CS 473

Homework 2 Solutions Fall 2023

Standard dynamic programming rubric. 10 points =

* 3 pointsforaclearand correct English description of the recursive function(s) you are trying to evaluate.

* 4 points for a correct recurrence, described either using mathematical notation or as pseudocode for a

(Otherwise, we don’t even know what you’re trying to do.)
— 1 for naming the function “OPT” or “DP” or any single letter.
— No credit if the description is inconsistent with the recurrence.

— No credit if the description does not explicitly describe how the function value depends on the
named input parameters.

— No credit if the description refers to internal states of the eventual dynamic programming
algorithm, like “the current index” or “the best score so far”. The function must have a well-
defined value that depends only on its input parameters (and constant global variables).

— An English explanation of the recurrence or algorithm does not qualify. We want a specification
of what your function is supposed to return, not (here) an explanation of how that value is
computed.

recursive backtracking algorithm.
+ 1 for base case(s). —"2 for one minor bug, like a typo or an off-by-one error.
+ 3 for recursive case(s). —1 for each minor bug, like a typo or an off-by-one error.
— 2 for greedy optimizations without proof, even if they are correct.

— No credit for iterative details if the recursive case(s) are incorrect.

3 points for iterative details
+ 1 for describing an appropriate memoization data structure (not a hash table).

+ 1 for describing a correct evaluation order; a clear picture is usually sufficient. If you use nested
for loops, be sure to specify the nesting order. (In particular, if you draw a rectangle for a 2d
array, be sure to label and direct the row and column indices.)

+ 1 for correct time analysis. (It is not necessary to state a space bound.)

For problems that ask for an algorithm that computes an optimal structure—such as a subset, partition,
subsequence, or tree—an algorithm that computes only the value or cost of the optimal structure is
sufficient for full credit, unless the problem specifically says otherwise.

Iterative pseudocode is not required for full credit, provided the other details of your solution are clear
and correct.

If your solution does includes iterative pseudocode, you do not need to separately describe the
recurrence, memoization structure, or evaluation order. But you do still need and English description
of the underlying recursive function (or equivalently, the contents of the memoization structure).
Perfectly correct iterative pseudocode that fills an array named “dp”, with no explanation or time
analysis, is worth at most 5 points out of 10.

Partial credit for incomplete solutions depends on the running time of the best possible completion
(up to the target running time). For example, consider a solution that contains only a clear English
description of a function, with no recurrence or iterative details. If the described function can be
developed into an algorithm with the target running time, the solution is worth 3 points; however,
if the function leads to an algorithm that is slower than the target time by a factor of n, the solution
could be worth only 2 points (= 70% of 3, rounded).

CS 473 Homework 2 Solutions Fall 2023

1. (a) Describe and analyze an algorithm to determine whether one array P[1..k] occurs as
two disjoint subsequences of another array T[1..n].

Solution: To simplify the following case analysis, we add a sentinel character
P[0] = # that does not appear anywhere else in X or Y.

For any indices i, j, and £, we defined a boolean value DisSS(i, j,£), which is
TrUE if the prefixes P[1..i] and P[1..j] occur as disjoint subsequences of the
prefix T[1..£], and FALSE otherwise. We need to compute DisSS(k, k, n).

This function satisfies the following recurrence:

(TRUE ifi=0and j=0
FALSE ifi+j>4(
DisSS(i, j,€) = | DisSS(i, j, £ — 1)

Vv ((T[¢]=P[i]) A DisSS(i—1,j,—1)) otherwise

v ((T[¢]1=P[j]) A DisSS(i,j—1,£ —1))

We can memoize this function into a 3-dimensional array DisSS[0..k,0..k,0..n].
Each entry DisSS[i, j,£] depends only on entries of the form DisSS[-,-,£ — 1].
Thus, we can fill the array with three nested for loops, increasing £ in the
outermost loop, and considering i and j in arbitrary order in the inner loops.
The resulting algorithm runs in O(nk?2) time.

