
CS 473 Homework 7 Solutions Fall 2024

1. Morris’s counter maintains an integer L using the following algorithms:

• Initialize: At the beginning of the day, set L← 0.
• Update: Each time a car passes the sensor, increment L with probability 2−L .
• Query: At the end of the day, report ñ= 2L − 1.

In the following questions, let L(n) denote the value of L after n updates.

(a) Prove that E[2L(n)] = n+ 1.

Solution: We prove this claim by induction on n, with the trivial base case
E[2L(0)] = E[20] = 1. The key insight is that we can (and arguably must)
separately consider each possible value of L(n− 1).

E[2L(n)] =
∑

ℓ

E[2L(n) | L(n− 1) = ℓ] · Pr[L(n− 1) = ℓ] [def. E[· | ·]]

=
∑

ℓ

�

1
2ℓ
· 2ℓ+1 +
�

1−
1
2ℓ

�

· 2ℓ
�

· Pr[L(n− 1) = ℓ] [def. L(n)]

=
∑

ℓ

(2ℓ + 1) · Pr[L(n− 1) = ℓ] [math]

= E[2L(n−1) + 1] [def. E[·]]

= E[2L(n−1)] + 1 [linearity]
= n+ 1 [IH]

■

Rubric: 3 points.

1

CS 473 Homework 7 Solutions Fall 2024

Non-solution: Let’s try to prove the claim by induction, with the trivial base
case E[2L(0)] = E[20] = 1. To simplify notation, I will write L = L(n) and
L− = L(n− 1).

E[2L] = E[2L | L = L−] · Pr[L = L−] + E[2L | L ̸= L−] · Pr[L ̸= L−]

= E[2L−] · Pr[L = L−] + E[2L−+1] · Pr[L ̸= L−]

= E[2L−] · Pr[L = L−] + 2 · E[2L−] · Pr[L ̸= L−]

= n · Pr[L = L−] + 2n · Pr[L− ̸= L−]

= n ·
�

1−
1

2L−

�

+ 2n ·
1

2L−
(?!)

Everything was great until the last step. The problem is that L− is a random
variable, not an actual number! It may be tempting to reason as follows:

· · ·= n · Pr[L = L−] + 2n · Pr[L ̸= L−]

= n ·
�

1−
1

E[2L−]

�

+ 2n ·
1

E[2L−]
(?!?!)

= n ·
�

1−
1
n

�

+ 2n ·
1
n

= n+ 1

This argument is completely bonkers, even though it leads to the correct answer.
You cannot replace random variables with their expectations; the step I’ve labeled
(?!?!) is unjustified. The fact that the argument works out for this particular
problem is just a coincidence.

It is possible to prove that Pr[L ̸= L−] = 1/n using a different argument, but
that argument looks like the first solution! ♣

2

CS 473 Homework 7 Solutions Fall 2024

(b) Prove that E[4L(n)] = O(n2). [Hint: Your proof should yield an exact expression, not
just a big-O bound.]

Solution: I claim that E[4L(n)] = 3n(n + 1)/2 + 1. We prove this claim by
induction on n, with the trivial base case E[4L(0)] = E[40] = 1.

E[4L(n)] =
∑

ℓ

E[4L(n) | L(n− 1) = ℓ] · Pr[L(n− 1) = ℓ] [def. E[· | ·]]

=
∑

ℓ

�

1
2ℓ
· 4ℓ+1 +
�

1−
1
2ℓ

�

· 4ℓ
�

· Pr[L(n− 1) = ℓ] [def. L(n)]

=
∑

ℓ

�

3 · 2ℓ + 4ℓ
�

· Pr[L(n− 1) = ℓ] [math]

= E[3 · 2L(n−1) + 4L(n−1)] [def. E[·]]

= 3 · E[2L(n−1)] + E[4L(n−1)] [linearity]

= 3n+ E[4L(n−1)] [part (a)]

= 3n+
3n(n− 1)

2
+ 1 [IH]

=
3n(n+ 1)

2
+ 1 [math]

■

Rubric: 3 points = 1 point for exact closed form + 2 points for proof.

(c) Compute E[(ñ− n)2], where ñ= 2L(n) − 1.

Solution: Definition chasing!

