
CS 473 Homework 4 Solutions Fall 2023

0. For each of the following conditions, compute the exact expected number of fair coin flips
until that condition is met.

(a) Hamlet flips heads.

Solution: Let Xa denote the number of flips up to and including the first heads.
If the first flip is heads, Hamlet only flips once; otherwise, Hamlet starts over
after the first flip. Said differently: After the first flip, Hamlet starts over with
probability 1/2. Thus,

E[Xa] = 1+
1
2

E[Xa]

We conclude that E[Xa] = 2. ■

(b) Hamlet flips both heads and tails (in different flips, of course).

Solution: Let X b denote the number of flips for this experiment. Without loss
of generality, suppose the first flip is tails. Then the experiment ends after the
first heads. Thus, linearity of expectation implies E[Xb] = 1+ E[Xa] = 3. ■

(c) Hamlet flips heads twice.

Solution: Let X c denote the number of flips for this experiment. Linearity of
expectation immediately implies E[Xc] = E[Xa] + E[Xa] = 4. ■

(d) Hamlet flips heads twice in a row.

Solution: Let Xd denote the number of flips to get two heads in a row, and let
Yd be the number of remaining flips to get two heads in a row if we just flipped
heads. Then

E[Xd] = 1+
1
2

E[Xd] +
1
2

E[Yd]

E[Yd] = 1+
1
2

E[Xd]

Solving these equations gives us E[Xd] = 6 and E[Yd] = 4. ■

(e) Hamlet flips heads followed immediately by tails.

Solution: Let X e denote the number of flips for this experiment. The problem
is unchanged if we remove the word “immediately”; the first tails after the
first heads occurs immediately after some heads. So linearity of expectation
immediately implies E[Xe] = E[Xa] + E[Xa] = 4. ■

1

CS 473 Homework 4 Solutions Fall 2023

(f) Hamlet flips more heads than tails.

Solution (Trust the Recursion Fairy): Let X f denote the number of flips for
this experiment. If the first flip is heads, the experiment ends immediately.
Otherwise, after the first tails, Hamlet must perform a series of flips with one
more heads than tails, and then perform another series of flips with one more
heads than tails. Thus, linearity of expectation implies

E[X f] = 1+
1
2
· 2 E[X f].

This equation has no solution, which implies that E[X f] =∞.a ■
aHere I’m relying on a subtle observation that every non-negative random variable has a

well-defined expectation, which is either a non-negative real number or∞. Random variables
that can be both positive and negative may have no well-defined expectation! Consider a game
where you flip a fair coin until it comes up heads, and your reward for flipping n tails in a row is
(−2)n dollars and your head a splode. I’m also implicitly relying on the fact that X f is finite (and
therefore actually an integer) with probability 1; see part (i).

Solution (Do not trust the Recursion Fairy): Let X f denote the number of
flips for this experiment. We can compute the expectation directly from the
definition E[X f] =

∑

x≥0 x · Pr[X f = x].

• The first time the number of heads exceeds the number of tails, the total
number of flips must be odd. Thus, E[X f] =

∑

n≥0(2n+1) ·Pr[X f = 2n+1].
• X f = 2n+ 1 if and only if the first 2n+ 1 flips have more heads than tails,

but no prefix has that property. Equivalently, the first 2n flips is isomorphic
to a balanced string of parentheses, where tails are open parens and heads
are closed parens, and the (2n+ 1)th flip is a heads.

• Thus, the number of possible flip sequences of length 2n+ 1 that would
imply X f = 2n+ 1 is equal to the number of balanced strings of length 2n,
which is the nth Catalan number

�2n
n

� 1
n+1 .

• The binomial theorem implies 4n =
∑2n

k=0

�2n
k

�

. The middle binomial coeffi-
cient
�2n

n

�

is the largest term in this summation. It follows immediately that
�2n

n

�

≥ 4n

2n+1 . (Stirling’s approximation implies tighter bounds, but this one
is good enough.)

• Each flip sequence of length 2n+ 1 has probability 1/22n+1.