DisSS(P[1..k],T[1..n]):
P[0O] « #
for{ —0ton
fori < 0tok
for j«—0to k
ifi+j=0
DisSS[0,0,{] « TRUE
elseifi+j>4{
DisSS[i,j,{] < FALSE
else
DisSS[i,j,0] « DisSS[i,j,£—1]
v ((T[¢]=P[i]) A DisSS[i —1,j,¢—1])
v ((T[¢]=P[j] A DisSS[i,j—1,£—1])

return DisSS[k, k, n]

I chose to recuse on prefixes here because that makes the final for-loops run
in increasing order. If instead I defined DisSS(i, j,{) to be TRUE if the suffixes
P[i..k]and P[j..k] occur as disjoint subsequences of the suffix T[£..n], I would
get an equivalent dynamic programming algorithm with backward loops, with
exactly the same running time. [|

Rubric: 5 points: standard dynamic programming rubric

CS 473 Homework 2 Solutions Fall 2023

(b) Describe and analyze an algorithm to compute the number of occurrences of one
array P[1..k] as a subsequence of another array T[1..n].

Solution: For any indices i and j, let NumSS(i, j) denote the number of times
the prefix P[1..i] appears as a subsequence of the prefix T[1..j]. We need to
compute NumSS(k,n). This function obeys the following recurrence:

1 ifi=0
NumSS(i) ifi >j
umSS(i,j) =
7=\ Numss(i, i —1) if P[i] # T[j]

NumSS(i,j—1)+NumSS(i—1,j—1) if P[i]= T[j]

These cases my require some explanation.

* The objects we are actually counting are functions f: {1,2,...,i} —
{1,2,...,j}such that f({)> f({ —1)and P[{]=T[f({)] forall 1 < ¢ <i.
For any set S, there is exactly one function f: @& — S: the empty func-
tion! This function vacuously satisfies whatever condition you want for all
1 < (¢ <0. Also, 1 is the only value for NumSS(0, j) that actually makes the
recurrence correct.

e If P[i] = T[j], then either each occurrence of P[1..i] as a subsequence
of T[1..j] either includes T[j] or omits T[j], and these two choices are
exclusive. If P[i] # T[j], then each occurrence of P[1..i] as a subsequence
of T[1..j] definitely excludes T[j].

We can memoize this function into an array NumSS[0..k,0..n]. Each entry
NumSS[i, j] depends only on entries NumSS[-, j — 1] in the previous column, so
we can fill the array using two nested loops, considering j in increasing order
in the outer loop and considering i in arbitrary order in the inner loop. The
resulting algorithm runs in O(nk) time.

NumSS(P[1..k],T[1..n]):
forj«<0Oton
NumSS[0, j] < TRUE
fori «1tok
ifi>j
NumSS[i, j] < FALSE
else if P[i]=T[j]
NumSS[i,j] < NumSS[i,j— 1]+ NumSS[i—1,j—1]
else
NumSS[i, j] < NumSS[i,j—1]
return NumSS[k, n]

Rubric: 5 points: standard dynamic programming rubric

CS 473 Homework 2 Solutions Fall 2023

2. Describe and analyze an algorithm to load the ferry as lightly as possible. [See the
homework handout for a detailed problem statement]

Solution: Let L be the given ferry length, and let len[1..n] be the given length array.

For any integers a, b, ¢, and m, let Ferry(a, b, c, m) denote the minimum number
of cars that can be loaded onto the ferry if

* lane 1 has a meters available,

* lane 2 has b meters available,

¢ lane 3 has ¢ meters available, and

 there are n —m + 1 cars in the queue with lengths len[m..n].

We need to compute Ferry(L, L, L, 1). This function satisfies the following recurrence:

Ferry(a, b, c,m)
(0 ifm>n
0 if len[m] > max{a, b, c}
:<0° ifa<Oorb<Oorc<O0

Ferry(a—len[m], b, ¢, m+1)
1+ min < Ferry(a, b—len[m], ¢, m+1) otherwise

\ Ferry(a, b, c—len[m], m+1)

We can memoize this function into an L x L x L x n array. We can fill this array in
constant time per entry by decreasing the fourth index in the outermost loop, and
considering the other three indices in any order in the inner loops. The resulting
algorithm runs in at most O(L3n) time. [|

Rubric: 10 points: standard dynamic programming rubric. This is not the only correct evaluation
order for this recurrence. This is not the only correct solution with this running time. There are several
small improvements that are worth extra credit; see below. (Similar improvements apply to other
solutions.)

