of s, each
row of F∗ has the same sum as the corresponding row in F ; similarly, because
f ∗ saturates every edge into T , each column of F∗ has the correct sum. We
conclude that F∗ is a legal rounding of F . ■

Rubric: 3 points = 1 for the easier direction + 2 for the harder direction.

6

