CS 473

Final Exam Solutions Fall 2024

1. The figure below shows a flow network G, along with an (s, t)-flow f that is not a maximum

flow. Clearly indicate the following structures in G:

(a) An augmenting path for f.

Solution: There are three augmenting paths, each using at least one backward
residual edge:

5/6 4/4 5/6 4/4
/ / @ / / @
2/2 2/8 2/2 2/8
31,2 17 / L1 PP 17 /
3/3
4/4

3/3 3
3/9

/5 3/5
5/6 :
ns
2/4 ‘ 1/7: ‘
3/3 3/5

|
Rubric: 2% points. Any one of these paths is worth full credit.
(b) The result of augmenting f along that path.
Solution: Each augmenting path yields a different augmented flow:
: 6/6 4/4 G)_> : 5/6 4/4 G)_>
22 3/8 N\ 2/2 4/8
4/9 2/4 N} 5/9 0/4 1/7
3/3 3/5 3/3 5/5
: 5/6 4/4 G)_>
3/8
0/7
|
Rubric: 2% points. The flow must be obtained by pushing as much flow as possible along the
path indicated in part (a). No credit here if part (a) is incorrect.

CS 473

Final Exam Solutions Fall 2024

(©) A maximum (s, t)-flow in G.

Solution: The maximum flow is unique; the value of the maximum flow is 9.

6/6 4/4

2/2 5/8

6/9 0/7

3/3 5/5
|
Rubric: 2% points. Max 1 point for a feasible flow that is not a maximum flow.
(d) A minimum (s, t)-cut in G.
Solution: There are three different minimum cuts, each with capacity 9.
O»<66—' e as
2/2 5/8
6/9 0// /7 6/9
——
3]3 5/5
|

Rubric: 2% points. Any one of these cuts is worth full credit. —1 for only marking forward-
crossing edges if there are also backward-crossing edges. 1 point for an (s, t)-cut (that is, a

partition of the vertices with s and t in different parts) that is not a minimum cut.

CS 473 Final Exam Solutions Fall 2024

2. A sequence of numbers x;, X, ..., X, is restrained if each element after the first two is
(loosely) between its two immediate predecessors; that is, for every index i > 2, we have
min{x;_;, x;_o} < x; < max{x;_;, x;_»}. Describe an efficient algorithm to compute the
length of the longest restrained subsequence of a given array A[1..n] of numbers.

Solution (dynamic programming): For any indices 1 < i < j < n, let Rest(i, j)
denote the length of the longest retrained subsequence of A[i..n] whose first two
elements are Ali] and A[j]. We need to compute max; ; Rest(i, j).

This function satisfies the following recurrence:

Rest(i,j) = 2,1 Rest(j, k Jkenme
est(i,) =max 2, Vb max) Rest(u k) || Lo eari) AT < ALK < max{A[i], AL/}

(Here we can define either max@ = 0 or max @ = —o0; the recurrence is correct
either way.)

We can memoize this function into a two-dimensional array Rest[1..n,1..n], which
we can fill with two nested loops, decreasing i in one and decreasing j in the other.
(The nesting order of the loops doesn’t matter.) For each i and j, we need O(n) time
to compute Rest[i, j], so the entire algorithm runs in O(n?3) time. [|

Solution (dynamic programming): For any indicesi < j < k, let Rest(i, j, k) denote
the length of the longest restrained subsequence of A whose first element is A[i],
whose second element is A[j], and whose remaining elements all come from the suffix
Alk..n]. We need to compute max; ; Rest(i, j, j + 1).

This function satisfies the following recurrence:

2 ifk>n
1+Rest(j,k,k+1)) ifAli] <A[k] <A[j]

Rest(i,j, k +1) } or A[j] < A[k] < Ali]
Rest(i,j,k+1) otherwise

Rest(i, j, k) = max{

We can memoize this function into a three-dimensional array Rest[—1..n,0..n,1..n],
indexed by i, j, and k. We can fill with three nested loops, decreasing k in the
outermost loop and decreasing i and j in the other two. (The nesting order of the
inner loops doesn’t matter.) The entire algorithm runs in O(n?3) time. [|

CS 473 Final Exam Solutions Fall 2024

Solution (reduction to longest path in a dag): Define a directed acyclic graph G =
(V,E) as follows:

cv={G]1<i<j<n}
« E={(i,)~(,k) | min{A[i],A[j]} < Alk] < max{A[i],A[j]}}

Altogether G has O(n?) vertices and O(n®) edges. This graph is acyclic, because for
every edge (i,j)—(j,k), we have i < j and j < k.

Every directed path of length £ in G corresponds to a restrained subsequence of A
with length ¢ + 2. Thus, we need to compute the longest path in G (with no fixed
start or end vertex). We can compute this path in O(V + E) = 0(n?) time using the
dag-longest-path algorithm in the textbook. Finally we return the number of edges in
the longest path plus 2. [|

Rubric: 10 points, standard dynamic programming or graph reduction rubric, as appropriate. These
are not the only solutions. This problem can actually be solved in O(n?) time.