We conclude that

E[X f] =
∑

n≥0

(2n+ 1) · Pr[X f = 2n+ 1]

=
∑

n≥0

(2n+ 1) ·
�

2n
n

�

1
n+ 1

·
1

22n+1

≥
∑

n≥0

(2n+ 1) ·
4n

2n+ 1
·

1
n+ 1

·
1

22n+1

2

CS 473 Homework 4 Solutions Fall 2023

=
∑

n≥0

1
2n+ 2

=
1
2

∑

k≥1

1
k

The final sum diverges, which implies E[X f] =∞.
Yeesh. Maybe I should have trusted the Recursion Fairy. ■

(g) Hamlet flips the same number of heads and tails.

Solution: Zero, because 0= 0. ■

(h) Hamlet flips the same positive number of heads and tails.

Solution: Let Xh denote the number of flips for this experiment. Without loss
of generality, suppose the first flip is tails. Then the remaining flips must have
more heads than tails. Thus, linearity implies E[Xh] = 1+ E[E f] =∞. ■

(i) Hamlet flips more than twice as many heads as tails.

Solution: Let X i denote the number of flips for this experiment (or∞ if this
experiment never ends). If Hamlet ever flips more than twice as many heads as
tails, he must have already flipped more heads than tails. Thus, X i ≥ X f , which
implies E[X i]≥ E[X f], and therefore E[X i] =∞. ■

Despite the superficial similarity, there is a significant difference between this
experiment and the experiment in part (f).

• The probability that Hamlet never flips more heads than tails turns out to be
exactly 0; said differently, the experiment ends after a finite number of flips
with probability 1. This doesn’t mean it’s impossible for the experiment to
run forever; it only means that the probability is (literally) vanishingly small.
In fact, our infinite-series analysis of E[X f] already implicitly assumed that
X f is finite with probability 1; recall that

∑

n≥0 f (n) is formal shorthand for
limN→∞
∑N

n=0 f (n). So E[X i] is a weighted average of finite values, but it’s
still infinite, because the infinite series does not converge.

• On the other hand, the probability that Hamlet never flips more than twice as
many heads as tails turns out to be exactly 1/φ2 = 2−φ ≈ 0.38197, where
φ = (1+

p
5)/2 is the golden ratio. (See this Mathematics StackExchange

post for details.) This observation immediately implies that the expected
value of X i is infinite. On the other hand, X i is no longer formally an integer
random variable!

Rubric: Practice only! Not graded!

3

https://math.stackexchange.com/questions/3270043/probability-to-get-twice-as-many-heads-as-tails-at-some-point-in-an-infinite-seq
https://math.stackexchange.com/questions/3270043/probability-to-get-twice-as-many-heads-as-tails-at-some-point-in-an-infinite-seq

CS 473 Homework 4 Solutions Fall 2023

1. (a) Prove that any deterministic algorithm that computes the value of the root of a
majority tree must examine every leaf.

Solution: We can use the following adversary strategy to assigns values to
vertices of the tree (both leaves and internal nodes) as slowly as possible.
Whenever the algorithm asks for the value of a leaf ℓ, the adversary executes the
following recursive procedure:

Query(ℓ):
if no sibling of ℓ has value 0

value(ℓ)← 0
else if no sibling of ℓ has value 1

value(ℓ)← 1
else if ℓ is the root

value(ℓ)← 0
else

value(ℓ)← Query(parent(ℓ))

return value(ℓ)

(Yep, it’s another algorithm.) This procedure assigns a value to any node only
when values have been determined for all three of its children, and therefore
(inductively) all of its descendants, and therefore in particular all of its leaves.
On the other hand, if a value has not yet been assigned to a node, then at most
one of its children has value 1 and at most one of its children has value 0, so
(again inductively) the value could be either 0 or 1, depending on the values of
the unassigned leaves. ■

There is a subtle point here that many students missed. When we argue
about arbitrary deterministic algorithms, we cannot make any assumptions about
how the algorithm works. In particular, for this problem, we cannot assume that
the algorithm ever computes the value of any node in the tree other than the
root. I don’t know how to solve the problem without evaluating the children of
the root, but assuming that that’s the only way to solve the problem is just like
Kolmogorov assuming that multiplying two n-digit numbers requires computing
each of the n2 individual digit×digit products, or dozens of algorithms textbooks
assuming that we can only sort by using pairwise comparisons. Who knows;
maybe there’s a clever algorithm that reverses the thaumic flow in the cthonic
matrix of the optimized bi-direction octagonate.