Solution (+2 extra credit): Because the length of each vehicle is a positive integer,
at most 3L vehicles can fit on the ferry. So if n > 3L, we can consider only the first 3L
cars. This change improves the running time of our algorithm to O(min{L3n, L*}). m

Solution (43 extra credit): We can speed up the previous algorithm by observing
that in every recursive invocation of the Ferry function, the arguments satisfy the
following identity:

m—1

3L—a—b—c= Zlen[i].

i=1
Both sides of this equation equal the total length of the first m — 1 vehicles. Thus, one
of the parameters of our recurrence is redundant. For any integers a, b, and m, let

CS 473 Homework 2 Solutions Fall 2023

Ferry2(a, b, m) denote the minimum number of cars that can be loaded onto the ferry
under the following conditions:

* lane 1 has a meters available,

* lane 2 has b meters available,

e lanezhas3L—a—b— Z:n:_ll len[i] meters available, and
 there are n —m + 1 cars in the queue with lengths len[m..n].

We need to compute Ferry2(L, L, 1). As a helper function, for any integer 0 < i < n, let
TotalLen(i) be the total length of the first i vehicles; this function obeys the following
simple recurrence:

_ 0 ifi=0
TotalLen(i) = _))
TotalLen(i — 1) +len[i] otherwise

We can memoize this function into a one-dimensional array TotalLen[0..n]; we can
easily fill this array in O(n) time from left to right.

Now the Ferry2 function obeys the following recurrence:

Ferry2(a, b, m)

0 ifm>n
0 if len[m] > max{a, b, c}
=<00 ifa<O0orb<Oorc<O0

Ferry2(a —len[m], b, m+1)
1+ min < Ferry2(a, b—len[m], m+1) otherwise
Ferry2(a, b, m+1)
where ¢ = 3L —a — b — TotalLen(m — 1)

We can memoize Ferry2 into an L x L x n array. Once the TotalLen array is filled, we
can fill the Ferry2 array in constant time per entry by decreasing the third index in the
outermost loop, and considering the other two indices in any order in the inner loops.
The resulting improved algorithm runs in O(L?n) time. |

Solution (+3 extra credit): We can speed up the previous algorithm by observing
that in every recursive invocation of the Ferry function, the arguments satisfy the
following identity:

m—1
3L—a—b—c= Zlen[i].
i=1

Both sides of this equation equal the total length of the first m — 1 vehicles. Thus, one
of the parameters of our recurrence is redundant.

For any integers a, b, and m, let Ferry3(a, b, c) denote the minimum number of
cars that can be loaded onto the ferry when lane 1 has a meters available, lane 2

CS 473 Homework 2 Solutions Fall 2023

has b meters available, and lane 3 has ¢ meters available. We need to compute
Ferry3(L,L,L).

Our algorithm will infer which car is at the front of the queue from the values
of a, b, and c using the equation above. Specifically, at the start of the algorithm,
we build an integer array NextLen[0..3L] such that if NextLen[a + b + c] > 0, then
NextLen[a + b + c] is the length of the car the front of the queue. This subroutine runs
in O(L) time:

INITNEXTLEN(len[1..n]):
fori«1to3L
NextLen[i] < 0
space < 3L
fori—1ton
NextLen[space] « len[i]
space « space — len[i]
if space < 0
break
return NextLen[1..3L]

Once the NextLen array is filled, the Ferry3 function obeys the following recurrence:

Ferry3(a, b, c)

0 ifa+b+c=0

o) if NextLen[a+ b+c¢] =0
:<OO ifa<Oorb<Oorc<o0

Ferry2(a—{, b, c)
1+ min < Ferry2(a, b—{, c) otherwise, where ¢ = NextLen[a + b + c]

Ferry2(a, b, c—1{)