E[(ñ− n)2] = E[(2L(n) − (n+ 1))2] [def. ñ]

= E[4L(n) − 2(n+ 1)2L(n) + (n+ 1)2] [math]

= E[4L(n)] − 2(n+ 1)E[2L(n)] + (n+ 1)2 [linearity]

=
3n(n+ 1)

2
+ 1 − 2(n+ 1)2 + (n+ 1)2 [(a) and (b)]

=
n2 − n

2
[math]

■

Rubric: 2 points. 1 point for O(n2).

3

CS 473 Homework 7 Solutions Fall 2024

(d) Prove that Pr[|ñ− n|> 4n/5]< 4/5.

Solution: Markov’s inequality FTW!

Pr[|ñ− n|> 4n/5] = Pr[(ñ− n)2 > (4n/5)2]

≤
E[(ñ− n)2]
(4n/5)2

[Markov’s inequality]

≤
n2/2
(4n/5)2

[part (c)]

=
25
32
= 0.78125<

4
5

.

■

Rubric: 2 points.

4

CS 473 Homework 7 Solutions Fall 2024

2. Suppose you are given a directed graph G = (V, E), two vertices s and t, a capacity
function c : E→ R+, and a second function f : E→ R. Do not assume anything about the
function f .

(a) Describe and analyze an efficient algorithm to determine whether f is a maximum
(s, t)-flow in G.

Solution: Verifying that f is a maximum flow requires four steps:

• Verify that f (u�v)≥ 0 for every edge u�v.
• Verify that f (u�v)≤ c(u�v) for every edge u�v.
• Verify that
∑

u f (u�v) =
∑

w f (v�w) for every node v except s and t.
• Verify that there is no path from s to t in the residual graph G f .

The first three steps can be done in O(E) time by brute force. In the last step, we
need O(E) time to build G f , plus O(E) time to perform a whatever-first search
starting at s. Thus, the overall algorithm runs in O(E) time. ■

Rubric: 5 points = 1 for each step + 1 for time analysis. No penalty for implicitly assuming that
flow networks are connected, which implies that V = O(E).

(b) Describe and analyze an efficient algorithm to determine whether f is the unique
maximum (s, t)-flow in G.

Solution: First we verify that f is a maximum (s, t)-flow in G, using the
algorithm from part (a). Assume f is a maximum flow, since otherwise we are
already done.

Now we claim that f is the unique maximum flow in G if and only if the
residual network G f contains no simple directed cycles of length at least 3.

We do need to explicitly rule out cycles of length 2, which correspond to an
edges of G that the maximum flow neither saturates nor avoids. The following
figure shows a minimal example of a unique maximum flow (on the left) and
whose residual network (on the right) contains a cycle of length 2.

s t
1/21/1

s t
11
1

We prove our claim as follows:

• Suppose the residual graph G f contains a simple directed cycle C =
v0�v1� · · ·�vℓ−1�v0 of length ℓ ≥ 3. Because C is simple, all ℓ ver-
tices vi are distinct, and if C contains the edge u�v, it does not contain
the reversed edge v�u. Let cmin =mine∈C c f (e) be the minimum residual
capacity of any edge in C . Then we can define a new flow f ′ = f + cmin · C

5

CS 473 Homework 7 Solutions Fall 2024

by pushing cmin additional units of flow along C , as follows:

f ′(x�y) =











f (x�y) + cmin if x�y ∈ C

f (x�y)− cmin if y�x ∈ C

f (x�y) otherwise

These cases are exclusive because C is simple. Straightforward definition
chasing implies that f ′ is a feasible flow with the same value as f , and
therefore is another maximum flow.

• Suppose there is another maximum (s, t)-flow f ′; by definition we have
| f |= | f ′|. We define a flow g = f ′ − f in the residual graph G f as follows.

g(u�v) =











f ′(u�v)− f (u�v) if f ′(u�v)> f (u�v)

f (v�u)− f ′(v�u) if f ′(v�u)< f (v�u)

0 otherwise

See the example below.

s t

10/20

5/10

5/10

5/5

10/10

5/15

0/10

10/20

0/15
s t

10

5

10

10
15

5

10

10

10

10

10

55

s t

8/20

7/10

3/10

5/5

10/10

11/15

6/10

4/20

0/15
s t

2/10

0/5

0/10

6/10

0/15

0/5

6/10

0/10

6/10

0/10

2/10

2/50/5

Top left: A maximum flow f . Top right: The residual graph G f .
Bottom left: Another maximum flow f ′. Bottom right: The circulation g = f ′ − f .

