- 1. The figure below shows a flow network *G*, along with an (*s*, *t*)-flow *f* that is *not* a maximum flow. *Clearly* indicate the following structures in *G*:
	- (a) An augmenting path for *f* .

(b) The result of augmenting *f* along that path.

Rubric: 2½ points. The flow must be obtained by pushing as much flow as possible along the path indicated in part (a). No credit here if part (a) is incorrect.

(c) A maximum (s, t) -flow in G .

(d) A minimum (*s*, *t*)-cut in *G*.

Rubric: 2½ points. Any one of these cuts is worth full credit. -1 for only marking forwardcrossing edges if there are also backward-crossing edges. 1 point for an (*s*, *t*)-cut (that is, a partition of the vertices with *s* and *t* in different parts) that is not a minimum cut.

2. A sequence of numbers $x_1, x_2, ..., x_\ell$ is *restrained* if each element after the first two is (loosely) between its two immediate predecessors; that is, for every index $i > 2$, we have $\min\{x_{i-1}, x_{i-2}\}$ ≤ x_i ≤ $\max\{x_{i-1}, x_{i-2}\}$. Describe an efficient algorithm to compute the length of the longest restrained subsequence of a given array $A[1..n]$ of numbers.

Solution (dynamic programming): For any indices $1 \le i \le j \le n$, let $Rest(i, j)$ denote the length of the longest retrained subsequence of *A*[*i* .. *n*] whose first two elements are $A[i]$ and $A[j]$. We need to compute max_{*i,j*} $Rest(i, j)$.

This function satisfies the following recurrence:

$$
Rest(i, j) = \max\left\{2, 1 + \max\left\{Rest(j, k)\mid \min\{A[i], A[j]\} \le A[k] \le \max\{A[i], A[j]\}\right\}\right\}
$$

(Here we can define either max $\emptyset = 0$ or max $\emptyset = -\infty$; the recurrence is correct either way.)

We can memoize this function into a two-dimensional array *Rest*[1 .. *n*, 1 .. *n*], which we can fill with two nested loops, decreasing *i* in one and decreasing *j* in the other. (The nesting order of the loops doesn't matter.) For each *i* and *j*, we need $O(n)$ time to compute *Rest*[*i*, *j*], so the entire algorithm runs in $O(n^3)$ *time*.

Solution (dynamic programming): For any indices $i < j < k$, let *Rest*(i, j, k) denote the length of the longest restrained subsequence of *A* whose first element is *A*[*i*], whose second element is $A[i]$, and whose remaining elements all come from the suffix $A[k..n]$. We need to compute max_{*i*,*j*} *Rest*(*i*, *j*, *j* + 1).

This function satisfies the following recurrence:

$$
Rest(i, j, k) = \begin{cases} 2 & \text{if } k > n \\ \max \begin{cases} 1 + Rest(j, k, k+1) \\ Rest(i, j, k+1) \end{cases} & \text{if } A[i] \le A[k] \le A[j] \\ Rest(i, j, k+1) & \text{or } A[j] \le A[k] \le A[i] \end{cases} \\ Rest(i, j, k+1) & \text{otherwise} \end{cases}
$$

We can memoize this function into a three-dimensional array *Rest*[−1 .. *n*, 0 .. *n*, 1 .. *n*], indexed by *i*, *j*, and *k*. We can fill with three nested loops, decreasing *k* in the outermost loop and decreasing *i* and *j* in the other two. (The nesting order of the inner loops doesn't matter.) The entire algorithm runs in $O(n^3)$ *time*.

Solution (reduction to longest path in a dag): Define a directed acyclic graph *G* = (V, E) as follows:

- $V = \{(i, j) | 1 \le i < j \le n\}$
- $E = \{(i, j) \rightarrow (j, k) \mid \min\{A[i], A[j]\} \le A[k] \le \max\{A[i], A[j]\}\}$

Altogether *G* has $O(n^2)$ vertices and $O(n^3)$ edges. This graph is acyclic, because for every edge $(i, j) \rightarrow (j, k)$, we have $i < j$ and $j < k$.

