
CS 473 Conflict Final Exam Solutions Fall 2024

1. The figure below shows a flow network G, along with an (s, t)-flow f that is not a maximum
flow. Clearly indicate the following structures in G

(a) An augmenting path for f .

Solution: There are three augmenting paths, each using at least one backward
residual edge:

2/2

1/5

3/8

2/9 4/4

5/9

4/8

3/3

1/6

s

t

2/2

1/5

3/8

2/9 4/4

5/9

4/8

3/3

1/6

s

t

2/2

1/5

3/8

2/9 4/4

5/9

4/8

3/3

1/6

s

t

■

Rubric: 2½ points. Any one of these paths is worth full credit.

(b) The result of augmenting f along that path.

Solution: Each augmenting path yields a different augmented flow:

2/2

0/5

3/8

3/9 4/4

6/9

4/8

3/3

2/6

s

t

2/2

1/5

7/8

6/9 4/4

5/9

0/8

3/3

5/6

s

t

2/2

0/5

3/8

3/9 3/4

5/9

3/8

3/3

3/6

s

t

■

Rubric: 2½ points. The flow must be obtained by pushing as much flow as possible along the
path indicated in part (a). No credit here if part (a) is incorrect.

1

CS 473 Conflict Final Exam Solutions Fall 2024

(c) A maximum (s, t)-flow in G.

Solution: The maximum flow is unique; the value of the maximum flow is 9.

2/2

0/5

7/8

7/9 4/4

6/9

0/8

3/3

6/6

s

t

■

Rubric: 2½ points. 1 point for a feasible flow that is not a maximum flow.

(d) A minimum (s, t)-cut in G.

Solution: There are two different minimum cuts, each with capacity 9.

2/2

0/5

7/8

7/9 4/4

6/9

0/8

3/3

6/6

s

t

2/2

0/5

7/8

7/9 4/4

6/9

0/8

3/3

6/6

s

t

■

Rubric: 2½ points. Any one of these cuts is worth full credit. −1 for only marking forward-
crossing edges if there are also backward-crossing edges. 1 point for an (s, t)-cut (that is, a
partition of the vertices with s and t in different parts) that is not a minimum cut.

2

CS 473 Conflict Final Exam Solutions Fall 2024

2. A sequence of numbers x1, x2, . . . , xℓ is sort-of-increasing if each element (except the first
two) is larger than the average of the two previous elements; that is, for every index i > 2,
we have 2x i > x i−1 + x i−2. Describe an efficient algorithm to compute the length of the
longest sort-of-increasing subsequence of a given array A[1 .. n] of numbers.

Solution (dynamic programming): For any indices 1 ≤ i < j ≤ n, let SortOf(i, j)
denote the length of the longest sort-of-increasing subsequence of A[i .. n] whose first
two elements are A[i] and A[j]. We need to compute maxi, j SortOf(i, j).

This function satisfies the following recurrence:

SortOf(i, j) =max

¨

2, 1+max

¨

SortOf(j, k)

�

�

�

�

�

j < k ≤ n and
2 · A[k]> A[i] + A[j]

««

(Here we can define either max∅ = 0 or max∅ = −∞; the recurrence is correct
either way.)

We can memoize this function into a two-dimensional array SortOf[1 .. n, 1 .. n],
which we can fill with two nested loops, decreasing i in one and decreasing j in the
other. (The nesting order of the loops doesn’t matter.) For each i and j, we need O(n)
time to compute SortOf[i, j], so the entire algorithm runs in O(n3) time. ■

Solution (dynamic programming): For any triple of indices 1 ≤ i < j < k ≤ n, let
SortOf(i, j, k) denote the length of the longest sort-of-increasing subsequence of A
whose first element is A[i], whose second element is A[j], and whose remaining
elements all come from the suffix A[k .. n]. If we add two sentinel elements A[−1] =
+∞ and A[0] = −∞, then we need to compute SortOf(−1, 0,1)− 2.

This function satisfies the following recurrence:

SortOf(i, j, k) =

2 if k > n

SortOf(i, j, k+ 1) if 2 · A[k]≤ A[i] + A[j]

max

�

1+ SortOf(j, k, k+ 1)

SortOf(i, j, k+ 1)

�

otherwise

We canmemoize this function into a three-dimensional array SortOf[−1 .. n, 0 .. n, 1 .. n],
indexed by i, j, and k. We can fill with three nested loops, decreasing k in the outer-
most loop and decreasing i and j in the other two. (The nesting order of the inner
loops doesn’t matter.) The entire algorithm runs in O(n3) time. ■

3

CS 473 Conflict Final Exam Solutions Fall 2024

Solution (reduction to longest path in a dag): Define a directed acyclic graph G =
(V, E) as follows:

• V =
�

(i, j)
�

� 1≤ i < j ≤ n
	

• E =
�

(i, j)�(j, k)
�

� 2 · A[k]> A[i] + A[j]
	

Altogether G has O(n2) vertices and O(n3) edges. This graph is acyclic, because for
every edge (i, j)�(j, k), we have i < j and j < k.