CS 473 Final Exam Solutions Fall 2024

3. Suppose you are given a chessboard with certain squares removed, represented as a
two-dimensional boolean array Legal[1..n,1..n]. A bishop is a chess piece that attacks
every square on the same diagonal or back-diagonal; that is, a bishop on square (i, j)
attacks every square of the form (i + k, j + k) or (i + k, j — k). Describe an algorithm to
places as many bishops on the board as possible, each on a legal square, so that no two
bishops attack each other.

Solution: First let’s establish some terminology. The dth diagonal consists of all
squares (i, j) such that i + j = d, and the bth back-diagonal consists of all squares
(i,) such that i — j = b. Thus, the square in row i and column j lies on diagonal i + j
and back-diagonal i — j.

Construct a bipartite graph G = (D U B, E) as follows:

* D contains a vertex for each diagonal;
* B contains a vertex for each back-diagonal;
* E contains an edge between diagonal i + j and back-diagonal i — j if and only if

Legal[i, j] = TRUE.

Compute a maximum matching M in G in O(VE) = 0(n3) time, using the algorithm
described in class. Finally, return the number of edges in M. |

Rubric: 10 points: standard graph reduction rubric. This is not the only correct solution.

CS 473 Final Exam Solutions Fall 2024

4. Suppose you buy random Pokémon cards until you own exactly n/4 of the n possible card
types. We can break your Pokémon-collection process into phases; for any index k, the kth
phase ends just after you purchase the kth distinct card type.

(@) Prove that for all 1 < k < n/4 and for all m > 0, the probability that you purchase
more than m cards in the kth phase is at most 4™ ™.

Solution: During the kth phase, we own at most k —1 < n/4 types of cards.
Thus, a random card during the kth insertion has a type we already own with
probability less than 1/4. Because cards are independent, the probability that
the first m purchases all have types we already own is less than (1/2)™. [|

Rubric: 3 points.

(b) Prove that for all 1 < k < n/4, the probability that the kth phase requires more than
2log, n purchases is at most 1/n2.

Solution: Let #cards(k) denote the number of cards we purchase during the
Kth phase. If we set m = 2log, n, we immediately have

Pr[#cards(k) > 2log, n] = Pr[#cards(k) > m]

<4 by part @)

Rubric: 2 points.

(c) Prove that with probability at least 1 — 1/n, none of the n/4 phases requires more
than 2log, n purchases.

Solution:

Pr[ml?x #cards(k) > 2log, n]

n
=Pr #cards(k) > 2logy n

k=1
n
< Z Pr[#cards(k) > 2log, n] by the union bound
k=1
—~1 1
< === by part (b)
—n n

Rubric: 2 points.

CS 473

Final Exam Solutions Fall 2024

(d) What is the exact expected total number of purchases to collect n/4 different card

types? (A tight O(-) bound is worth significant partial credit.)

Solution: During the kth phase, we own exactly k —1 of the n card types, so the
probability of each purchase having a new type is (n —k + 1)/n. It follows that
the expected number of purchases during the kth phase is exactly n/(n —k + 1).
Linearity of expectation now implies

n/4 n/4

E Z #cards(k) | = Z E[#cards(k)]
k=1 k=1

n/4
:ZL
kzln—k—l—l

n/4

1
Sl
k=1n_k+1
n

=n- > % [t=n—k+1]

{=3n/4+1

=|n-(H, _H3n/4)

~n-(Inn—In(3n/4))
=1n(4/3)n ~ 0.28768n = ©(n)

If we only need a tight O() bound, we can approximate as follows:

n/4 n/4 n
E Z #cards(k) = Z n——k-i-]_
k=1 k=1
n/4 n
<
- kzl: 3n/4

n/4

4 n
=23 =3 =W

Rubric: 3 points. A correct summation is worth 2 points. “O(n)” is worth 2%, points. No proof

is required for full credit.

CS 473 Final Exam Solutions Fall 2024

5. Suppose you are given a bipartite graph G = (L UR, E) and a maximum matching M
in G. Describe and analyze efficient algorithms for the following operations. Both of your
algorithms should be significantly faster than recomputing the maximum matching from
scratch. [Hint: Think about the reduction from maximum matchings to maximum flows.]

(@) INserT(u,v): Insert an edge between u € L and v € R and update the maximum
matching. (You can assume that uv is not an edge before this function is called.)

Solution: First we construct a flow network H from G by adding a new source
vertex s, edges from s to every vertex in L, a new target vertex t, and edges from
every vertex in R to t. Finally, we direct every edge in the original graph G from L
to R. Every edge in H has capacity 1. The maximum matching M corresponds
to a maximum flow f* in H.

