
LECTURE 9 (September 24th)

Midterms 1 - Mon
, September zoth , 7-9pm

- No Lecture on Thursday - Optional Midterin Review Session
L

Sample Exams on Jeff's website or previous years' offerings

- Exam will cover material up to HW3

prerequisitesaonquer , FFT
Dynamic Progmmaning
No Randomized Algorithms /Probability on Midterm 1

- 4 questions & 2 Hours

L Solutions will be short
,
should take 5-10 minutes to write

L
clear and precise description of algorithm or pseudocode
some justification, e. g., recurrence
Run time

- One handwritten cheat sheet - one double-sided A4 page

- Conflict Exam On

&
Registration Form on Course Wetpage

- DRES accommodation

~ Please send the DRES letter by

- No homework this week

~Matching Nuts & bolts

Introduced by Gregory Rawlins

We have a bag of i nots and in bolts. All nots are of different sizes and so are the bolts

but for every not there is exactly one matching bolt.

Fask Match every not to its corresponding bolt

Only operation allowed Compare a not to a bolt and see if it fits or if the not is bigger
or the bolt is bigger

cannot compare two nuts with each other or two bolts with each other

How would you do it ?

Q



Prote Force Compare every not with every bolt-122 tries
One can save a factor of two since if we find a matching not
for a bolt we don't need to compare it to others , but it

is

still ECH3) tries

This problem should remind you of sorting

If the bolts are sorted
,
we can pick a not and find a matching bolt with binary search

↑

in log i time .
Overall

,
this takes Ologk) time to match all the nots and bolts.

This process of assuming a solution to one problem and using it to solve another is
called a reduction .

So
,
we can reduce the not-bolt matching problem to sorting .

It turns out that this task is equivalent to sorting. If all the nots and bolts
are matched

,
then we can also sort in Oh logn) time because if we want to

compare two nots with each other, we can compare them to their corresponding bolt.
So
,
we can run Mergesort to sort in 01m . Logn) time .

So
,

to solve the task
,
let's try a sorting algorithm eg. Mergesort ·

Can we do mergesort
with nots & bolts ?

Recall that mergesort does the following to an inpot array :

= split it into two halves & sort each half
* Merge the two sorted halves

Why can't we do this here ?

Problem comes from stepif ofMergesort .

We can split the nots into two parts but to recurse , we needto split the bolts
into two parts that match the partition of the nots. Not obvious how to do that !

So
,
this doesn't work

,
as there is no way to recurse .

What about Quicksort ?

At a minimum
,
we can make quicksort work

& pick a bolt
,
call it the pivot bolt

use that bolt to partition the nots into three parts - those
I that are bigger than the pivot bolt , those that are smaller

L and the matching not
then we can partition the bolts , using the not that matches
the pivot bolt

②



Now
,
we can recurse since we know in one part all of the nuts/bolts are smaller

than the pivot , and in the other , larger than the pivot
basic

If we try to do this deterministically , this is E(n2) in the Worst-case , just like quicksort
since everytime in the recursion

, we might get unlucky and the problem splits into
two unbalanced parts

For quicksort , we can use median of medians to pick a clever pivot and reduce the
running time to OChlogh) but there seems to be no way of doing that here

It is possible to do it deterministically in OChlogn) time , but the algorithm is quite
O

complicated and it took a lot of work to find it.

Picking a random pirot , also gives an O(h . logn) time randomized algorithm that
is not so difficult to analyze.

Randomized Algorithm to Match Nuts & Bolts

& Pick a random pivot
& Partition nots/bolts into biggero smaller parts & matched pair
* Recurse on the two sub-problems

How many tests do we need to perform for ?

↓
2n-1 tests

, compare the pivot bolt to all I nots

compare the matched not to everything except the pivot bolt

Let TCM) = running time forn nots & bolts

Then Thl = 2n - 1 + T(k-1) + TCn-k) for some value of K

If we were looking at the worst-case behavior
,
then we world take a max

over all K . But since we chosen the pivot randomly , we are interested in the

expected value of the running time , since k is random

So, : [T(n)) = 2n - 1 + [E(T(k-1)) + E(T(x- ))

Since the pivot bolt is equally likely to be the smallest , second smallest or kth smallest
for any 1.

# [K = k) = Ek ,
so our recurrence becomes

Ei(T(1) = 2n -1+ (TIT + E(T( -v())
= 2n - 1 + [T(R

③



How to solve this recurrence ? Such recurrences are called
, full history

recurrences and there's a trick to solving them which you can read in the

Lecture notes
,
but here we will try something else

#ervisticcalculation - Not a proof !