We can memoize Ferry3 into an L x L x L, array. We can fill the Ferry3 array in constant
time per entry using three nested loops, each of which decreases one of the array
indices. The resulting improved algorithm runs in O(L3) time. [|

Solution (+5 extra credit): Because the length of each vehicle is a positive integer,
at most 3L vehicles can fit on the ferry. So if n > 3L, we can consider only the first 3L
cars. This change improves the running time of our algorithm to O(min{L?n,L3}). m

CS 473 Homework 2 Solutions Fall 2023

Non-solution: Neither of the natural greedy strategies for filling the ferry lead to
optimal assignments:

* Put each vehicle into the lane with the least available space: Consider the
input L =6 and len =[1,1,1,6,6].
— The greedy strategy fits all five vehicles onto the ferry, without loss of
generality in lanes 1,1,1,2, 3.
— The optimal assignment loads the first three cars into three different lanes,
after which the fourth vehicle doesn’t fit anywhere.
e Put each vehicle into the lane with the most available space: Consider the
input L =12 and len =[1,2,3,4,5,6,7].
— The greedy algorithm loads all seven vehicles onto the ferry, without loss of
generality in lanes 1,2,3,1,2,3, 1.
— The optimal assignment loads the first six cars into lanes 1, 2,3, 3,2, 1, after
which the seventh vehicle doesn’t fit anywhere.

L]

CS 473 Homework 2 Solutions Fall 2023

3. Fix a sorted array Coin[1..n] of distinct positive integer coin values. For any integers k
and T, let Change(T, k) = TRuUE if some collection of exactly k coins (possibly including
multiple coins with the same value) has total value T, and FALSE otherwise.

(@) Describe a recurrence for Change(T, k) in terms of Change(T, k/2). (Assume k is a
power of 2.)

Solution: In the recursive case, we consider all possible ways of splitting k coins
with total value T into two subsets of k/2 coins. The base case is a boolean
expression, not an assignment.

(T = Coin[i] for some 1) ifk=1
Change(T, k) :=1 .T

\/ (Change(S, k/2) A Change(T —S, k/2)) otherwise

S=0

Rubric: 3 points

(b) Describe an efficient algorithm to compute Change(T, k), given the array Coin[1..n],
the target total T, and the allowed number of coins k as input. Analyze your algorithm
as a function of the parameters n, T, and k.

Solution: First, we can memoize the function Change into a two-dimensional
array ChangeLog[0..T,0.. log, k], where each entry ChangeLog[S, i] stores the
value Change[S,2!]. We can fill this array in standard column-major order,
increasing the second index i in the outer loop and considering the first index S
in any order in the inner loop. Initializing the initial row ChangeLog]-, 0] takes
O(T) time, and filling each later row by brute force takes O(T?) time, so the
overall algorithm runs in O(T?logk) time.

We can improve this algorithm further by observing that the recurrence in
part (a) is essentially a convolution; the only differences are that (1) we only
care about boolean values, not integers, and (2) we don’t care about values of
Change(S, k) where S > T. For any index £ > 0, we can compute ChangeLogl[-, {]
by invoking the following subroutine on two copies of ChangeLog[-,{ —1]:

CLipPEDBOOLEANCONV(A[O..n],B[0..n]):
C—AxB ((standard convolution using FFTs))
fori —O0ton

if C[i]>0
Cl[i]«1
return C[0..n]

This subroutine runs in O(T log T) time, so the overall algorithm now runs in
O(T log T logk) time. [|

Rubric: 7 points = 4 for naive dynamic programming algorithm (2 for smaller array + 1 for
evaluation order + 1 for running time) + 3 for convolution speedup

CS 473

Homework 2 Solutions Fall 2023

(c) Extra credit: Describe an efficient algorithm to compute the smallest number of coins
with total value T.

You may assume that there is at least one collection of coins with total value T.
Ideally, your algorithm should have exactly the same big-Oh running time as your
algorithm for part (b), where now k is the output value (which is not necessarily a
power of 2).

