
CS 473 “Homework” 11 (“due” December 10, 2024) Fall 2024

1. Alex and Bo are playing another game with even more complex rules. Each player
independently chooses an integer between 0 and n, then both players simultaneously
reveal their choices, and finally they get points based on those choices.

Chris and Dylan are watching the game, but they don’t really understand the scoring
rules, so instead, they decide to place bets on the sum of Alex and Bo’s choices. They both
somehow know the probabilities that Alex and Bo use, and they want to figure out the
probability of each possible sum.

Suppose Chris and Dylan are given a pair of arrays A[0 .. n] and B[0 .. n], where A[i] is
the probability that Alex chooses i, and B[j] is the probability that Bo chooses j. Describe
and analyze an algorithm that computes an array P[0 .. 2n], where P[k] is the probability
that the sum of Alex and Bo’s choices is equal to k.

Solution: For each index k, we have

P[k] =
∑

i+ j=k

A[i] · B[j].

In other words, P is the convolution of A and B. So we can compute P in O(n logn)
time using Fast Fourier transforms. ■

1

http://www.umop.com/rps15.htm

CS 473 “Homework” 11 (“due” December 10, 2024) Fall 2024

2. Suppose you are given an arbitrary directed graph G = (V, E) with arbitrary edge weights
ℓ: E → R. Each edge in G is colored either red, white, or blue to indicate how you are
permitted to modify its weight:

• You may increase, but not decrease, the length of any red edge.

• You may decrease, but not increase, the length of any blue edge.

• You may not change the length of any black edge.

The cycle nullification problem asks whether it is possible to modify the edge weights—
subject to these color constraints—so that every cycle in G has length 0. Both the given
weights and the new weights of the individual edges can be positive, negative, or zero. To
keep the following problems simple, assume that G is strongly connected.

(a) Describe a linear program that is feasible if and only if it is possible to make every
cycle in G have length 0. [Hint: Pick an arbitrary vertex s, and let dist(v) denote the
length of every walk from s to v.]

Solution: Our linear program is based on the following observation, suggested
by the hint: All cycles in G have length 0 if and only if, for all vertices s
and t of G, all walks in G from s to t have the same length.

⇒ Suppose all cycles in G have length 0. Fix two vertices s and t. Let α and β
be any two walks from s to t, and let γ be any walk from t to s (which must
exist because G is strongly connected). The closed walks α · γ and β · γ are
composed of cycles and therefore have length zero. Thus α and β have the
same length, namely the negation of the length of γ. We conclude that all
walks from s to t have the same length.

⇐ Suppose for all vertices s and t, all walks from s to t have equal length.
Then in particular, for every vertex s, every closed walk through s has the
same length, including the trivial walk with no edges. Thus, every closed
walk in G (and in particular every cycle in G) has length zero.

Fix an arbitrary vertex s. The following linear program has a variable dist(v) for
every vertex v, which represents the length of every walk from s to v with respect
to the new edge lengths.

maximize 0

subject to dist(v)− dist(u) ≥ ℓ(u�v) for every red edge u�v

dist(v)− dist(u) = ℓ(u�v) for every black edge u�v

dist(v)− dist(u) ≤ ℓ(u�v) for every blue edge u�v

dist(s) = 0

Because we only care about feasibility, the objective function doesn’t actually
matter here; the objective function 0 is convenient for part (b). (For the same
reason, the last constraint dist(s) = 0 is actually redundant.) ■

2

CS 473 “Homework” 11 (“due” December 10, 2024) Fall 2024

(b) Construct the dual of the linear program from part (a). [Hint: Choose a convenient
objective function for your primal LP.]

Solution: We have a dual variable f (u�v) for each edge u�v, corresponding
to the primal constraints.

minimize
∑

u�v

f (u�v) · ℓ(u�v)

subject to
∑

u�v

f (u�v)−
∑

v�w

f (v�w) = 0 for every vertex v ̸= s

f (u�v) ≤ 0 for every red edge u�v

f (u�v) ≥ 0 for every blue edge u�v

I called the dual variable f because the vertex constraints look like flow conser-
vation; that’s also why I chose the primal objective vector 0.

(If we omit the redundant constraint dist(s) = 0 from the primal LP in part (a),
the dual LP includes a redundant conservation constraint at s.) ■

(c) Give a self-contained description of the combinatorial problem encoded by the dual
linear program from part (b). Do not use the words “linear”, “program”, or “dual”.
Yes, you have seen this problem before.