We can assume (and in fact, my argument implies) that the leaves examined
by the algorithm must uniquely determine the value of every node in the tree.
But that does not mean that the algorithm actually computes those values. In
particular, the Query procedure described here (which does compute a value
for every node) is executed by the adversary, not by the algorithm we are trying
to analyze.

Rubric: 5 points. This is not the only correct formulation of this proof.

4

CS 473 Homework 4 Solutions Fall 2023

(b) Describe and analyze a randomized algorithm that computes the value of the root in
worst-case expected time O(cn) for some explicit constant c < 3.

Solution: To determine the value of a node v, recursively evaluate two of its
children, chosen uniformly at random. If and only if those two children has
different values, recursively evaluate the third child.

• If all three children of v have the same value, the algorithm recurses twice.
• Otherwise, with probability 1/3, the two children with the same value

will be chosen first, and the algorithm will recurse only twice, and with
probability 2/3, the algorithm recurses three times. Thus, the expected
number of recursive calls is 2 · 1/3+ 3 · 2/3= 8/3.

In both cases, the expected number of recursive calls is at most 8/3.
It follows that the expected running time T (n) for a tree of depth n obeys the

recurrence T (n)≤ (8/3) · T (n− 1), with the base case T (0) = 1. We conclude
that our algorithm runs in O((8/3)n) expected time. ■

Rubric: 5 points. This is the best expected time possible.

5

CS 473 Homework 4 Solutions Fall 2023

2. Let A and B be two arrays of integers of length n and m respectively. Assume that all
integers in the union of two arrays are distinct and we can compare whether A[i]> B[j]
or A[i]< B[j] in O(1) time, but cannot compare any two elements in A or B directly.

(a) Show that with the allowed comparisons, it is not possible to perfectly sort the union
of two arrays A∪ B, unless the two arrays perfectly interleave.

Solution: Let A and B be two arrays that do not perfectly interleave. Let
A[1] < A[2] < . . . < A[n] be the indices in the sorted order. Without loss of
genrality, we may assume that there exists an index i ∈ [n] such that either all
elements of B are smaller than both A[i] and A[i + 1] or all elements of B are
larger than both A[i] and A[i + 1].

Consider any algorithm (deterministic or randomized) that given the two
unsorted arrays as inputs, outputs A∪ B in the sorted order. This algorithm must
determine if A[i]< A[i + 1] or A[i]> A[i + 1]. However, there is no element of
the other array B that the algorithm can compare with to determine which case
holds. Hence, it cannot sort the two arrays perfectly. In particular, the algorithm
must err on one of the following two input cases: either we give the input arrays
in the original unsorted order, or in the original unsorted input arrays, we swap
A[i] with A[i + 1]. ■

Rubric: Max 2 points. The justification should be valid for any two given input arrays; at most 1
point for only giving a specific example.

(b) Extra Credit: Give a randomized algorithm that only uses the allowed comparisons
and sorts the union of the two arrays A∪ B when they perfectly interleave.

Solution (near-linear time): Let us refer to the array A as the nuts, and to the
array B as the bolts. Unlike the situation in the lecture, all the nuts and bolts
are of different sizes and they perfectly interleave now. Note that the difference
between the number of nuts and bolts can be at most one if they perfectly
interleave.

Consider the following randomized algorithm to sort all the nuts. The bolts
can be sorted by repeating the same algorithm afterwards with the roles of nuts
and bolts exchanged. The algorithm takes as inputs two unsorted arrays Nuts
and Bolts. The top level recursive call is InterleavedSort(A, B). The algorithm
uses a subroutine IsSmaller to determine if a given nut is smaller than the pivot
nut by only using the allowed comparisons.