Every directed path of length *ℓ* in *G* corresponds to a restrained subsequence of *A* with length ℓ + 2. Thus, we need to compute the longest path in *G* (with no fixed start or end vertex). We can compute this path in $O(V + E) = O(n^3)$ *time* using the dag-longest-path algorithm in the textbook. Finally we return the number of edges in the longest path plus 2. \blacksquare

Rubric: 10 points, standard dynamic programming or graph reduction rubric, as appropriate. These are not the only solutions. This problem can actually be solved in $O(n^2)$ time.

3. Suppose you are given a chessboard with certain squares removed, represented as a two-dimensional boolean array *Legal*[1 .. *n*, 1 .. *n*]. A *bishop* is a chess piece that attacks every square on the same diagonal or back-diagonal; that is, a bishop on square (i, j) attacks every square of the form $(i + k, j + k)$ or $(i + k, j - k)$. Describe an algorithm to places as many bishops on the board as possible, each on a legal square, so that no two bishops attack each other.

Solution: First let's establish some terminology. The *d*th *diagonal* consists of all squares (i, j) such that $i + j = d$, and the *b*th *back-diagonal* consists of all squares (i, j) such that $i - j = b$. Thus, the square in row *i* and column *j* lies on diagonal $i + j$ and back-diagonal $i - j$.

Construct a bipartite graph $G = (D \sqcup B, E)$ as follows:

- *D* contains a vertex for each diagonal;
- *B* contains a vertex for each back-diagonal;
- *E* contains an edge between diagonal *i* + *j* and back-diagonal *i* − *j* if and only if $Legal[i, j] = \text{True}$.

Compute a maximum matching *M* in *G* in $O(VE) = O(n^3)$ *time*, using the algorithm described in class. Finally, return the number of edges in M.

Rubric: 10 points: standard graph reduction rubric. This is not the only correct solution.

■

- 4. Suppose you buy random Pokémon cards until you own exactly *n/*4 of the *n* possible card types. We can break your Pokémon-collection process into *phases*; for any index *k*, the *k*th phase ends just after you purchase the *k*th distinct card type.
	- (a) *Prove* that for all $1 \le k \le n/4$ and for all $m \ge 0$, the probability that you purchase more than *m* cards in the *k*th phase is at most 4 [−]*m*.

Solution: During the *k*th phase, we own at most $k - 1 < n/4$ types of cards. Thus, a random card during the *k*th insertion has a type we already own with probability less than 1*/*4. Because cards are independent, the probability that the first *m* purchases all have types we already own is less than $(1/2)^m$.

Rubric: 3 points.

(b) *Prove* that for all $1 \le k \le n/4$, the probability that the *k*th phase requires more than $2\log_2 n$ purchases is at most $1/n^2$.

Solution: Let *#cards*(*k*) denote the number of cards we purchase during the *K*th phase. If we set $m = 2 \log_2 n$, we immediately have

$$
\Pr[\#cards(k) > 2\log_2 n] = \Pr[\#cards(k) > m]
$$
\n
$$
\leq 4^{-m} \qquad \text{by part (a)}
$$
\n
$$
= 4^{-2\log_2 n} = \frac{1}{n^4} \leq \frac{1}{n^2}
$$

Rubric: 2 points.

(c) *Prove* that with probability at least $1 - 1/n$, none of the *n*/4 phases requires more than $2\log_2 n$ purchases.

■

(d) What is the *exact* expected *total* number of purchases to collect *n/*4 different card types? (A tight *O*(·) bound is worth significant partial credit.)