What are the bad cases for quicksort ? When subproblems are very unbalanced

Call a pivot good if < K<. Then , / pivot is good] =

So
, (T(n1] = (T(r) (good] + /T(M /bad]

Now
,
we can make the unjustified assumption that the running time only increases

the more unbalanced our pivot .
So
,
even when the pivot is good , the worst-case

occurs when K =1 or 3 . Similarly, when pivot is bad , then the worst-case occurs
When one sub-problem has size zero

.

With this "heuristic" assumption-

(T(H) -

> 2n - 1 + [E/T()] + E/T())+ En
=> ESTChl = an -2 + E/T(z)] + E(T(3)
We can solve this by using recursion trees

Ent
↑

Total work at each level = 1

I # levels = 10 R = Omlogly e

: "

Thrs
, heuristically Ei(T(H1) = O(logm) - This relies on an unjustified assumption

which would be true if I [ThI] is a
convex function of n. This turns out

to be true but proving it is not easy .

So
,
to prove it rigorously , we introduce a different method which illustrates one of

the most useful ideas in the analysis of randomized algorithms - decomposing the
running time as a sum of zero-one random variables

,
called indicator variables.

④



Rigorous Analysis

Let Xij = (7 if
it smallest bolt is compared to jt smallest notto

There T(n) = Xij

E/T(n)] = E(Xis]

= (1 · (Xij = 1) + 0 . I(Xij =0])
=

#[Xij = = ]

Let's look at a few cases to see what [Xj = 1) is

· # [X+
, z
= 1] = 1 since its bolt must be compared to its not in the end

· 1[X1
,
n
=71= * There are several cases here :

(1) Pivot is the 1St bott => Xin = 1 = probability &
(2) pivot is the nt" bolt = XIn = 1 = probability
(3) pivot is th bott where => Xan

= 0

1(k(11

1

# botts If k is selected ,
the left

and right problems are

# a nots solved separately and no

11 bolt on the top left is

compared to a not in
the bottom right

Intuitively
, if a bolt and not is closer in rank

,

it has a higher chance of
being compared. For ith bolt andjth not

, if livjt is small , then probability
of being compared should be large .

pivot k
↓

· P[Xij = 1) =@ #* I bolts

i

↓gain there are several cases here. 11 puts

Seeki ?? j

Easek= i Xij = 1
=> What happens in the top and bottom cases ?

Ease i<kj Xij = 0

Easek= j Xij = 1

Stk7j ?? ⑤



Consider the top case (since the bottom case is symmetria
pivot k

/ bolts

#t nots

j

This will be divided into two subproblems in recursion - the left & right of the pivot

* For the right subproblem , the original Mirt
i - k bolt pair we were interested in are now

*t the i-k & j-K smallest respectivelyi -k

Left Right
subproblem subproblem

Note that li-j) = /(i-k) - (j-k)) so
the difference in their ranks has not changed

So
,
in this case where K< i

,
we recorse

(ork(j)

Seeki Recurse
I the first pivot is chosen from hi ..... j3 , then

Easek= i Xij = 1

! Here are 1j-il + = cases where we either compareEase i<kj Xij = 0
↓&j or split ; and; a never compare

Easek= j Xij = 1

SteK7j Recurse
Out of these there are exactly two cases
where Xij = 1

So
, #(Xij = 1/k= or i<<j or k=j]=

To handle the recursive cases , we can use induction

·
Hypothesis For all 1320 D(Xij)= for ii

·To

&

Base Case 2 IP(Xij)= 1 for joi

Inductivecase p(Xij == or):
-

:= p

+/ki) ·P(ki] + [Xi = + /kj] · [k> ]
- --

By induction By induction
: = v

--
⑥



Overall
, M(Xij = =) = Fi (Ptq =-

Therefore ,
[T(l = #[Xij =1)

= n + S (Xij =1)
ifj

= n + 2 t
= 47Hn-7n + 4Hn where Hi = nth Harmonic number

= log 12

Another piece of intrition to help you think about this algorithm is the following

Normally, when we think of our recursive algorithm , we think of it as follows

# Pick a pivot
1
D # Recursively solve the left subproblem first

This means picking a random pivot in the

green part and recursing

After we have solved the left subproblem ,
solve the right one

But you can also consider a slightly different version of the algorithm which

does the same steps in a different order

The new algorithm hasi phases : in each phase , it picks a random pivot bolt
from all the bolts that were not chosen as a pivot before

The first phase works the same as above , but in the second phase
the algorithm choses a uniformly random bolt in either the green or

yellow subproblem and splits that part further .

For example , the following
could happen :
ij

# split whatever region the randomly
1 chosen bolts happen to land in?

i j

D # Now, we can follow its not and its bolt down
1 the tree and this makes it a bit more
T intritive that it only depends on 1j-i)

⑦