6

CS 473 Homework 4 Solutions Fall 2023

InterleavedSort(Nuts, Bolts):
n← length(Nuts)
m← length(Bolts) 〈〈Note that |n−m| ≤ 1〉〉
if n< 473

use brute force
p← Random(n) 〈〈choose a random pivot nut〉〉
pivot← Nuts[p]
Partition Bolts into B< < pivot and B> > pivot

〈〈Partition the nuts into N< < pivot and N> > pivot〉〉
for each i← [n] \ {p}

if IsSmaller(Bolts, Nuts[i], pivot) 〈〈If Nuts[i] is smaller than pivot〉〉
Add i to N<

else
Add i to N>

〈〈Recurse on the smaller and larger parts separately〉〉
L← InterleavedSort(N<, B<)
R← InterleavedSort(N>, B>)
return L, pivot, R

The subroutine IsSmaller repeatedly compares both nuts with a random bolt
until it finds a bolt that lies in between the two.

〈〈Is nut1 smaller than nut2?〉〉
IsSmaller(Bolts, nut1, nut2):

m← length(Bolts)
while True

r ← Random(m)
if nut1< Bolts[r] and Bolts[r]< nut2

return True
if nut1> Bolts[r] and Bolts[r]> nut2

return False

Runtime: First, we determine the expected running time of the IsSmaller
subroutine. For this, we note that in each iteration of the while loop, we choose
a bolt Bolts[r] uniformly at random. The probability (only over the choice of r)
that it lands between the nut and the pivot is given by |rank(pivot)−rank(nut)|/n,
where rank(·) denote the rank of a nut in the sorted order for the array Nuts.
For a given nut and pivot, the subroutine makes n/|rank(pivot) − rank(nut)|
comparisons in expectation, since we want to compute the expected number of
times we have to flip a biased coin until it comes up heads.

Now, consider the InterleavedSort algorithm. Note that partitioning the
bolts into B< and B> takes at most n+ 1 comparisons, while for a fixed pivot
nut with rank s = rank(pivot), the expected number of comparions to partition
the nuts into N< and N> is

s−1
∑

i=1

n
r − i

+
n
∑

i=s+1

n
i − s

= nHs−1 + nHn−s = O(n log n),

7

CS 473 Homework 4 Solutions Fall 2023

where as usual Hk denotes the kth harmonic number.
Now, let T (n) denote the expected running time of InterleavedSort when

the input array Nuts has size n. (Recall that the number of bolts is at most n+1.)
This function satifies the recurrence

T (n) = O(n log n) +Es[T (s− 1) + T (n− s)],

where Es denotes expectation over the rank s of the randomly chosen pivot
nut. This is the standard nuts and bolts recurrence that we saw in the lectures,
except that the time for one recursive call is O(n log n) instead of O(n). Thus,
InterleavedSort runs in O(n log2 n) expected time. ■

Solution (O(n logn) time): The main idea is to consider the nuts in random
order, and use each nut to partition a subset of the bolts. Without loss of
generality, assume that there are n nuts and n+ 1 bolts, so the smallest and
largest objects are both bolts.

The algorithm maintains an alternating sequence B0 < n1 < B1 < n2 < B2 <

n3 < · · · < nk < Bk, where each ni is a nut and each Bi is a non-empty subset
of the bolts, which we call a block. Every bolt is contained in exactly one block.
Each nut ni is larger than all bolts in Bi−1 and smaller than all bolts in block Bi .
It follows that for all i < j, every bolt in block Bi is smaller than every bolt in
block B j; howevre, we do not know the order of bolts within each block. Initially,
we have only a single block B0 containing all the bolts.

At each iteration, we choose a new random pivot nut n∗ and then proceed in
three phases:

• In the first phase, we perform a binary search to find two consecutive blocks
Bi and Bi+1, one of which contains bolts both larger and smaller than n∗.