Solution: Let H be the graph obtained from G by inserting the reversal v�u
of every black or red edge u�v, defining ℓ(v�u) = −ℓ(u�v) for each reversed
edge, and then deleting every original red edge. The dual LP describes an
uncapacitated minimum-cost flow problem in H.

I claim that all cycles in G can be nullified if and only if H does not contain
a negative cycle. This claim follows immediately from the observation that our
linear program from part (a) is infeasible if and only if its dual linear program
from part (b) is unbounded.

We can also give a self-contained proof as follows. As usual, the proof has
two parts.

⇒ Suppose all cycles in G can be nullified. Let ℓ′ : E→ R be any new length
function such that all cycles in G have length 0. Our proof in part (a) implies
that for every pair of vertices s and t, all walks from s to t have the same
length. Fix an arbitrary vertex s in G, and then for each vertex v, let dist′(v)
denote the common length of every walk from s to v in G with respect
to the new edge lengths ℓ′. The distances dist′(v) are the components of
the optimal solution to our LP from part (a). Think of each dist′(v) as an
estimated shortest-path distance in H;

To prove that H has no negative cycles (with respect to the original edge
lengths ℓ), it suffices to show that no edge in H is tense (with respect to the
distances dist′). Let u�v be an arbitrary edge in H; there are two cases to
consider:

3

CS 473 “Homework” 11 (“due” December 10, 2024) Fall 2024

– If u�v is a (blue or black) edge in G, then

dist′(v)− dist′(u) = ℓ′(u�v) ≤ ℓ(u�v),

which means u�v is not tense in H.
– If v�u is a (red or black) edge in G, then

dist′(u)− dist′(v) = ℓ′(v�u) ≥ ℓ(v�u) = −ℓ(u�v)

and thus dist′(v)− dist′(u) ≤ ℓ(u�v), which means u�v is not tense
in H.

⇐ Now suppose H does not contain a negative cycle. Then shortest-path
distances in H are well-defined. Add a new vertex ŝ with zero-length edges
to every vertex in H, and then for each vertex v, let dist(v) denote the
shortest-path distance from ŝ to v in H. (We need the extra vertex ŝ because
there might be no vertex that can reach every other vertex in H, even though
the original graph G is strongly connected.) Finally, for every edge u�v
in G, define ℓ′(u�v) := dist(v)− dist(u).

Let u�v be an arbitrary edge in G. We need to verify that ℓ′(u�v) is at
least, at most, or equal to ℓ(u�v), depending on the color of u�v. There
are three cases to consider.
– If u�v is blue or black, then ℓ′(u�v) = dist(v) − dist(u) ≤ ℓ(u�v)

because u�v is not tense in H.
– Symmetrically, if u�v is red or black, then ℓ′(u�v) = dist(v)−dist(u)≥
−ℓ(v�u) = ℓ(u�v) because v�u is not tense in H.

– Thus, if u�v is black, then ℓ′(u�v) = ℓ(u�v).
We conclude that all new edge lengths are consistent with the edge colors.

Finally, every cycle v0�v1� . . .�vk−1�v0 in G has length zero, because

k−1
∑

i=0

ℓ′(vi�vi+1 mod k) =
k−1
∑

i=0

�

dist(vi+1 mod k)− dist(vi)
�

= 0.

(Each term dist(vi) appears once positively and once negatively in the second
sum.) ■

(d) Describe and analyze a self-contained algorithm to determine in O(EV) time whether
it is possible to make every cycle in G have length 0, using your dual formulation
from part (c). Do not use the words “linear”, “program”, or “dual”.

Solution: We can construct the graph H in O(V+E) time, and then find negative
cycles in H using a modification of the Bellman-Ford shortest-path algorithm, as
described in the textbook, in O(V E) time. ■

4

CS 473 “Homework” 11 (“due” December 10, 2024) Fall 2024

3. Your eight-year-old cousin Elmo decides to teach his favorite new card game to his baby
sister Daisy. At the beginning of the game, n cards are dealt face up in a long row. Each
card is worth some number of points, which may be positive, negative, or zero. Then Elmo
and Daisy take turns removing either the leftmost or rightmost card from the row, until all
the cards are gone. At each turn, each player can decide which of the two cards to take.
When the game ends, the player that has collected the most points wins.