Every directed path of length ℓ in G corresponds to a sort-of-increasing subsequence
of A with length ℓ+2. Thus, we need to compute the longest path in G (with no fixed
start or end vertex). We can compute this path in O(V + E) = O(n3) time using the
dag-longest-path algorithm in the textbook. Finally we return the number of edges in
the longest path plus 2. ■

Rubric: 10 points, standard dynamic programming or graph reduction rubric, as appropriate. These
are not the only solutions. This problem can actually be solved in O(n2 log n) time.

4

CS 473 Conflict Final Exam Solutions Fall 2024

3. Suppose you are given a chessboard with certain squares removed, represented as a
two-dimensional boolean array Legal[1 .. n, 1 .. n]. A rook is a chess piece that attacks every
square in the same row or column; that is, a rook on square (i, j) attacks every square of
the form (i, k) or (k, j). Describe an algorithm to places as many rooks on the board as
possible, each on a legal square, so that no two rooks attack each other.

Solution: Construct a bipartite graph G = (R⊔ C , E) as follows:

• R contains one vertex ri for each row i,

• C contains one vertex c j for each column j,

• E contains the edge ric j for each legal square (i, j).

Compute a maximum matching M in G in O(V E) = O(n3) time, using the algorithm
described in class. Finally, return the number of edges in M . ■

Rubric: 10 points, standard reduction rubric. This is not the only solution.

5

CS 473 Conflict Final Exam Solutions Fall 2024

4. Suppose we insert a sequence of n items into an initially empty hash table of size 2n, using
an ideal random open-address hash function.

(a) Prove that for all 1≤ k ≤ n and for all m≥ 0, the kth insertion requires more than m
probes with probability at most 2−m.

Solution: During the kth insertion, the table contains k− 1< n items; in other
words, more than half of the table entries are empty. Thus, a random probe
during the kth insertion finds an occupied cell with probability less than 1/2.
Because the probe addresses are independent, the probability that the first m
probes finds only occupied cells is less than (1/2)m. ■

Rubric: 3 points

(b) Prove that for all 1≤ k ≤ n, the kth insertion requires more than 2 log2 n probes with
probability at most 1/n2. [Hint: Use part (a).]

Solution: Let #probes(k) denote the number of probes required by the kth
insertion. If we set m= 2 log2 n, we immediately have

Pr[#probes(k)> 2 log2 n] = Pr[#probes(k)> m]

≤ 2−m by part (a)

= 2−2 log2 n =
1
n2

■

Rubric: 2 points

(c) Prove that the maximum number of probes over all n insertions is more than 2 log2 n
with probability at most 1/n.

Solution:

Pr[max
k

#probes(k)> 2 log2 n]

= Pr

�

n
∧

k=1

#probes(k)> 2 log2 n

�

≤
n
∑

k=1

Pr[#probes(k)> 2 log2 n] by the union bound

≤
n
∑

k=1

1
n2
=

1
n

by part (b)

■

Rubric: 2 points

6

CS 473 Conflict Final Exam Solutions Fall 2024

(d) What is the exact expected total number of probes for all n insertions?

Solution: During the kth phase, exactly k− 1 of the 2n table cells are occupied,
so the probability of each probe hitting an empty cell is (2n − k + 1)/2n. It
follows that the expected number of probes for the kth insertion is exactly
2n/(2n− k+ 1). Linearity of expectation now implies

E

� n
∑

k=1

#probes(k)

�

=
n
∑

k=1

E [#probes(k)]

=
n
∑

k=1

2n
2n− k+ 1

= 2n ·
n
∑

k=1

1
2n− k+ 1

= 2n ·
2n
∑

ℓ=n+1

1
ℓ

[ℓ= 2n− k+ 1]

= 2n · (H2n −Hn)

≈ 2n · (ln(2n)− ln(n))

= (2 ln2)n ≈ 1.38629n = Θ(n)

If we only need a tight O() bound, we can approximate as follows:

E

� n
∑

k=1

#probes(k)

�

=
n
∑

k=1

2n
2n− k+ 1

≤
n
∑

k=1

2 = 2n = O(n)

■

Rubric: 3 points. A correct summation is worth 2 points. “O(n)” is worth 2½ points. No proof
is required for full credit.

7

CS 473 Conflict Final Exam Solutions Fall 2024

5. Suppose you are given a directed graph G = (V, E) with positive integer edge capacities
c : E → Z+ and an integer maximum flow f ∗ : E → Z from some vertex s to some other
vertex t in G. Describe and analyze efficient algorithms for the following operations:

(a) Increment(e): Increase c(e) by 1 and update the maximum flow f ∗.