Solution: One immediate solution is a simple linear search for the smallest k
such that Change(T, k) = TRUE, using the algorithm from part (b) at each
iteration. The linear search requires k iterations, so this algorithm runs in
O(TklogT logk) time.

The first improvement idea is to replace the linear search with a binary search.
We can’t do this directly using the function Change(T, k), because that function
is not monotone in k; instead, we use the following closely related function

Change_(T, k) = TRUE if some collection of at most k coins has total
value T, and FALSE otherwise.

The function Change. satisfies a nearly identical recurrence to our original
function Change; the only difference is in the simplest base case!

(T =0) or (T = Coin[i] for some i) ifk=1
Change(T, k) :=+{ T

\/ (ChangeS(S, k/2) A Change(T —S, k/2)) otherwise

5=0

Adapting our algorithm from part (b) to compute Change(T, k) in O(T log T log k)
time is straightforward. Now we can find the smallest k such that Change_(T, k) =

TRUE using binary search over the range 1 < k < T, invoking our modified deci-
sion algorithm at each iteration. Our binary search requires O(log T) iterations,

so the resulting algorithm runs in O(T log? T log k) time.

We can reduce the number of iterations from O(log T) to O(logk) using
exponential search. We first find the smallest integer £ such that Change(T, 2ty =
TRUE. Because 27! < k < 2¢, we consider only [log, k] different values of ¢.
Then we perform a binary search within the range 2! < k < 2¢ for the smallest
integer k such that Change_(T,k) = TRUE, again considering only O(logk)
different values of k. Altogether, we invoke our decision algorithm only O(log k)
times, not O(log L), so the overall algorithm runs in O(T log T log? k) time.

Finally, we can reuse information computed in earlier invocations of the
decision algorithm in later invocations. We use a simple generalization of the
recurrence from part (a):

T
Change(T,x +y) := \/ (ChangeS(S,x) A Change(T —S,y))
5=0

Specifically:

CS 473

Homework 2 Solutions Fall 2023

* In the exponential phase, we can compute Change (-, 29) from Change_(-, G
using a single convolution in O(T log T) time.

¢ In each iteration of the binary search, the length of the active search interval
lo < k < hi is always a power of 2. Suppose hi —lo = 2°, so the midpoint of
the interval is mid = lo + 2°~'. We computed Change(-,2°"1) during the
exponential phase, and we computed Change(-,lo) in an earlier iteration
of the binary search, so we can compute Change(-,mid) using a single
convolution in O(T log T) time.

Our overall algorithm uses only O(logk) convolutions, and therefore runs in
O(T log T log k) time, matching our algorithm from part (b). []

This algorithm was described by Timothy Chan and Qizheng He [1], who were
inspired by a CS 473 homework problem posed by Sariel Har-Peled [3]. (I think
Qizheng was a student in Sariel’s 473.) A similar idea was published earlier
by Oliver Serang [4]. Chan and He describe even faster algorithms that solve
the decision problem in O(T log T) worst-case time and the minimum-coins
problem in O(T log T loglog T') worst-case time and O(T log T') expected time;
their followup paper [2] describes several further extensions.

[1] Timothy Chan and Qizheng He. On the change-making problem. Proc. 3rd
SIAM Symposium on Simplicity in Algorithms, 38-42, 2020.

[2] Timothy Chan and Qizheng He. More on change-making and related prob-
lems. J. Computer and System Sciences 124:159-169, 2022.

[3] Sariel Har-Peled. Absolutely not subset sum. CS 473 homework 3 problem 2,
Fall 2018.

[4] Oliver Serang. The probabilistic convolution tree: Efficient exact Bayesian
inference for faster LC-MS/MS protein inference. PLOS ONE 9(3):e91507,
2014.

10

https://tmc.web.engr.illinois.edu/coin_sosa.pdf
https://doi.org/10.1016/j.jcss.2021.09.005
https://doi.org/10.1016/j.jcss.2021.09.005
https://courses.engr.illinois.edu/cs473/fa2018/hw/hw_03.pdf
https://doi.org/10.1371/journal.pone.0091507
https://doi.org/10.1371/journal.pone.0091507

