
CS 473 Final Exam Solutions Fall 2024

1. The figure below shows a flow network G, along with an (s, t)-flow f that is not a maximum
flow. Clearly indicate the following structures in G:

(a) An augmenting path for f .

Solution: There are three augmenting paths, each using at least one backward
residual edge:

5/6

2/4

3/3

3/9 2/2

4/4

1/7

3/5

2/8

t

s

5/6

2/4

3/3

3/9 2/2

4/4

1/7

3/5

2/8

t

s

5/6

2/4

3/3

3/9 2/2

4/4

1/7

3/5

2/8

t

s

■

Rubric: 2½ points. Any one of these paths is worth full credit.

(b) The result of augmenting f along that path.

Solution: Each augmenting path yields a different augmented flow:

6/6

2/4

3/3

4/9 2/2

4/4

0/7

3/5

3/8

t

s

5/6

0/4

3/3

5/9 2/2

4/4

1/7

5/5

4/8

t

s

5/6

1/4

3/3

4/9 1/2

4/4

0/7

3/5

3/8

t

s

■

Rubric: 2½ points. The flow must be obtained by pushing as much flow as possible along the
path indicated in part (a). No credit here if part (a) is incorrect.

1

CS 473 Final Exam Solutions Fall 2024

(c) A maximum (s, t)-flow in G.

Solution: The maximum flow is unique; the value of the maximum flow is 9.

6/6

0/4

3/3

6/9 2/2

4/4

0/7

5/5

5/8

t

s

■

Rubric: 2½ points. Max 1 point for a feasible flow that is not a maximum flow.

(d) A minimum (s, t)-cut in G.

Solution: There are three different minimum cuts, each with capacity 9.

6/6

0/4

3/3

6/9 2/2

4/4

0/7

5/5

5/8

t

s

6/6

0/4

3/3

6/9 2/2

4/4

0/7

5/5

5/8

t

s

6/6

0/4

3/3

6/9 2/2

4/4

0/7

5/5

5/8

t

s

■

Rubric: 2½ points. Any one of these cuts is worth full credit. −1 for only marking forward-
crossing edges if there are also backward-crossing edges. 1 point for an (s, t)-cut (that is, a
partition of the vertices with s and t in different parts) that is not a minimum cut.

2

CS 473 Final Exam Solutions Fall 2024

2. A sequence of numbers x1, x2, . . . , xℓ is restrained if each element after the first two is
(loosely) between its two immediate predecessors; that is, for every index i > 2, we have
min{x i−1, x i−2} ≤ x i ≤ max{x i−1, x i−2}. Describe an efficient algorithm to compute the
length of the longest restrained subsequence of a given array A[1 .. n] of numbers.

Solution (dynamic programming): For any indices 1 ≤ i < j ≤ n, let Rest(i, j)
denote the length of the longest retrained subsequence of A[i .. n] whose first two
elements are A[i] and A[j]. We need to compute maxi, j Rest(i, j).

This function satisfies the following recurrence:

Rest(i, j) =max

¨

2, 1+max

¨

Rest(j, k)

�

�

�

�

�

j < k ≤ n and
min{A[i], A[j]} ≤ A[k]≤max{A[i], A[j]}

««

(Here we can define either max∅ = 0 or max∅ = −∞; the recurrence is correct
either way.)

We can memoize this function into a two-dimensional array Rest[1 .. n, 1 .. n], which
we can fill with two nested loops, decreasing i in one and decreasing j in the other.
(The nesting order of the loops doesn’t matter.) For each i and j, we need O(n) time
to compute Rest[i, j], so the entire algorithm runs in O(n3) time. ■

Solution (dynamic programming): For any indices i < j < k, let Rest(i, j, k) denote
the length of the longest restrained subsequence of A whose first element is A[i],
whose second element is A[j], and whose remaining elements all come from the suffix
A[k .. n]. We need to compute maxi, j Rest(i, j, j + 1).