FindBlocks(n∗) :
lo← 0
hi← k 〈〈number of blocks〉〉
while hi > lo+ 1

mid ← ⌊(lo+ hi)/2⌋
b← any bolt in Bmid (∗)
if b < n∗

hi← mid
else

lo← mid

return lo, hi

Regardless of which bolts we choose in line (∗), this binary search takes
O(log k) = O(log n) time in the worst case..

• In the second phase, we determine which of the two blocks Bi or Bi+1

contains both larger and smaller bolts than n∗. Initially, we know that Bi

contains at least one smaller bolt, and Bi+1 contains at least one larger bolt.
The algorithm alternately scans through the two blocks.
– If we find a bolt in Bi that is larger than n∗, then n∗ must split Bi

8

CS 473 Homework 4 Solutions Fall 2023

– If we find a bolt in Bi+1 that is smaller than n∗, then n∗ must split Bi+1

– If we completely scan either block without meeting either of the previous
conditions, then n∗ must split the larger of the two blocks.

The following pseudocode assumes each block is stored in an array; the
order that bolts are stored within each block is irrelevant.

WhichBlock(Bi , Bi+1, n∗):
for j← 1 to min{|Bi |, |Bi+1|}

if n∗ < Bi[j]
return Bi

if n∗ > Bi+1[j]
return Bi+1

if |Bi |> |Bi+1|
return Bi

else
return Bi+1

• Finally, in the third phase, we partition whichever block B we found in phase
two, by comparing every bolt in B with the pivot nut n∗. The overall running
time for the second and third phases is O(|B|).

The total worst-case time for all phase-one binary searches is O(n log n). It
remains only to bound the expected total time for the second and third phases.
Consider any block B that appears at any time during the algorithm. Because we
consider nuts in random order, the first pivot nut that splits B is equally likely to
be any of the nuts that split B. Thus, the total expected time spent on any block
of size m (excluding the binary searches) satisfies the recurrence

T (m) = Er[T (r) + T (m− r)] +O(m)

where Er denotes that the expectations is taken over the rank r of the first
nut that splits the block. This is the standard nuts and bolts recurrence, so
T (n) = O(n log n).

Adding the O(n log n) time for all binary searches, we conclude that this
algorithm runs in O(n logn) expected time. ■

Rubric: 8 points = 5 for the algorithm + 3 for a correct time analysis. Any algorithm that runs in
sub-quadratic expected time, that is, expected time O(n2−ϵ) time for some ϵ > 0, is worth full
credit. An O(n2)-time algorithm is worth at most 2 points. An algorithm that runs in O(n log n)
expected time is worth at most 13 points (full credit + 5 additional points).

These are not the only correct solutions. In particular, this is not the simplest O(n log n)-time
algorithm, but (as far as we can tell) simpler algorithms require more complex analysis.

9

CS 473 Homework 4 Solutions Fall 2023

3. Consider the following process for sampling a set of two distinct integers {i, j} that both lie
in the base interval [1, n]: first, we choose two non-overlapping sub-intervals I ∪ J of [1, n].
Then, we sample integers i ∈ I and j ∈ J uniformly at random from each sub-interval.

(a) Prove that the set {i, j} is is not uniformly distributed if we choose I and J to be fixed
intervals and n> 2.

Solution: Note that if n> 2, at least one of the two sub-intervals I or J must be
of size at least 2. Without loss of generality, say it is I . The probability that we
sample a set {i, j} where both i and j are in I , is zero for the above process. Thus,
the sample can not be uniformly distributed among all set of distinct integers of
[1, n], since it must have probability 1/

�n
2

�

otherwise. ■

Solution (rectangle ̸= triangle): Three are exactly
�n

2

�

unordered pairs {i, j},
each identified by an ordered pair (i, j) where i < j. These can be visualized as
the set of all entries in an n× n array that lie above the main diagonal, where i
is the row index and j is the column index.