Daisy isn’t old enough to get this whole “strategy” thing; she’s just happy to play with
her big brother. When it’s her turn, she takes the either leftmost card or the rightmost card,
each with probability 1/2.

Elmo, on the other hand, really wants to win. Having never taken an algorithms class,
he follows the obvious greedy strategy—when it’s his turn, Elmo always takes the card with
the higher point value.

Describe and analyze an algorithm to determine Elmo’s expected score, given the initial
sequence of n cards as input. Assume Elmo moves first, and that no two cards have the
same value.

Solution: Let C[1 .. n] be the input card values. Assume all card values are distinct
(since otherwise we don’t know how Elmo plays).

For any indices i and j, let EES(i, j) denote Elmo’s Expected Score if Elmo plays
first, starting with the cards C[i .. j]. We need to compute EES(1, n). This function
obeys the recurrence

EES(i, j) =

0 if i > j

C[i] if i = j

C[i] +
EES(i + 1, j − 1) + EES(i + 2, j)

2
if i < j and C[i]> C[j]

C[j] +
EES(i + 1, j − 1) + EES(i, j − 2)

2
if i < j and C[i]< C[j]

This recurrence can be memoized into a two-dimensional array EES[1 .. n, 1 .. n], which
we index by i and j. We can fill the array by decreasing i in the outer loop and
increasing j in the inner loop, in O(n2) time. ■

5

CS 473 “Homework” 11 (“due” December 10, 2024) Fall 2024

4. You are attending a gala on the planet Krypton which k people are attending. There are
n days in a Kryptonian year. Assume that the birthday of each person is on a uniformly
random day in the year (and birthdays of different people are independent). We say that a
triple-collision occurs whenever three people have the same birthday.

Find a threshold value k∗ for triple collisions. In other words, (i) if k = o(k∗)m the
probability of having any triple collision is o(1), and (ii) if k =ω(k∗), the probability of
having a triple collision is 1− o(1).1

(a) Guess a threshold value k∗. You will prove its validity in parts (b) and (c) below.

Solution: For each triple p, let Xp = 1 if all three people in p have the same
birthday. We immediately have

E[Xp] = n ·
1
n3
=

1
n2

.

Let X =
∑

p Xp denote the total number of triple collisions. Linearity of
expectation implies

E[X] =
∑

p

E[Xp] =
�

k
3

�

1
n2
≤

k3

n2
.

Based on this we should guess k∗ = n2/3 . Then if k = o(k∗), we have

E[X]≤
k3

n2
=

o((k∗)3)
n2

=
o((n2/3)3)

n2
=

o(n2)
n2

= o(1),

and symmetrically if k =ω(k∗), we have E[X] =ω(1). We will prove that this
intuition is correct in the remaining parts. ■

(b) Prove that probability of having any triple collision is o(1) when k = o(k∗). That is, if
k = ck∗, the probability approaches 0 as c approaches 0.

Solution: Suppose k = ck∗ where c→ 0. Them Markov’s inequality implies

Pr[X ≥ 1]≤ E[X] = c3 (k
∗)3

n2
= c3→ 0.

■

1Recall that f (n) = o(g(n)) means that limn→∞
f (n)
g(n) = 0 and f (n) =ω(g(n)) means that limn→∞

f (n)
g(n) =∞

6

CS 473 “Homework” 11 (“due” December 10, 2024) Fall 2024

(c) Show that for any non-negative integer random variable X , we have

Pr[X = 0]≤
E[(X − E[X])2]

E[X]2
.

Solution: For any non-negative integer random variable X , we have

Pr[X = 0]≤ Pr
�

(X − E[X])2 ≥ E[X]2
�

,

because the event on the right contains the event on the left. Applying Markov’s
inequality to the random variable (X − E[X])2 gives us

Pr[X = 0] ≤ Pr
�

(X − E[X])2 ≥ E[X]2
�

≤
E[(X − E[X])2]

E[X]2
.

The quantity E[(X − E[X])2] is called the variance of X ; from now on we will
abbreviate

Var[X] = E[(X − E[X])2] = E[X 2]− E[X]2.

■

(d) Using part (c), prove that probability of having any triple collisions is 1− o(1) when
k =ω(k∗). That is, if k = ck∗, the probability approaches 1 as c gets arbitrarily large.