This function satisfies the following recurrence:

Rest(i, j, k) =























2 if k > n

max

�

1+ Rest(j, k, k+ 1)

Rest(i, j, k+ 1)

�

if A[i]≤ A[k]≤ A[j]

or A[j]≤ A[k]≤ A[i]

Rest(i, j, k+ 1) otherwise

We can memoize this function into a three-dimensional array Rest[−1 .. n, 0 .. n, 1 .. n],
indexed by i, j, and k. We can fill with three nested loops, decreasing k in the
outermost loop and decreasing i and j in the other two. (The nesting order of the
inner loops doesn’t matter.) The entire algorithm runs in O(n3) time. ■

3

CS 473 Final Exam Solutions Fall 2024

Solution (reduction to longest path in a dag): Define a directed acyclic graph G =
(V, E) as follows:

• V =
�

(i, j)
�

� 1≤ i < j ≤ n
	

• E =
�

(i, j)�(j, k)
�

� min{A[i], A[j]} ≤ A[k]≤max{A[i], A[j]}
	

Altogether G has O(n2) vertices and O(n3) edges. This graph is acyclic, because for
every edge (i, j)�(j, k), we have i < j and j < k.

Every directed path of length ℓ in G corresponds to a restrained subsequence of A
with length ℓ+ 2. Thus, we need to compute the longest path in G (with no fixed
start or end vertex). We can compute this path in O(V + E) = O(n3) time using the
dag-longest-path algorithm in the textbook. Finally we return the number of edges in
the longest path plus 2. ■

Rubric: 10 points, standard dynamic programming or graph reduction rubric, as appropriate. These
are not the only solutions. This problem can actually be solved in O(n2) time.

4

CS 473 Final Exam Solutions Fall 2024

3. Suppose you are given a chessboard with certain squares removed, represented as a
two-dimensional boolean array Legal[1 .. n, 1 .. n]. A bishop is a chess piece that attacks
every square on the same diagonal or back-diagonal; that is, a bishop on square (i, j)
attacks every square of the form (i + k, j + k) or (i + k, j − k). Describe an algorithm to
places as many bishops on the board as possible, each on a legal square, so that no two
bishops attack each other.

Solution: First let’s establish some terminology. The dth diagonal consists of all
squares (i, j) such that i + j = d, and the bth back-diagonal consists of all squares
(i, j) such that i− j = b. Thus, the square in row i and column j lies on diagonal i+ j
and back-diagonal i − j.

Construct a bipartite graph G = (D ⊔ B, E) as follows:

• D contains a vertex for each diagonal;

• B contains a vertex for each back-diagonal;

• E contains an edge between diagonal i + j and back-diagonal i − j if and only if
Legal[i, j] = True.

Compute a maximum matching M in G in O(V E) = O(n3) time, using the algorithm
described in class. Finally, return the number of edges in M . ■

Rubric: 10 points: standard graph reduction rubric. This is not the only correct solution.

5

CS 473 Final Exam Solutions Fall 2024

4. Suppose you buy random Pokémon cards until you own exactly n/4 of the n possible card
types. We can break your Pokémon-collection process into phases; for any index k, the kth
phase ends just after you purchase the kth distinct card type.

(a) Prove that for all 1 ≤ k ≤ n/4 and for all m ≥ 0, the probability that you purchase
more than m cards in the kth phase is at most 4−m.

Solution: During the kth phase, we own at most k − 1 < n/4 types of cards.
Thus, a random card during the kth insertion has a type we already own with
probability less than 1/4. Because cards are independent, the probability that
the first m purchases all have types we already own is less than (1/2)m. ■

Rubric: 3 points.

(b) Prove that for all 1≤ k ≤ n/4, the probability that the kth phase requires more than
2 log2 n purchases is at most 1/n2.

Solution: Let #cards(k) denote the number of cards we purchase during the
Kth phase. If we set m= 2 log2 n, we immediately have

Pr[#cards(k)> 2 log2 n] = Pr[#cards(k)> m]

≤ 4−m by part (a)

= 4−2 log2 n =
1
n4
≤

1
n2

■

Rubric: 2 points.