Not consider arbitrary disjoint intervals I and J , where without loss of
generality both endpoints of I are smaller than both endpoints of J . The ordered
pairs (i, j) ∈ I × J comprise a rectangular subarray of our n× n array, which lies
entirely above the main diagonal.

Assuming n > 2, the rectangle I × J cannot contain every cell above the
main diagonal. In particular, I × J contains at most one of the n− 1 cells on the
diagonal j = i + 1.

J

I

■

Rubric: 2 points. For full credit, the justification must be valid for any two given intervals; at
most 1 point for giving a specific example.

10

CS 473 Homework 4 Solutions Fall 2023

(b) Prove that if we sample the integers i ∈ I and j ∈ J from the random sub-intervals
I ∪ J given by the described algorithm, then the set {i, j} is uniformly distributed
among all sets of two distinct integers in [1, n].

Solution: We first note that the algorithm does the following in each recursive
call where the length of the input interval is ℓ (which is always a power of two):

• With probability pL =
ℓ−2

4(ℓ−1) =
�

ℓ/2
2

�

/
�

ℓ
2

�

it recurses on the left sub-interval
with m= 2. This case happens when rol l ≤ ℓ− 2.

• With probability pLR =
ℓ

2(ℓ−1) =
�

ℓ/2
1

�2
/
�

ℓ
2

�

, it outputs I to be the left sub-
interval and J to be the right sub-interval of the current base interval [lo, hi].
This case happens when ℓ− 2< rol l ≤ 4ℓ− 2.

• With probability pR =
ℓ−2

4(ℓ−1) =
�

ℓ/2
2

�

/
�

ℓ
2

�

it recurses on the right sub-interval
with m= 2. This case happens when 3ℓ− 2< rol l ≤ 4ℓ− 4.

Define the following induction hypothesis: for any base interval [lo, hi] such
that the length ℓ = hi − lo + 1 is a power of two, and for any m ∈ {0, 1,2},
sampling one point from each of the m non-overlapping intervals outputted by
the algorithm SampleSubInterval(lo, hi, m) gives us a uniformly distributed
set of m distinct integers in the base interval [lo, hi].

The base case m = 0 is trivial. The case m = 1 is also trivial: since the
algorithm has to output only one uniform point from the base interval [lo, hi], it
suffices to output the whole interval.

For the case m= 2, let us compute the probability of sampling any fixed set
{i, j} by first sampling the non-overlapping intervals and then by sampling a
point from each interval uniformly. We consider three cases:

• {i, j} are both in left sub-interval of [lo, hi]. The probability of choosing
{i, j} in this case is

pL ·
1
�

ℓ/2
2

�
=

1
�

ℓ
2

�
,

where we used the induction hypothesis for the left sub-interval.
• i is in the left sub-interval and j is in in the right sub-interval. The

probability of choosing {i, j} in this case is

pLR ·
1
�

ℓ/2
1

�
·

1
�

ℓ/2
1

�
=

1
�

ℓ
2

�
.

• {i, j} are both in right sub-interval of [lo, hi]. This case is symmetric
with the first case.

Thus, {i, j} is distributed uniformly among all sets of two distinct integers of
[lo, hi] and taking lo = 1 and hi = n for the top-level recursive call, we get the
desired statement. ■

Rubric: 4 points.

11

CS 473 Homework 4 Solutions Fall 2023

(c) Show that the expected score of the pair of sub-intervals given by the above algorithm
is O(log n), which is close to optimal.

Solution: Note that the expected score only depends on the lengths of the base
interval and the sub-intervals and not their end points. That is, shifting the
sub-intervals or the base interval does not change the score. Let s(ℓ) denote the
expected score when the length of the base-interval [lo, hi] is ℓ. Consider the
three cases as before,

• With probability pL, the algorithm recurses on the left sub-interval with
m= 2. The expected score in this case is 2s(ℓ/2). The factor of 2 comes in
because to compute the score s(ℓ/2), the size of the interval is halved.

• With probability pLR, the algorithm outputs the left and right sub-intervals,
so the score in this case is

ℓ

ℓ/2
+
ℓ

ℓ/2
= 4.