Solution: To Increment the edge e, we first increase the capacity c(e) by 1,
and then perform one iteration of the Ford-Fulkerson augmenting path algorithm:
Build the residual graph G f ∗ , look for a path from s to t in G f ∗ , and if such a
path is found, push 1 unit of flow along it. The algorithm runs in O(E) time. ■

We can prove the algorithm correct as follows. Let (S, T) be any minimum
(s, t)-cut in G, with respect to the original capacities. Increasing c(e) by 1 also
increases the capacity of (S, T) by at most 1. The easy half of the maxflow-mincut
theorem implies that new maximum flow value is at most the new capacity of
(S, T). Thus, incrementing c(e) increases the value of the maximum flow in G
by at most 1. Because all residual capacities are integers, it follows that a single
iteration of Ford-Fulkerson in the residual graph finds the new maximum flow.

Rubric: 5 points = 4 for algorithm + 1 for time analysis. Proof of correctness is not required.
This is neither the only correct algorithm nor the only proof of correctness for this algorithm.

(b) Decrement(e): Decrease c(e) by 1 and update the maximum flow f ∗.

Solution: Suppose we are asked to Decrement the edge u�v. We must have
c(u�v)> 0, since otherwise, decreasing c(u�v) is impossible. Similarly, we can
assume f ∗(u�v) = c(u�v), since otherwise, we can decrease c(u�v) by 1 and
return immediately.

First, we send one unit of flow backward through u�v, either along a path
from t to s or along a cycle in in the residual graph G f ∗ . Temporarily add an
edge s�t to the residual graph G f ∗ , find a path from u to v in this new larger
graph, push one unit of flow along the corresponding edges of G, and finally
decrease f (u�v) by 1.

Now we decrease c(u�v) by 1. The current flow f is still feasible, but it may
not be a maximum flow. To restore a maximum flow, we run one iteration of
Ford-Fulkerson, to push at most one more unit of flow from s to t.

The algorithm runs in O(E) time. ■

To show that this algorithm is correct, we need two prove two claims:

• There is a path from u to v in the residual graph plus s�t . Temporarily
add an edge t�s to G with f ∗(t�s) = | f ∗|. Now follow one unit of flow out
of v through an arbitrary sequence of directed edges in G + t�s, traversing
each edge e at most f ∗(e) times. Because flow is conserved at every vertex
(including s and t), this walk must eventually reach u. Reversing this walk
gives us a walk in the residual graph from u to v. Any walk from u to v
contains a path from u to v. (In fact, we can just use the walk directly.)

8

CS 473 Conflict Final Exam Solutions Fall 2024

• Decrementing c(u�v) decreases the maximum flow value by at most 1.
We can follow the proof from part (a). If u�v crosses some minimum cut,
then decrementing c(u�v) decreases the capacity of the minimum cut by 1,
and therefore decreases the value of the maximum flow by 1. Otherwise,
the minimum cut capacity does not change, so the maximum flow value
also does not change.

Solution: Suppose we are asked to Decrement the edge u�v. We must have
c(u�v)> 0, since otherwise, decreasing c(u�v) is impossible. Similarly, we can
assume f ∗(u�v) = c(u�v), since otherwise, we can decrease c(u�v) by 1 and
return immediately.

First we attempt to reroute one unit of flow through u�v along another path
from u to v. We search for a path from u to v in the residual graph G f ∗ using
whatever-first search in O(E) time. If there is such a path P, we decrease f (u�v)
by 1, push one unit of flow along P, and return the resulting flow. Because the
new flow has the same value as f ∗, it is also a maximum flow.

If there is no path from u to v in G f ∗ , decreasing c(u�v) must reduce the
value of the maximum flow. We temporarily add an edge t�s, find a path P
from v to u in the augmented residual graph G f ∗ + t�s using whatever-first
search, decrease f (u�v) by 1, push one unit of flow along P, remove the edge
t�s, and return the resulting flow.

The entire algorithm runs in O(E) time. ■

We can prove that there is a path from u to v in the augmented residual graph
as follows. Because f ∗ saturates u�v, any flow decomposition of f ∗ contains a
path Q from s to t through u�v; the reversal of Q must be a directed path in
the residual graph. So rev(Q) + t�s must be a cycle in the augmented residual
graph G f ∗ + t�s. So rev(Q)+ t�s− v�u is a path from u to v in the augmented
residual graph.

Solution: Suppose we are asked to Decrement the edge x�y . We must have
c(x�y) > 0, since otherwise, decreasing c(x�y) is impossible. Similarly, we
can assume f ∗(x�y) = c(x�y), since otherwise, we can decrease c(x�y) by 1
and return immediately.