Straightforward definition-chasing implies that g is a feasible flow with
value 0 in the residual graph G f . Thus, by the flow decomposition theorem,
we can write g as a weighted sum of cycles, each containing only edges
where g is positive. None of these cycles use both an edge u�v and its
reversal v�u, so every cycle has length at least 3.

The simplest method to find nontrivial cycles in the residual graph is es-
sentially brute force. For each edge u�v in the residual graph, we remove the
reversed edge v�u from G f (if it exists), and then look for a path from v to u
using whatever-first search. If we find a path from u to v, adding the edge u�v
completes the cycle. The resulting algorithm runs in O(E2) time. 〈〈This is worth
4 points.〉〉

However, there is a faster algorithm that detects nontrivial cycles in O(VE)
time. We construct a new directed graph H whose vertices are the directed edges

6

CS 473 Homework 7 Solutions Fall 2024

of G f , and whose edges correspond to a pairs of edges in G f that can appear
consecutively in a simple path. That is, H contains the edge (u�v)�(v�w) if
and only if u�v�w is a simple directed path in G f (and in particular u ̸= w).
Overall, the graph H contains V ′ = E vertices and E′ ≤ V E edges, and we can
construct it in O(V E) time by brute force.

Every closed walk of length ℓ in H corresponds to a closed walk of length ℓ
in G f that does not contain a spur of the form u�v�u, and vice versa. In
particular, G f contains a simple cycle of length at least 3 if and only if H contains
a directed cycle. Equivalently, f is the unique maximum flow if and only if H
is a dag. We can check the latter condition in O(V ′ + E′) = O(V E) time using
depth-first search. 〈〈This is worth 5 points.〉〉 ■

Solution (+5 extra credit, the harder way): In fact, it is possible to detect
nontrivial simple cycles in O(E) time. The following algorithm is (morally) due
to Donald Johnson [2].

First, we compute the strong components of the residual graph G f , using (for
example) Tarjan’s algorithm or Kosaraju and Sharir’s algorithm, as described in
the textbook. Recall that a graph H is strongly connected if every vertex in H can
reach every other vertex in H; a strong component of G f is a maximal strongly
connected subgraph. Each edge of G f belongs to at most one strong component.
Each simple cycle in G f lies entirely inside one strong component, so the rest of
our algorithm can search each strong component separately.

Second, we further subdivide the strong components into biconnected com-
ponents at cut vertices. A cut vertex is any vertex v whose deletion disconnects
the graph; a graph H ′ is (strongly) biconnected if it is (strongly) connected and
has no cut vertices; the biconnected components of a graph H are its maximal
biconnected subgraphs. An algorithm of Hopcroft and Tarjan [1] (similar to
Tarjan’s strong-component algorithm) decomposes any (strongly) connected
graph into (strongly) biconnected components in O(E) time. Each nontrivial
simple cycle in G f lies entirely inside one strongly biconnected component, so
the rest of our algorithm can search each such component separately.

Finally, let H be any strongly biconnected component of G f . I claim that
H contains a nontrivial simple cycle if and only if H has at least three
vertices. One direction is trivial—if H has less than three vertices, it cannot
contain a cycle with at least three vertices—so let’s prove the other. If H has
only one or two vertices, the claim is trivial, so assume otherwise. There are
two cases to consider.

• Suppose H contains an edge x�y but not its reversal y�x . Because H is
strongly connected, H contains a simple directed path from y to x , which
must have length at least 2. Adding the edge x�y to the path gives us a
simple cycle of length at least 3.

• On the other hand, suppose H is symmetric. Fix an arbitrary edge x�y.
Because H is biconnected and has at least three vertices, H contains at least
two vertex-disjoint paths from y to x; one of these paths is not just the edge

7

CS 473 Homework 7 Solutions Fall 2024

y�x . Adding the edge x�y to that path gives us a simple cycle of length
at least 3.

So the final algorithm looks like this:

UniqueMaxFlow(G, f):
construct the residual graph G f 〈〈Ford Fulkerson O(E)〉〉
compute the strong components of G f 〈〈Tarjan O(E)〉〉
for each strong component H of G f

compute the biconnected components of H 〈〈Hopcroft Tarjan O(EH)〉〉
for each biconnected component H ′ of H

if H ′ has more than two vertices
return False

return True

The entire algorithm runs in O(E) time. 〈〈This is worth 10 points.〉〉 ■

[1] John Hopcroft and Robert E. Tarjan. Algorithm 447: Efficient algorithms for graph
manipulation. Communications of the ACM 16(6):372–378, 1973.

