
CS 473 Homework 10 Solutions Fall 2024

1. (a) Suppose Bo somehow learns Alex’s strategy vector a. Describe a linear program
whose solution is Bob’s best possible strategy vector.

Solution: The only variables are Bo’s probabilities b j. The constraints ensure
that b really is a probability distribution.

minimize aT M · b
subject to
∑

j b j = 1

b j ≥ 0 for all j

The objective vector is the vector-matrix product c = aT M . Each coefficient
c j = (aT M) j =
∑

i Mi jai of the objective vector is Alex’s expected score if Alex
uses randomized strategy a and Bo deterministically chooses the number j. ■

Rubric: 2 points

(b) What is the dual of your linear program from part (b)?

Solution: Because the linear program in part (a) has only one non-sign con-
straint, the dual linear program has only one variable z, and the objective “vector”
is the right side 1 of that primal constraint.

maximize z

subject to z ≤
∑

i Mi jai for all j

The variable z represents a lower bound on Alex’s expected payoff, no matter
what Bo chooses. The maximum value for that lower bound is the minimum
coefficient of the vector aT M . ■

Rubric: 2 points
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(c) So what is Bo’s optimal strategy, as a function of the vector a? And what is Alex’s
resulting expected score? (You should be able to answer this part even without
answering parts (a) and (b).)

Solution: Bo’s optimal strategy is to deterministically pick the index i that mini-
mizes Alex’s expected score (aT M) j =

∑

i Mi jai, and Alex’s resulting expected
score is exactly min j(aT M) j .

As a concrete example, suppose Alex chooses the uniform Undercut strategy
(1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6)—roll a fair 6-sided die and subtract 1. Then Alex’s expected-

score vector is

aT M =
�1

6
1
6

1
6

1
6

1
6

1
6

�

















0 1 −2 −3 −4 −5
−1 0 3 −2 −3 −4
2 −3 0 5 −2 −3
3 2 −5 0 7 −2
4 3 2 −7 0 9
5 4 3 2 −9 0

















=
�13

6
7
6

1
6 −5

6 −11
6 −5

6

�

,

so Bo should always choose 4, which makes Alex’s expected score −11/6. ■

Rubric: 2 points

(d) Now suppose that Alex knows that Bo will discover Alex’s strategy vector before they
actually start playing. Describe a linear program whose solution is Alex’s best possible
strategy vector.

Solution: The following linear program has n+1 variables: Alex’s probabilities ai

and one additional variable z, which is a lower bound on Alex’s expected score
no matter what Bo chooses. Alex wants to make this lower bound as large as
possible.

maximize z

subject to
∑

i Mi jai − z ≥ 0 for all j
∑

i ai = 1

ai ≥ 0 for all i

Again, the last two constraints guarantee that a is a probability distribution. ■

Rubric: 2 points
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(e) What is the dual of your linear program from part (d)?

Solution: The dual linear program has n+ 1 variables: one variable d j corre-
sponding to each inequality constraint in the primal LP, plus one more variable y
corresponding to the equality constraint.

minimize y

subject to
∑

j Mi jd j + y ≥ 0 for all i
∑

j d j = −1

d j ≤ 0 for all j

Huh. The di ’s seem to represent negations of probabilities. Let’s rewrite this in
terms of new variables bi = −di; notice the changes in red.

minimize y

subject to
∑

j Mi j b j − y ≤ 0 for all i
∑

j b j = 1

b j ≥ 0 for all j

This looks eerily similar to the LP from part (d)! In fact, the solution to this
LP is Bo’s optimal strategy vector b (and the resulting expected score y) if that
strategy is known to Alex in advance. The variable y is an upper bound on Alex’s
expected score, no matter what Alex chooses; Bo wants to make this upper bound
as small as possible.

The fundamental theorem of linear programming implies that the optimal
objective values for these two linear programs are identical. So we’ve actually
derived a proof of von Neumann’s minmax theorem:

max
a

min
b

aT M b =min
b

max
a

aT M b

■

Rubric: 2 points. This is more detail than necessary for full credit.
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(f) Extra credit: So what is Alex’s optimal Undercut strategy, if Alex knows that Bo will
know that strategy?

Solution: Solving the LP in part (d) gives us

a∗ =
�

0, 10
66 , 26

66 , 13
66 , 16

66 , 1
66

�

≈ (0, 0.15152, 0.39394, 0.19697, 0.24242, 0.01515)

with an objective value of 0.
I used scipy.optimize.linprog to compute a decimal approximation of the

solution. Once we know that a∗0 = 0 and all other probabilities a∗i are positive,
the exact rational solution can be obtained by solving a system of linear equations
via Cramer’s rule: All relevant determinants are integers, because the constraint
matrix of the LP is integral.

We can verify that this strategy is optimal as follows. The symmetry in
the rules of Undercut implies that Alex and Bo’s optimal strategies must be
identical, so let b∗ = a∗. It follows that the optimal expected score is exactly zero.
Brute force computation implies that a∗M = (25

11 , 0, 0, 0, 0, 0) and (therefore!)
M b∗ = (−25

11 , 0, 0, 0, 0, 0), so the solution vector (a∗, 0) = (b∗, 0) = (0, 10
66 , 26

66 , 13
66 ,

16
66 , 1

66 , 0) is feasible for both the LP in part (d) and its dual in part (e). Because
its primal and dual objective values for are equal (to 0), this must be an optimal
solution! ■

Rubric: 2 points
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(g) Extra credit: If Bo knows that Alex is going to use their optimal strategy from
part (f), what is Bo’s optimal Undercut strategy?

Solution: Never choose 0.
If Alex uses their optimal undercut strategy a∗, Bo’s expected score vector

is a∗M = (25
11 , 0, 0, 0, 0, 0). So as long as Bo uses a strategy—deterministic or

randomized—that never chooses 0, the resulting expected score is exactly 0.
Symmetrically, if Bo uses the same optimal strategy b∗ = (0, 10

66 , 26
66 , 13

66 , 16
66 , 1

66),
then no matter what strategy Alex uses, the expected score is at most 0, and as
long as Alex never chooses 0, the expected score is exactly 0.

Maybe this is why Hofstadter’s original version of Undercut didn’t allow
choosing 0?

In the column where he introduced Undercut, Hofstadter describes a compe-
tition between a program he wrote, which tries to guess the other player’s next
move, and another program written by Jon Peterson, which used this optimal
randomized strategy. “It was a humiliating and infuriating experience for me to
watch my program, with all its ‘intelligence’, struggle in vain to overcome the blind
randomness of Jon’s program. But there was no way out. I was most disappointed to
learn that, in some sense, the ‘most intelligent’ strategy of all not only was dumb-it
even paid no attention whatsoever to the enemy’s moves! Something about this
seemed directly opposite to the original aim of Undercut, which was to have players
trying to psych each other out to ever deeper levels.”

This problem would have been slightly more interesting without thumbs. If
Alex and Bo can only name integers between 0 and 4, their optimal strategy
vector is (0, 5

10 , 2
10 , 3

10 , 0), and Alex’s expected payoff vector is (4
5 , 0, 0, 0, 1

5). So in
this variant, the smallest option 0 and the largest option 4 are both bad choices.
It’s only the presence of 5 that makes 4 a good choice! ■

Rubric: 2 points. 1 point for “Copy Alex’s strategy”.
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2. A three-dimensional matching in an undirected graph G is a collection of vertex-disjoint
triangles (cycles of length 3) in G. A three-dimensional matching is maximal if it is not a
proper subgraph of a larger three-dimensional matching in the same graph.

(a) Let M and M ′ be two arbitrary maximal three-dimensional matchings in the same
underlying graph G. Prove that |M | ≤ 3 · |M ′|.

Solution: Consider an arbitrary triangle △ in M . If △ does not share a vertex
with any triangle in M ′, then M ′ +△ is a 3D matching, contradicting our
assumption that M ′ is maximal. We conclude that every triangle in M shares at
least one vertex with a triangle in M ′.

On the other hand, consider an arbitrary triangle △′ in M ′. Each vertex
of △′ is a vertex of at most one triangle in M , because the triangles in M are
vertex-disjoint. Thus, the number of triangles in M is at most the number of
vertices in M ′. ■

Rubric: 4 points = 2 for every triangle in M touches a triangle in M ′ + 2 for each triangle in M
touches at most three triangles in M ′.

(b) Finding the largest three-dimensional matching in a given graph is NP-hard. Describe
and analyze a fast 3-approximation algorithm for this problem.

Solution: The following brute-force algorithm computes a maximal 3D matching
in O(VE) time.

Dumb3DMatching(G):
unmark every vertex of G
M ←∅
for all vertices v

for all edges uv
for all edges vw

if u ̸= w and uw ∈ E and u, v, w are all unmarked
mark u, v, w
add uvw to M

return M

Let M denote the 3D matching computed by our algorithm, and let OPT denote
the largest 3D matching in G. Part (a) immediately implies |OPT|/|M | ≤ 3. ■

Rubric: 3 points = 1 for algorithm + 1 for time analysis + 1 for proof of approximation. No penalty
for O(V 3); we just want something that runs in polynomial time
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(c) Finding the smallest maximal three-dimensional matching in a given graph is NP-hard.
Describe and analyze a fast 3-approximation algorithm for this problem.

Solution: We use exactly the same algorithm as part (b)!
Let M denote the 3D matching computed by our algorithm, and let OPT

denote the smallest maximal 3D matching in G. Part (a) immediately implies
|M |/|OPT | ≤ 3. ■

Rubric: 3 points = 1 for algorithm + 1 for time analysis + 1 for proof of approximation. “See part
(b)” is worth exactly the same number of points as earned in part (b).
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3. You are designing a digital circuit where each component can operate in one of two
states: high signal (logical 1) or low signal (logical 0). The circuit includes several
directed connections (edges), each with an associated non-negative weight representing
the importance or strength of the connection. For a connection to function properly, the
signal must flow from a component in the high signal state to a component in the low
signal state, and the total weight of such valid connections should be maximized.

You are given a directed, edge-weighted graph G = (V, E, w) representing the circuit,
where each vertex i ∈ V corresponds to a circuit component, each directed edge i� j ∈ E
corresponds to a connection between components, and the weight wi� j ≥ 0 of each edge
i� j indicates the importance of that edge.

Now suppose we assign some vertices to state high and the rest to state low. The
weight of this high/low assignment is the sum of the weights of all edges i� j such that
vertex i is high and vertex j is low. Your task is to find a high/low assignment with the
maximum possible weight.

(a) Describe a simple, self-contained, and efficient randomized algorithm for this problem
that finds a high/low assignment whose weight is within a factor of 4 of optimal. No
LPs are necessary!

Solution: For each vertex i ∈ V , we independently assign it a state high with
probability 1/2, otherwise we assign it a state of low. Let H (resp. L) denote
the set of vertices that are assigned high (resp. low). The expected total weight
of edges going from high to low is

E





∑

i� j∈E

wi j · [i ∈ H and j ∈ L]



=
∑

i� j∈E

wi j · E [[i ∈ H and j ∈ L]]

=
∑

i� j∈E

wi j · Pr [i ∈ H and j ∈ L]

=
∑

i� j∈E

wi j · Pr [i ∈ H] · Pr[ j ∈ L]

=
1
4

∑

i� j∈E

wi j .

Since the total weight of any assignment is at most
∑

i� j∈E wi j, the above is
within a factor of 4 of the optimal value. ■

Rubric: 2 points.
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(b) Prove that the following integer linear program (ILP) is an exact formulation of our
assignment problem: every high/low assignment to the vertices gives an ILP solution
whose objective value is at least the weight of the assignment, and every ILP solution
gives an assignment whose weight is at least the objective value.

maximize
∑

i� j∈E

wi� jzi� j

subject to zi� j ≤ x i for each edge i� j ∈ E

zi� j ≤ 1− x j for each edge i� j ∈ E

zi� j ∈ {0,1} for each edge i� j ∈ E

x i ∈ {0,1} for each vertex i ∈ V

Solution: Suppose we have integer vectors x ∈ {0, 1}V and z ∈ {0,1}E that
satisfies the constraints of the ILP, and let W =

∑

i� j∈E wi� jzi� j be the corre-
sponding objective value. We construct an assignment with weight W as follows.
For each vertex i ∈ V , if x i = 1, we assign i a state of high and if x i = 0, we
assign i a state of low. For each edge i� j, we have zi� j = 1 iff both x i = 1 and
x j = 0. Thus, zi� j = 1 if and only if i is high and j is low. It follows that the
weight of this assignment is exactly W .