Solution: Let X be the total number of triples with triple-collisions as defined
in part (a) above. By part (b) we know that E[X] = Θ(k3/n2), so we compute
the variance

Var(X) =
∑

p

(E[X 2
p]− E[Xp]

2) +
∑

p ̸=q

(E[XpXq]− E[Xp]E[Xq])

=
∑

p

Var(Xp) +
∑

p ̸=q

(E[XpXq]− E[Xp]E[Xq]).

The first of these sums is easy to bound. For each triple p, we have

Var(Xp) = E[X 2
p]− E[Xp]

2 =
1
n2
−

1
n4
≤

1
n2

It follows that
∑

p Var(Xp)≤
�k

3

�

/n2 = O(k3/n2).
To bound the other sum, consider two arbitrary triples p and q; there are

three cases to consider:

i. Suppose p ∩ q =∅. In this case Xp and Xq are independent, which implies
E[XpXq]− E[Xp]E[Xq] = 0.

ii. Suppose |p ∩ q| = 1. Then XpXq = 1 if and only if all five people in p ∪ q
have the same birthday, so

E[XpXq]− E[Xp]E[Xq] = n ·
1
n5
−

1
n2
·

1
n2
= 0.

7

CS 473 “Homework” 11 (“due” December 10, 2024) Fall 2024

iii. Finally, suppose |p ∩ q|= 2. Then XpXq = 1 if and only if all four people in
p ∪ q have the same birthday, so

E[XpXq]− E[Xp]E[Xq] = n ·
1
n4
−

1
n2
·

1
n2
=

1
n3
−

1
n4
= O

�

1
n3

�

There are O(k4) pairs p, q such that |p ∩ q|= 2—for each set of four people,
there are 12= O(1) ways to cover that set with two triples.

We conclude that

∑

p ̸=q

(E[XpXq]− E[Xp]E[Xq]) = O

�

k4

n3

�

.

and therefore
Var(X) = O(k3/n2 + k4/n3).

Thus, the inequality from part (c) implies

Pr[X = 0]≤
Var[X]
E[X]2

=
O(k3/n2 + k4/n3)
Θ(k6/n4)

= O
�

n2/k3 + n/k2
�

Finally, if k = ck∗ = cn2/3, we have

Pr[X = 0] ≤ O
�

n2/k3 + n/k2
�

= O
�

1/c + 1/cn1/3
�

,

which approaches to 0 as c→∞. ■

8

CS 473 “Homework” 11 (“due” December 10, 2024) Fall 2024

5. A synchronous optical network (SONET) ring is an undirected cycle with n nodes, numbered
consecutively from 0 to n−1; let ei denote the edge between node i and node (i+1)mod n.
Suppose we are given a (multi-)set C of m ordered pairs representing calls, where each
ordered pair (i, j) represents a call originating at node i and destined for node j. Each
call can be routed either clockwise or counterclockwise around the cycle. The SONET ring
loading problem is to route the calls so as to minimize the maximum load on the network.
For each index i, let Li denote the number of calls that use edge ei in either direction; our
goal is to minimize maxi Li .

(a) Write an LP relaxation for this problem, and use it to give a 2-approximation algorithm
that deterministically rounds the LP solution.

Solution: For each call (i, j), let i� j and j�i respectively denote the clockwise
and counterclockwise paths through the cycle from node i to node j. For each
edge ek, let Ck denote the set of possible call paths that could include ek:

Ck :=
�

i� j
�

� (i, j) ∈ C and ek ∈ i� j
	

∪
�

j�i
�

� (i, j) ∈ C and ek ∈ j�i
	

Our linear program has two variables x i� j and x j�i for each call (i, j), which
intuitively indicate whether the call from i to j uses the corresponding path,
along with a variable L indicating (an upper bound on) the maximum load. Here
is the linear program relaxation:

minimize L

subject to
∑

i� j∈Ck

x i� j +
∑

j�i∈Ck

x j�i − L ≤ 0 for each edge ek

x i� j + x j�i = 1 for each call (i, j) ∈ C

x i� j ≥ 0 for each call (i, j) ∈ C

x j�i ≥ 0 for each call (i, j) ∈ C

The linear program relaxation replaces each constraint of the form x• ∈ {0, 1}
with the inequality x• ≥ 0. In the LP relaxation, x i� j represents the fraction of
the call from i to j that is routed clockwise around the cycle, and x i� j represents
the fraction that is routed counterclockwise.