[2] Donald B. Johnson. Finding all the elementary circuits of a directed graph. SIAM
Journal on Computing 4(1):77-84, 1975.

Solution (+5 extra credit, the easier way): First, let H be the subgraph of G f

induced by all pairs of opposing edges u�v and v�u. Because H is symmetric,
we can treat it as an undirected graph. We can test whether this undirected graph
contains a cycle using whatever-first search in O(E) time. If so, then G f contains
a nontrivial simple cycle, so we can report that f is not the only maximum flow.

Otherwise, H is a forest. Let G f /H denote the (multi-)graph obtained
from G f by contracting every edge in H. Each vertex of G f /H corresponds to
either a component of the forest H or an isolated vertex of G f that is not in H;
every edge of G f /H corresponds to an edge of G f whose reversal is not in G f .

I claim that G f contains a nontrivial simple cycle if and only if G f /H
contains a cycle. In particular, the cycle in GF/H could have length 1 (a self-loop)
or 2. See the figure below for an example.

s t

10/20

5/10

5/10

5/5

10/10

5/15

0/10

10/20

0/15
s t

10

5

10

10
15

5

10

10

10

10

10

55

Top left: A maximum flow f . Top right: The residual graph G f .
Bottom left: The subgraph H . Bottom right: The contracted graph G f /H .

8

CS 473 Homework 7 Solutions Fall 2024

As usual we prove this claim in two parts.

⇒ Suppose G f contains a simple cycle C = v1�v2� · · ·�vℓ�v1, where ℓ ≥ 3.
If any edge vi�vi+1 of C lies in H with its reversal vi+1�vi , contracting that
edge turns C into a shorter simple cycle. Contracting a symmetric edge
pair vi��v j between two non-adjacent vertices turns C into a figure-8: two
simple cycles sharing a single vertex. In both cases, the induction hypothesis
implies that contracting the remaining edges of H leaves a multigraph with
at least one cycle.

⇐ Suppose G f /H contains a simple cycle C , possibly of length 1 or 2. Each
edge of C corresponds to an edge in G f . Let u0�v1, u1�v2, . . . , uk�v0

denote the edges of G f corresponding to the edges of C in order. For each
index i, vertices ui and vi lie in the same component of H, and thus are
connected by a unique path in H. Because C is a simple cycle, it touches
each component of H at most once, so the various paths in H are disjoint. We
conclude that connecting the edges ui−1�vi with the paths vi⇝ui through
H yields a simple cycle in G f that never uses both an edge and its reversal.

We can construct G f /H in O(E) time by brute force, and then we can determine
whether G f /H is a directed acyclic graph in O(E) time using (for example)
depth-first search. The overall algorithm runs in O(E) time. 〈〈This is worth 10
points.〉〉 ■

Rubric: 5 points = 2 points for “G f has no nontrivial simple cycles” + 2 points for algorithm +
1 for running time. Proof of correctness is not required. Scale partial credit as follows:
• Max 4 points for O(E2) time.
• Max 5 points for O(V E) time.
• Max 10 points(!) for O(E) time.
• Only 1 point for “G f is a dag”.

9

CS 473 Homework 7 Solutions Fall 2024

3. Suppose you are given an n× n checkerboard with some of the squares deleted. You have a
large set of dominos, just the right size to cover two squares of the checkerboard. Describe
and analyze an algorithm to determine whether one tile the board with dominos—each
domino must cover exactly two undeleted squares, and each undeleted square must be
covered by exactly one domino.

Solution (Reduction to bipartite perfect matching): Given the array Deleted[1 .. n,
1 .. n], we first construct a bipartite graph G = (L ∪ R, E) as follows:

• L :=
�

(i, j)
�

� Deleted[i, j] = False and i + j is even
	

— Intuitively, L is the set
of undeleted white squares.

• R :=
�

(i, j)
�

� Deleted[i, j] = False and i + j is odd
	

— Intuitively, R is the set of
undeleted black squares.

• E :=
�

(i, j)(i′, j′)
�

� (i, j) ∈ L and (i′, j′) ∈ R and |i − i′|+ | j − j′|= 1
	

— Intu-
itively, E is the set of all adjacent pairs of undeleted squares.