• With probability pR, the algorihm recurses on the right sub-interval with
m= 2. The expected score in this case is 2s(ℓ/2) similar to the first case.

Overall, the expected score s(ℓ) satisfies the recurrence:

s(ℓ) = 4pLR + 2(pL + pR) · s(ℓ/2)

=
2ℓ
ℓ− 1

+
ℓ− 2
ℓ− 1

· s(ℓ/2)

≤ 4+ s(ℓ/2),

with the base case s(2) = 4. (The last inequality uses the fact that ℓ≥ 2, which
implies 2ℓ ≤ 4(ℓ− 1).) Unrolling this recurrence gives us s(ℓ) ≤ 4 logℓ. Thus,
for the initial interval [1, n], the expected score is O(log n). ■

Solution: The algorithm SampleSubInterval implicitly splits the interval 1 .. n]
into a balanced binary tree of 2n− 1 canonical intervals. Specifically, a canonical
interval is either the entire interval [1 .. n], or the left half or the right half of a
canonical interval.

Fix two canonical intervals I and J whose union I∪J is a canonical interval of
length n/2k ≥ 2. Let P(k) denote the probability that SampleSubInterval(1, n, 2)
actually returns the pair {I , J}. (Symmetry in he algorithm implies that P(k)
does not depend on the specific intervals I and J , but only on their length.)

Returning {I , J} requires the algorithm to recursively call itself k times, each
time in either the first or third cases of the main recurrence. Each of those
recursive calls has probability ℓ−2

4(ℓ−1) ≤ 1/4, so

P(k)≤
1
4k

.

(In the last inequality, we are using the fact that n/2k ≥ 2, so n− 2k ≥ n/2.)

12

CS 473 Homework 4 Solutions Fall 2023

The definition of score implies

score(I ∪ J) =
n

n/2k+1
+

n
n/2k+1

= 2k+2.

Finally, there are exactly 2k canonical intervals I ∪ J of length n/2k, for each k
from 0 to lg n− 1. We conclude that the overall expected score is

EI ,J[score(I , J)] =
∑

I ,J

Pr[I ∪ J] · score(I ∪ J)

=
lg n−1
∑

k=0

∑

I ,J : |I∪J |=n/2k

Pr[I ∪ J] · score(I ∪ J)

≤
lg n−1
∑

k=0

2k ·
1
4k
· 2k+2

=
lg n−1
∑

k=0

4

= 4 lg n.

■

Rubric: 4 points. These are not the only correct solutions.

13

CS 473 Homework 4 Solutions Fall 2023

(d) Extra Credit: Give a randomized algorithm to sample k non-overlapping intervals
of [1, n] such that (i) sampling one point from each interval given by the algorithm
results in a uniformly distributed set of k distinct integers in [1, n], and (ii) the
expected score of the intervals is within a O(log n) factor of the optimal score.

Solution: The algorithm is a straightforward generalization of the proposed
algorithm based on the following observation. Suppose we sample a set T of
size k from [1, n] distributed uniformly among all sets of size k. The probability
of choosing m elements from the left sub-interval and k−m elements from the
right sub-interval is exactly

pm =

�n/2
m

�� n/2
k−m

�

�n
k

� ,

for every j ∈ {0, 1, . . . , k}. The algorithm will first sample a random number
M ∈ {0,1, . . . , k} with the probabilities Pr[M = m] = pm as above, and then
recursively sample a set of size M and k−M from the left and right sub-intervals
respectively. The base case is again when the sets are of size 0 or 1 as in the
previous algorithm. Overall, the following is the pseudocode with the top-level
recursive call being SampleSubInterval(1, n, k).