Solution: During the *k*th phase, we own exactly *k* −1 of the *n* card types, so the probability of each purchase having a new type is $(n - k + 1)/n$. It follows that the expected number of purchases during the *k*th phase is exactly $n/(n-k+1)$. Linearity of expectation now implies

$$
E\left[\sum_{k=1}^{n/4} \# cards(k)\right] = \sum_{k=1}^{n/4} E\left[\# cards(k)\right]
$$

=
$$
\sum_{k=1}^{n/4} \frac{n}{n - k + 1}
$$

=
$$
n \cdot \sum_{k=1}^{n/4} \frac{1}{n - k + 1}
$$

=
$$
n \cdot \sum_{\ell=3n/4+1}^{n} \frac{1}{\ell}
$$
 [$\ell = n - k + 1$]
=
$$
\boxed{n \cdot (H_n - H_{3n/4})}
$$

$$
\approx n \cdot (\ln n - \ln(3n/4))
$$

=
$$
\ln(4/3) n \approx 0.28768n = \Theta(n)
$$

If we only need a tight *O*() bound, we can approximate as follows:

$$
\mathbb{E}\left[\sum_{k=1}^{n/4} \# cards(k)\right] = \sum_{k=1}^{n/4} \frac{n}{n-k+1}
$$

$$
\leq \sum_{k=1}^{n/4} \frac{n}{3n/4}
$$

$$
= \sum_{k=1}^{n/4} \frac{4}{3} = \frac{n}{3} = O(n)
$$

Rubric: 3 points. A correct summation is worth 2 points. "*O*(*n*)" is worth 2½ points. No proof is required for full credit.

- 5. Suppose you are given a bipartite graph $G = (L \sqcup R, E)$ and a maximum matching M in *G*. Describe and analyze efficient algorithms for the following operations. Both of your algorithms should be significantly faster than recomputing the maximum matching from scratch. [Hint: Think about the reduction from maximum matchings to maximum flows.]
	- (a) Insert(*u*, *v*): Insert an edge between $u \in L$ and $v \in R$ and update the maximum matching. (You can assume that *uv* is not an edge before this function is called.)

Solution: First we construct a flow network *H* from *G* by adding a new source vertex *s*, edges from *s* to every vertex in *L*, a new target vertex *t*, and edges from every vertex in *R* to *t*. Finally, we direct every edge in the original graph *G* from *L* to *R*. Every edge in *H* has capacity 1. The maximum matching *M* corresponds to a maximum flow f^* in H .

To INSERT edge uv , we add a directed edge $u \rightarrow v$ with capacity 1 to the flow network *H*, and then perform one iteration of the Ford-Fulkerson augmenting path algorithm: Build the residual graph H_{f^*} , look for a path from *s* to *t* in H_{f^*} , and if such a path is found, push 1 unit of flow along it.

Finally, we translate the new maximum flow in *H* back to a matching in *G*. The entire algorithm runs in $O(E)$ *time*.

We can prove the algorithm correct as follows. Adding one edge increases the number of edges in the maximum matching by at most 1. Every edge in the residual network *H^f* [∗] has capacity 1, so a single iteration of Ford-Fulkerson either fails to find a residual path (so the matching does not change) or increases the flow value by exactly 1 (so the matching size increases by 1).

Rubric: 5 points = 4 for algorithm + 1 for time analysis. Proof of correctness is not required. This is neither the only correct algorithm nor the only proof of correctness for this algorithm.

(b) $D \text{ELETE}(uv)$: Delete edge uv and update the maximum matching. (You can assume that *uv* is actually an edge before this function is called.)

Solution: Assume that the deleted edge *uv* is in the matching *M*, since otherwise, *M* is still a maximum matching after *uv* is deleted. Let $G' = G - uv$ and $M' = M - uv$. The modified matching M' is a matching in G' , but it might not be a maximum matching.

To find a maximum matching in G' , we convert G' into a flow network and M' into a maximum flow, run one iteration of Ford-Fulkerson, and convert the new maximum floe back into a matching, exactly as in the solution to part (a). The entire algorithm runs in $O(E)$ *time*.

We can prove the algorithm correct as follows. Removing one edge decreases the number of edges in the maximum matching by at most 1. Just as in part (a), a single iteration of Ford-Fulkerson either leaves the current matching unchanged or increases the size of the matching by 1.