(c) Prove that with probability at least 1− 1/n, none of the n/4 phases requires more
than 2 log2 n purchases.

Solution:

Pr[max
k

#cards(k)> 2 log2 n]

= Pr

�

n
∧

k=1

#cards(k)> 2 log2 n

�

≤
n
∑

k=1

Pr[#cards(k)> 2 log2 n] by the union bound

≤
n
∑

k=1

1
n2
=

1
n

by part (b)

■

Rubric: 2 points.

6

CS 473 Final Exam Solutions Fall 2024

(d) What is the exact expected total number of purchases to collect n/4 different card
types? (A tight O(·) bound is worth significant partial credit.)

Solution: During the kth phase, we own exactly k−1 of the n card types, so the
probability of each purchase having a new type is (n− k+ 1)/n. It follows that
the expected number of purchases during the kth phase is exactly n/(n− k+ 1).
Linearity of expectation now implies

E





n/4
∑

k=1

#cards(k)



=
n/4
∑

k=1

E [#cards(k)]

=
n/4
∑

k=1

n
n− k+ 1

= n ·
n/4
∑

k=1

1
n− k+ 1

= n ·
n
∑

ℓ=3n/4+1

1
ℓ

[ℓ= n− k+ 1]

= n · (Hn −H3n/4)

≈ n · (ln n− ln(3n/4))

= ln(4/3)n ≈ 0.28768n = Θ(n)

If we only need a tight O() bound, we can approximate as follows:

E





n/4
∑

k=1

#cards(k)



=
n/4
∑

k=1

n
n− k+ 1

≤
n/4
∑

k=1

n
3n/4

=
n/4
∑

k=1

4
3
=

n
3
= O(n)

■

Rubric: 3 points. A correct summation is worth 2 points. “O(n)” is worth 2½ points. No proof
is required for full credit.

7

CS 473 Final Exam Solutions Fall 2024

5. Suppose you are given a bipartite graph G = (L ⊔ R, E) and a maximum matching M
in G. Describe and analyze efficient algorithms for the following operations. Both of your
algorithms should be significantly faster than recomputing the maximum matching from
scratch. [Hint: Think about the reduction from maximum matchings to maximum flows.]

(a) Insert(u, v): Insert an edge between u ∈ L and v ∈ R and update the maximum
matching. (You can assume that uv is not an edge before this function is called.)

Solution: First we construct a flow network H from G by adding a new source
vertex s, edges from s to every vertex in L, a new target vertex t, and edges from
every vertex in R to t. Finally, we direct every edge in the original graph G from L
to R. Every edge in H has capacity 1. The maximum matching M corresponds
to a maximum flow f ∗ in H.

To Insert edge uv, we add a directed edge u�v with capacity 1 to the flow
network H, and then perform one iteration of the Ford-Fulkerson augmenting
path algorithm: Build the residual graph H f ∗ , look for a path from s to t in H f ∗ ,
and if such a path is found, push 1 unit of flow along it.

Finally, we translate the new maximum flow in H back to a matching in G.
The entire algorithm runs in O(E) time. ■

We can prove the algorithm correct as follows. Adding one edge increases
the number of edges in the maximum matching by at most 1. Every edge in
the residual network H f ∗ has capacity 1, so a single iteration of Ford-Fulkerson
either fails to find a residual path (so the matching does not change) or increases
the flow value by exactly 1 (so the matching size increases by 1).

Rubric: 5 points = 4 for algorithm + 1 for time analysis. Proof of correctness is not required.
This is neither the only correct algorithm nor the only proof of correctness for this algorithm.

8

CS 473 Final Exam Solutions Fall 2024

(b) Delete(uv): Delete edge uv and update the maximum matching. (You can assume
that uv is actually an edge before this function is called.)

Solution: Assume that the deleted edge uv is in thematching M , since otherwise,
M is still a maximum matching after uv is deleted. Let G′ = G − uv and
M ′ = M − uv. The modified matching M ′ is a matching in G′, but it might not
be a maximum matching.