No suppose we are given a high/low assignment with weight W . Define
x i = 1 for all vertices i that are assigned high and x j = 0 for all vertices j that
are assigned low. We also define zi� j = 1 if edge i� j goes from high to low —
that is, if i is high and j is low — and zero otherwise. The resulting integer
vectors x ∈ {0,1}V and z ∈ {0,1}E satisfy all the constraints of our ILP, and the
value of the ILP on this solution is W . ■

Rubric: 3 points = 1½ for each direction

9



CS 473 Homework 10 Solutions Fall 2024

(c) The LP relaxation of the above ILP is obtained by replacing the integer constraints
with 0 ≤ zi� j ≤ 1 for each edge i� j and 0 ≤ x i ≤ 1 for each vertex i. Consider the
following randomized rounding algorithm:
i. First solve the LP relaxation of the ILP from part (b). Let (z∗, x∗) denote the

solution to this LP.
ii. Then independently assign each vertex i a state of high with probability 1

4 +
x∗i
2

and low otherwise.
Prove that in expectation, this algorithm yields a 2-approximation to the optimal
value for our assignment problem.

Solution: Let (z∗, x∗) be the optimal fractional solution to the LP, and let
OPT ∗ =
∑

i� j∈E wi� jz
∗
i� j denote its optimal objective value. Similarly, let OPT

be the optimal objective value for the integer linear program, or equivalently, the
weight of the optimal high/low assignment. We immediately have OPT ∗ ≥ OPT .

Let (H, L) be the random assignment obtained from x∗ and z∗ by our
randomized rounding algorithm, where H is the set of vertices assigned high
and L = V \H is the set of vertices assigned low. Let W (H, L) denote the weight
of this assignment.

Define X ∈ {0, 1}E and Z ∈ {0, 1}E to be the integer vectors derived from
the assignment (H, L) as in part (b):
• For each vertex i, we define X i = [i ∈ H]
• For each edge i� j, we define Zi� j = [X i = 1 and X j = 0]

Note that the vectors X and Z are random variables. Part (b) implies that
W (H, L) is exactly the objective value

∑

i� j∈E wi� j Zi� j of the ILP. Thus, its
expected value is

E[W (H, L)] = E





∑

i� j∈E

wi� j Zi� j





=
∑

i� j∈E

wi� j · E[Zi� j]

=
∑

i� j∈E

wi� j · Pr[X i = 1 and X j = 0]

=
∑

i� j∈E

wi� j · Pr[X i = 1] · Pr[X j = 0]

=
∑

i� j∈E

wi� j ·
�

1
4
+

x∗i
2

�

·
�

1
4
+

1− x∗j
2

�

=
1
4

∑

i� j∈E

wi� j ·
�

1
2
+ x∗i

�

·
�

1
2
+ (1− x∗j )
�

.
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Note that for any real numbers α and β we have
�

1
2
+α
��

1
2
+ β
�

≥ 2 ·min{α,β}.

To see this, we may assume without loss of generality that α≤ β , in which case
the desired inequality reduces to

�

1
2
+α
�2

≥ 2 ·α ⇐⇒
�

1
2
−α
�2

≥ 0.

This inequality implies

E[W (H, L)] =
1
4

∑

i� j∈E

wi� j ·
�

1
2
+ x∗i

�

·
�

1
2
+ (1− x∗j )
�

≥
1
2

∑

i� j∈E

wi� j ·min{x∗i , 1− x∗j }

≥
1
2

∑

i� j∈E

wi� jz
∗
i� j

=
1
2

OPT ∗

≥
1
2

OPT.

■

Rubric: 5 points.
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