Rubric: 5 points = 4 for algorithm + 1 for time analysis. Proof of correctness is not required. This is neither the only correct algorithm nor the only proof of correctness for this algorithm.

6. Let $G = (V, E)$ be an undirected graph. The *neighborhood* of a vertex *v* consists of *v* and every vertex adjacent to *v*. A *double-dominating set* in *G* is a set *S* of vertices such that for each vertex *v*, the neighborhood of *v* contains at least two vertices in *S*.

Suppose you are given a graph *G* where every vertex has degree $d-1$ (and thus the neighborhood of every vertex contains exactly *d* vertices), and each vertex *v* has a non-negative weight *w^v* . Your goal is to find a double-dominating set *S* in *G* whose total weight $\sum_{v \in S} w_v$ is as small as possible. Solving this problem *exactly* is NP-hard.

(a) Write an integer linear program that *exactly* captures this problem. In particular, each solution of the integer linear program must describe a double-dominating set, and each double-dominating set must correspond to a solution of your integer linear program.

Solution: Let $N(v)$ denote the neighborhood of any vertex v . For each vertex v , we have a variable x_v that equals 1 if $v \in S$ and 0 otherwise.

minimize \sum

subject to \sum

v

 $w_{\nu} \cdot x_{\nu}$

v∈*N*(*u*) *for each vertex <i>u* $x_v \in \{0, 1\}$ for each vertex *v* ■ **Rubric:** 5 points = $1\frac{1}{2}$ for objective + 2 for double-dominating constraints + $1\frac{1}{2}$ for indicator

constraints

(b) Describe and analyze an efficient (*d/*2)-approximation algorithm for this problem. Remember to *prove* that your algorithm returns a valid solution, and *prove* that it achieves an approximation ratio of *d/*2.

Solution: This subproblem was broken; the correct approximation ratio from LP rounding is actually $d − 1$, not $d/2$. Everyone gets full credit for this **subproblem.** Here is the solution for the correct approximation ratio:

Relax the ILP from part (a) to a linear program by replacing the last constraints with $0 \le x_\nu \le 1$. Let x^* denote the optimal fractional solution to this LP, and let $OPT^* = \sum_{v} w_v x_v^*$ *v* . We immediately have *OPT*[∗] ≤ *OPT*, where *OPT* is the value of the optimal *integer* solution.

We define a new integer vector *x* ′ as follows: For each vertex *v*, let

$$
x'_{v} = \begin{cases} 1 & \text{if } x_{j}^{*} \ge 1/(d-1) \\ 0 & \text{otherwise} \end{cases}
$$

Correctness: For each vertex *u*, we have $\sum_{v \in N(u)} x_u^* \ge 2$. So there must be at least two vertices *v* and *v*^{\prime} in the neighborhood $N(u)$ such that

$$
x_v^* \ge 1/(d-1)
$$
 and $x_{v'}^* \ge 1/(d-1)$.

(Otherwise, even if $x_u^* = 1$, we would have $x_v^* < 1/(d-1)$ for each of the other *d* − 1 vertices $v \in N(u)$, which implies $\sum_{v \in N(u)} x_v^*$ < 2.) Our rounding rule implies $x'_v = x'_v$ \sum_{v} = 1. It follows that $\sum_{v \in N(u)} x'_v \ge 2$ for each vertex *u*. In other words, *x* ′ is a feasible solution for our ILP.

Approximation ratio: For each vertex *v*, we have $x'_{\nu} \leq (d-1) \cdot x_{\nu}^*$ *v* , so

$$
\sum_{v} w_{v} x'_{v} \leq (d-1) \cdot \sum_{v} w_{v} x^{*}_{v} = (d-1) \cdot OPT^{*} \leq (d-1) \cdot OPT.
$$

Thus *x'* is a $(d-1)$ -approximation of the optimum double-dominating set. ■

Rubric: 5 points. Everyone gets full credit.