First we attempt to reroute one unit of flow through x�y through another
path from x to y. We search for a path from x to y in the residual graph G f ∗

using whatever-first search in O(E) time. If there is such a path P, we decrease
f (x�y) by 1, push one unit of flow along P, and return the resulting flow.
Because the new flow has the same value as f ∗, it is also a maximum flow.

If there is no path from x to y in G f ∗ , decreasing c(x�y) must reduce the
value of the maximum flow. We find a path P from t to y and a path Q from x
to s in G f ∗ , using whatever first search. Finally, we then push one unit of flow
along the residual path P · (y�x) ·Q.

9

CS 473 Conflict Final Exam Solutions Fall 2024

The entire algorithm runs in O(E) time. ■

To prove that this algorithm is correct, we need to show that P and Q are
edge-disjoint. (Otherwise, we would push two units of flow through a common
edge, but the capacity of that edge might be 1.) Let X be the subset of vertices
that x can reach in G f ∗ , and let Y be the subset of vertices that can reach y in
the residual graph G f ∗ . The subsets X and Y must be disjoint. Every path from t
to y visits vertices only in Y , and every path from x to s visits vertices only in X .
We conclude that paths P and Q have no vertices in common, and therefore no
edges in common.

Rubric: 5 points = 4 for algorithm + 1 for time analysis. Proof of correctness is not required.
These are neither the only correct algorithms nor the only proofs of correctness for these algo-
rithms.

10

CS 473 Conflict Final Exam Solutions Fall 2024

6. Suppose you are given an n× n array of 0s and 1s. Each row of the array is colored either
red or blue, there are exactly k 1s in each row, and each column j of the matrix has a
non-negative weight w j. Your goal is to choose a subset of the columns that satisfy the
following conditions:

• In each red row, there are at least one 1s in the chosen columns.
• In each blue row, there is at least two 1s in the chosen columns.
• The sum of the weights of the chosen columns is as small as possible.

(a) Write an integer linear program that exactly captures this problem. In particular,
each solution of the integer linear program must describe a set of columns, and each
set of columns must correspond to a solution of your integer linear program.

Solution: Let A[1 .. n, 1 .. n] be the given array of 0s and 1s. For each column j,
we have a variable x i that equals 1 if column j is selected and 0 otherwise.

minimize
∑

j

w j · x j

subject to
∑

j

A[i, j] · x j ≥ 1 for each red row i

∑

j

A[i, j] · x j ≥ 2 for each blue row i

x j ∈ {0, 1} for each column j

■

Rubric: 5 points = 1½ for objective + 2 for red/blue constraints + 1½ for indicator constraints

11

CS 473 Conflict Final Exam Solutions Fall 2024

(b) Describe and analyze an efficient (k/2)-approximation algorithm for this problem.
Remember to prove that your algorithm returns a valid solution, and prove that it
achieves an approximation ratio of k/2.

Solution: This subproblem was broken; the correct approximation ratio is
actually k, not k/2. (Even for the special case where every row is blue, the
correct approximation ratio is actually k−1.) Everyone gets full credit for this
subproblem. Here is the solution for the correct approximation ratio:

Relax the ILP from part (a) to a linear program by replacing the last constraints
with 0≤ x j ≤ 1. Let x∗ denote the optimal fractional solution to this LP, and let
OPT∗ =
∑

j w j x
∗
j . We immediately have OPT∗ ≤ OPT, where OPT is the value of

the optimal integer solution.
We define a new integer vector x ′ as follows: For each index j, let

x ′j =

¨

1 if x∗j ≥ 1/k

0 otherwise

Correctness: I claim that x ′ is a feasible solution for our integer linear program.

• For each red row i, we have
∑

j A[i, j] · x∗j ≥ 1, there must be at least one
column j such that A[i, j] = 1 and x∗j ≥ 1/k, and therefore x ′j ≥ 1. It
follows that
∑

j A[i, j] · x ′j ≥ 1 for each red row i.

• For each blue row i, we have
∑

j A[i, j] · x∗j ≥ 2. So there must be at least
two columns j and j′ such that

A[i, j] = 1 and x∗j ≥ 1/k and A[i, j′] = 1 and x∗j′ ≥ 1/k.

(Otherwise, we would have
∑

j A[i, j] · x∗j < 1 + (k − 1)/k < 2.) Thus,
x ′j = x ′j′ = 1. It follows that

∑

j A[i, j] · x ′j ≥ 2 for each blue row i.

Approximation ratio: For each index j, we have x ′j ≤ k · x∗j . It follows that

∑

j

w j x
′
j ≤ k ·
∑

j

w j x
∗
j = k ·OPT∗ ≤ k ·OPT.

So x ′ is a k-approximation of the true optimum solution. ■

Rubric: 5 points. Everyone gets full credit.

12