Let x∗ and L∗ denote any optimal fractional solution to our linear program.
Our approximation algorithm routes each call (i, j) clockwise if x∗i� j ≥ 1/2 and
counterclockwise otherwise; in other words, we route every call in the direction
that receives the most weight in x∗, breaking ties clockwise. Rounding at most
doubles the load on each edge ek from each call (i, j), and thus at most doubles
the load on each edge, and therefor at most doubles the maximum load.

More formally, we define an integral solution x ′, L′ to our LP by setting

x ′i� j =
�

x∗i� j ≥ 1/2
�

and x ′j�i =
�

x∗i� j < 1/2
�

9

CS 473 “Homework” 11 (“due” December 10, 2024) Fall 2024

for each call (i, j), and defining

L′ =max
k

∑

i� j∈Ck

x ′i� j +
∑

j�i∈Ck

x ′j�i

!

Straightforward definition-chasing implies that this is a feasible integer solution
to the LP. Moreover, because

x ′i� j ≤ 2x∗i� j and x ′j�i < 2x∗j�i

for each call (i, j), we have L′ ≤ 2L∗. ■

(b) Now suppose we are also given a positive real capacity c(ei) for each edge ei in the cycle
and a positive real demand d(i, j) for each call (i, j) ∈ C . A natural generalization of
the SONET ring loading problem refines the load Li to be the sum of the demands of
all calls that use edge ei divided by the capacity c(ei); the objective is still to minimize
the maximum load maxi Li . (In the original problem, all capacities and demands are
equal to 1.) Describe and analyze a deterministic 2-approximation algorithm for this
more general problem.

Solution: Again, our linear program has two variables x i� j and x j�i for each
call (i, j), which now represent the fraction of the demand d(i, j) that is routed
clockwise or counterclockwise, respectively, and a variable L indicating (an upper
bound on) the maximum load.

minimize L subject to
∑

i� j∈Ck

d(i, j) · x i� j +
∑

j�i∈Ck

d(i, j) · x j�i − c(ek) · L ≤ 0 for each ek

x i� j + x j�i = 1 for each (i, j) ∈ C

x i� j ≥ 0 for each (i, j) ∈ C

x j�i ≥ 0 for each (i, j) ∈ C

Again, our approximation algorithm routes each call (i, j) clockwise if x∗i� j ≥ 1/2
and counterclockwise otherwise, where x∗ is the optimal fractional solution.
This rounding at most doubles the load on each edge and therefore at most
doubles the maximum load. ■

10

CS 473 “Homework” 11 (“due” December 10, 2024) Fall 2024

6. Suppose you are given a directed acyclic graph G with a single source vertex s. Describe
an algorithm to determine whether G contains a spanning binary tree. Your algorithm is
looking for a spanning tree T of G, such that every vertex in G has at most two outgoing
edges in T and every vertex of G except s has exactly one incoming edge in T .

For example, given the dag on the left below as input, your algorithm should False,
because the largest binary subtree excludes one of the vertices.

s s

Solution: This is a tuple selection / generalized matching problem; we are attempting
to assign a parent to every vertex except s, so that each vertex is the parent of at most
two other vertices.

We construct a flow network G′ = (V ′, E′) as follows:

• G′ has a source vertex s′, a vertex vchild for every vertex v ̸= s in G, a vertex
vparent for every vertex v in G, and a target vertex t ′. Altogether, G′ has 2V + 1
vertices.

• G′ has the following capacitated edges:

– An edge s′�vchild with capacity 1, for every vertex v ̸= s in G.
– An edge vchild�uparent, with capacity 1, for every edge u�v in G,
– An edge uparent�t ′ with capacity 2, for every vertex u in G.

Altogether, G′ has 2V+E−1= O(E) edges. (If E < V−1, then G is disconnected,
so we can immediately return False.)

Finally, we compute a maximum flow from s′ to t ′ in G′, and then return True if and
only if every edge out of s′ is saturated. If every edge leaving s is saturated, then the
vchild�uparent with flow value 1 correspond to edges u�v in a binary spanning tree
of G. Conversely, given any binary spanning tree T of G, we can construct a feasible
flow in G′ that saturates every edge leaving s′ by sending one unit of flow along the
path s′�vchild�uparent�t ′, for every edge u�v in T .

We can easily construct G′ in O(V + E) time by brute force. The maximum flow
value in G′ is at most V−1, so we can compute the maximum flow in O(V ′E′) = O(V E)
time using Ford-Fulkerson. Overall, our algorithm runs in O(VE) time. ■

11