Every domino must cover one white square and one black square, so every matching
in G represents a valid placement of dominos and vice versa. We compute amaximum-
cardinality matching in G; if this matching is perfect, we return True, and otherwise,
we return False. If we use the matching algorithm presented in class, our algorithm
runs in O(V E) = O(n4) time. ■

Solution (Reduction to maximum flow): Given the array Deleted[1 .. n, 1 .. n], we
first construct a flow network G = (V, E) as follows:

• V := {s, t} ∪
�

(i, j)
�

� Deleted[i, j] = False
	

.

• There are three types of edges:

– s�(i, j) for all (i, j) ∈ V where i + j is even.
– (i, j)�t for all (i, j) ∈ V where i + j is odd.
– (i, j)�(i′, j′) for all (i, j), (i′, j′) ∈ V where i+ j is even and |i−i′|+| j− j′|= 1

Intuitively, we have an edge from s to each white square, from each white square
to each adjacent black square, and from each adjacent black square to t.

• Every edge in G has capacity 1.

Now we compute a maximum (s, t)-flow in G. If the value of this flow is exactly half
the number of undeleted squares, return True; otherwise, return False.

The maximum flow value is equal to the largest number of non-overlapping
dominos we can place on the board, which is trivially at most n2/2. Thus, if we use
Ford-Fulkerson to compute the maximum flow, our algorithm runs in O(n2E) = O(n4)
time. If we use Orlin’s algorithm to compute the maximum flow, our algorithm still
runs in O(V E) = O(n4) time. ■

Rubric: 10 points: standard graph-reduction rubric (see next page)

10

CS 473 Homework 7 Solutions Fall 2024

Standard graph-reduction rubric. For problems solved by reduction to a standard graph algorithm
covered either in class or in a prerequisite class (for example: shortest paths, topological sort, minimum
spanning trees, maximum flows, bipartite maximum matching, vertex-disjoint paths, . . .).

Maximum 10 points =

+ 3 point for defining the correct graph.
+ 1 for correct vertices
+ 1 for correct edges
−½ for forgetting “directed” if the graph is directed
+ 1 for correct data associated with vertices and/or edges—for example, weights, lengths,

capacities, costs, demands, and/or labels—if any
◦ The vertices, edges, and associated data (if any) must be described as explicit functions of

the input data.
◦ For most problems, the correct graph can be constructed in linear time by brute force; in this

common case, no explicit description of the construction algorithm is required. If achieving
the target running time requires a more complex algorithm, that algorithm will graded out of 5
points using the appropriate standard rubric, and all other points are cut in half.

+ 2 points for explicitly relating the given problem to a specific problem involving the constructed
graph. For example: “The minimum number of moves is equal to the length of the shortest path
in G from (0,0, 0) to any vertex of the form (k, ·, ·) or (·, k, ·) or (·, ·, k).” or “Each path from s to
t represents a valid choice of class, room, time, and proctor for one final exam; thus, we need to
construct a path decomposition of a maximum (s, t)-flow in G.”
◦ No points for just writing (for example) “shortest path” or “reachability” or “matching”.

Shortest path in which graph, from which vertex to which other vertex? How does that
shortest path relate to the original problem?

◦ No points for only naming the algorithm, not the problem. “Breadth-first search” and
“Ford-Fulkerson” are not problems!

+ 3 points for correctly applying the correct black-box algorithm to solve the stated problem.
(For example, “Perform a single breadth-first search in H from (0,0, 0) and then examine every
target vertex.” or “We compute the maximum flow using Ford-Fulkerson, and then decompose
the flow into paths as described in the textbook.”)
◦ This includes algorithmic details of extracting the correct answer to the stated problem

from the output pf the black-box algorithm.
−1 for explaining an algorithm from lecture or the textbook instead of just invoking it as a

black box.
+ 2 points for correctly stating the running time in terms of the input parameters (not just the

number of vertices and edges of the constructed graph).

An extremely common mistake for this type of problem is to attempt to modify a standard algorithm
and apply that modification to the input data, instead of modifying the input data and invoking a
standard algorithm as a black box. This strategy can work in principle, but it is much harder to do it
correctly, and it is terrible software engineering practice. Clearly correct solutions using this strategy
will be given full credit, but partial credit will be given only sparingly.

11