To find a maximummatching in G′, we convert G′ into a flow network and M ′

into a maximum flow, run one iteration of Ford-Fulkerson, and convert the new
maximum floe back into a matching, exactly as in the solution to part (a). The
entire algorithm runs in O(E) time. ■

We can prove the algorithm correct as follows. Removing one edge decreases
the number of edges in the maximummatching by at most 1. Just as in part (a), a
single iteration of Ford-Fulkerson either leaves the current matching unchanged
or increases the size of the matching by 1.

Rubric: 5 points = 4 for algorithm + 1 for time analysis. Proof of correctness is not required.
This is neither the only correct algorithm nor the only proof of correctness for this algorithm.

9

CS 473 Final Exam Solutions Fall 2024

6. Let G = (V, E) be an undirected graph. The neighborhood of a vertex v consists of v and
every vertex adjacent to v. A double-dominating set in G is a set S of vertices such that
for each vertex v, the neighborhood of v contains at least two vertices in S.

Suppose you are given a graph G where every vertex has degree d − 1 (and thus
the neighborhood of every vertex contains exactly d vertices), and each vertex v has a
non-negative weight wv. Your goal is to find a double-dominating set S in G whose total
weight
∑

v∈S wv is as small as possible. Solving this problem exactly is NP-hard.

(a) Write an integer linear program that exactly captures this problem. In particular,
each solution of the integer linear program must describe a double-dominating set,
and each double-dominating set must correspond to a solution of your integer linear
program.

Solution: Let N(v) denote the neighborhood of any vertex v. For each vertex v,
we have a variable xv that equals 1 if v ∈ S and 0 otherwise.

minimize
∑

v

wv · xv

subject to
∑

v∈N(u)

xu ≥ 2 for each vertex u

xv ∈ {0,1} for each vertex v

■

Rubric: 5 points = 1½ for objective + 2 for double-dominating constraints + 1½ for indicator
constraints

10

CS 473 Final Exam Solutions Fall 2024

(b) Describe and analyze an efficient (d/2)-approximation algorithm for this problem.
Remember to prove that your algorithm returns a valid solution, and prove that it
achieves an approximation ratio of d/2.

Solution: This subproblem was broken; the correct approximation ratio from
LP rounding is actually d − 1, not d/2. Everyone gets full credit for this
subproblem. Here is the solution for the correct approximation ratio:

Relax the ILP from part (a) to a linear program by replacing the last constraints
with 0≤ xv ≤ 1. Let x∗ denote the optimal fractional solution to this LP, and let
OPT∗ =
∑

v wv x∗v . We immediately have OPT∗ ≤ OPT, where OPT is the value of
the optimal integer solution.

We define a new integer vector x ′ as follows: For each vertex v, let

x ′v =

¨

1 if x∗j ≥ 1/(d − 1)

0 otherwise

Correctness: For each vertex u, we have
∑

v∈N(u) x∗u ≥ 2. So there must be at
least two vertices v and v′ in the neighborhood N(u) such that

x∗v ≥ 1/(d − 1) and x∗v′ ≥ 1/(d − 1).

(Otherwise, even if x∗u = 1, we would have x∗v < 1/(d − 1) for each of the other
d − 1 vertices v ∈ N(u), which implies

∑

v∈N(u) x∗v < 2.) Our rounding rule
implies x ′v = x ′v′ = 1. It follows that

∑

v∈N(u) x ′v ≥ 2 for each vertex u. In other
words, x ′ is a feasible solution for our ILP.

Approximation ratio: For each vertex v, we have x ′v ≤ (d − 1) · x∗v , so
∑

v

wv x ′v ≤ (d − 1) ·
∑

v

wv x∗v = (d − 1) ·OPT∗ ≤ (d − 1) ·OPT.

Thus x ′ is a (d − 1)-approximation of the optimum double-dominating set. ■

Rubric: 5 points. Everyone gets full credit.

11