SampleSubInterval(lo, hi, m):
if m= 0

return {}
if m= 1

return
�

[lo, hi]
	

ℓ← hi − lo+ 1 〈〈length of base interval〉〉
mid← ⌊(lo+ hi)/2⌋ 〈〈end of left half〉〉
Sample a random variable M ∈ {0, . . . , k} with Pr[M = m] = pm

Fl ← SampleSubInterval(lo,mid, M)
Fr ← SampleSubInterval(mid+ 1, hi, k−M)
return Fl ∪ Fr 〈〈Fl and Fr are sets of disjoint intervals〉〉

A very similar inductive proof as in part (b) generalized to an arbitray m
implies that the set obtained by sampling one element from each interval given
by the above algorithm is a uniformly distributed set of size k.

Expected Score Analysis. Next we compute its expected score s(ℓ, k) which is
given by the recurrence:

s(ℓ, k) = 2EM [s(ℓ/2, M) + s(ℓ/2, k−M)].

The first equality carries a factor of 2 because the length of the score is
measured with respect to a smaller interval of half the size when we recurse. Now
note that Pr[M = m] = Pr[k−M = m]. Thus, EM [s(ℓ/2, M)] = EM [s(ℓ/2, k−
M)], and we can simplify the recurrence to

s(ℓ, k) = 4EM [s(ℓ/2, M)]. (1)

14

CS 473 Homework 4 Solutions Fall 2023

We claim by induction that s(ℓ, k) ≤ (k2 − k) log(ℓ). The base case already
follows from the case k = 2 from part (c). So, from (1) and the induction
hypothesis, we obtain

s(ℓ, k)≤ 4EM [M
2 −M] log(ℓ/2). (2)

Claim: EM [M] = k/2 and EM [M2]≤ k(k+ 1)/4.

Proof of Claim: Let T be a uniformly random set of k elements from the base
interval of size ℓ. Note that M is the size of the intersection of T with the
left sub-interval L. We can write M as a sum of indicator random variables as
follows:

M =
∑

i∈L

[i ∈ T].

Note that Pr[i ∈ T] = k/ℓ. Since |L|= ℓ/2, we have

E[M] =
∑

i∈L

Pr[i ∈ T] = |L| ·
k
ℓ
=

k
2

.

Similarly,

E[M2] = E

�

�

∑

i∈L

[i ∈ T]
�2
�

=
∑

i∈L

Pr[i ∈ T] +
∑

i ̸= j∈L

Pr[i, j ∈ T]

= |L| ·
k
ℓ
+ |L|(|L| − 1) ·

k
ℓ
·

k− 1
ℓ− 1

≤
k
2
+

k(k− 1)
4

≤
k(k+ 1)

4
. □

Our claim and equation (2) imply that

s(ℓ, k) ≤ (k(k+ 1)− 2k) log(ℓ/2) ≤ (k2 − k) logℓ.

Hence, the expected score of the algorithm for the initial recursive call on [1, n]
is O(k2 logn).

Optimal Score. We claim that this expected score is within a O(log n) factor of
the optimal score. Consider any disjoint intervals I1, . . . , Ik with lengths ℓ!, . . . ,ℓk.
Disjointness implies

∑k
i=1 ℓi ≤ n, and by definition the score of these intervals is

n

� k
∑

i=1

1
ℓi

�

.

15

CS 473 Homework 4 Solutions Fall 2023

This sum of reciprocals is minimized when the numbers ℓi are all equal. Other-
wise, we can pick two arbitrary ℓi ’s that are not equal and replace them by their
average and the obtain a smaller value, since

1
a
+

1
b
≥

1
a+b

2

+
1

a+b
2

⇔ (a− b)2 ≥ 0.

Thus, the score of I1, . . . , Ik must be at least

n

� k
∑

i=1

k
n

�

≥ k2.

Remark: This algorithm and its analysis are presented in the following paper:
[1] Shachar Lovett and Jiapeng Zhang. Streaming lower bounds and asymmetric
set disjointness. Proc. 64th FOCS, 871–882, 2023. arXiv:2301.05658. ■

Rubric: 10 points: 3 for the algorithm + 4 for the expected score analysis + 3 for proving the
expected score is within a O(log n) factor of optimal.

16

10.1109/FOCS57990.2023.00056
10.1109/FOCS57990.2023.00056
https://arxiv.org/abs/2301.05658