To INSERT edge uv, we add a directed edge u—v with capacity 1 to the flow
network H, and then perform one iteration of the Ford-Fulkerson augmenting
path algorithm: Build the residual graph Hy., look for a path from s to t in Hy-,
and if such a path is found, push 1 unit of flow along it.

Finally, we translate the new maximum flow in H back to a matching in G.
The entire algorithm runs in O(E) time. [|

We can prove the algorithm correct as follows. Adding one edge increases
the number of edges in the maximum matching by at most 1. Every edge in
the residual network H. has capacity 1, so a single iteration of Ford-Fulkerson
either fails to find a residual path (so the matching does not change) or increases
the flow value by exactly 1 (so the matching size increases by 1).

Rubric: 5 points = 4 for algorithm + 1 for time analysis. Proof of correctness is not required.
This is neither the only correct algorithm nor the only proof of correctness for this algorithm.

CS 473 Final Exam Solutions Fall 2024

(b) DELETE(uv): Delete edge uv and update the maximum matching. (You can assume
that uv is actually an edge before this function is called.)

Solution: Assume that the deleted edge uv is in the matching M, since otherwise,
M is still a maximum matching after uv is deleted. Let G’ = G —uv and
M’ = M —uv. The modified matching M’ is a matching in G’, but it might not
be a maximum matching.

To find a maximum matching in G’, we convert G’ into a flow network and M’
into a maximum flow, run one iteration of Ford-Fulkerson, and convert the new
maximum floe back into a matching, exactly as in the solution to part (a). The
entire algorithm runs in O(E) time. [|

We can prove the algorithm correct as follows. Removing one edge decreases
the number of edges in the maximum matching by at most 1. Just as in part (a), a
single iteration of Ford-Fulkerson either leaves the current matching unchanged
or increases the size of the matching by 1.

Rubric: 5 points = 4 for algorithm + 1 for time analysis. Proof of correctness is not required.
This is neither the only correct algorithm nor the only proof of correctness for this algorithm.

CS 473 Final Exam Solutions Fall 2024

6. Let G = (V, E) be an undirected graph. The neighborhood of a vertex v consists of v and
every vertex adjacent to v. A double-dominating set in G is a set S of vertices such that
for each vertex v, the neighborhood of v contains at least two vertices in S.

Suppose you are given a graph G where every vertex has degree d — 1 (and thus
the neighborhood of every vertex contains exactly d vertices), and each vertex v has a
non-negative weight w,,. Your goal is to find a double-dominating set S in G whose total
weight >° _cw,, is as small as possible. Solving this problem exactly is NP-hard.

(a) Write an integer linear program that exactly captures this problem. In particular,
each solution of the integer linear program must describe a double-dominating set,
and each double-dominating set must correspond to a solution of your integer linear
program.

Solution: Let N(v) denote the neighborhood of any vertex v. For each vertex v,
we have a variable x, that equals 1 if v € S and 0 otherwise.

minimize Z w, X,
v
subject to Z X, =2 for each vertex u
veN (u)
x, €{0,1} for each vertex v

Rubric: 5 points =1 for objective + 2 for double-dominating constraints + 1% for indicator
constraints

10

CS 473 Final Exam Solutions Fall 2024

(b) Describe and analyze an efficient (d/2)-approximation algorithm for this problem.
Remember to prove that your algorithm returns a valid solution, and prove that it
achieves an approximation ratio of d /2.

Solution: This subproblem was broken; the correct approximation ratio from
LP rounding is actually d — 1, not d/2. Everyone gets full credit for this
subproblem. Here is the solution for the correct approximation ratio:

Relax the ILP from part (a) to a linear program by replacing the last constraints
with 0 < x, < 1. Let x* denote the optimal fractional solution to this LP, and let
OPT* =), w,x*. We immediately have OPT* < OPT, where OPT is the value of
the optimal integer solution.

We define a new integer vector x’ as follows: For each vertex v, let

v

,_ 1 ifx}‘Zl/(d—l)
0 otherwise

Correctness: For each vertex u, we have ZveN(u) x;; > 2. So there must be at
least two vertices v and v’ in the neighborhood N (u) such that

x;>1/(d-1) and x},>1/(d—1).

(Otherwise, even if x? = 1, we would have x7 < 1/(d — 1) for each of the other
d — 1 vertices v € N(u), which implies ZVGN(H) x} < 2.) Our rounding rule
implies x;, = x;, = 1. It follows that X,y X, = 2 for each vertex u. In other
words, x’ is a feasible solution for our ILP.

Approximation ratio: For each vertex v, we have x/, < (d —1)- xJ, so

Zwvx; < (d—1)-Zwvxj = (d—1)-OPT* < (d—1)-OPT.

Thus x’ is a (d — 1)-approximation of the optimum double-dominating set. ®

Rubric: 5 points. Everyone gets full credit.

11

