LecToRe 2 (August 29*)

Fast Fourier Transform

last 4me we looked at Kavatsvla's l'mé%t/ mulhfln‘cafion a!goféthm which ml)lit'?l«'ed o n-d{ffi’
numbers (n 0(nY ¢ ) time

fast Rurer Tansorm s one o0l which is vsed 1o get an O&tlogn) time a{g—m’iﬁm

Tt has many other a.ffl«'cahbns as well and -éoda] we will talk about aFe.raﬁbns on Po()'nomldls
where Fast Founer Tansform (s very u.sefu(l

Recall that a palynomal s any function of the form

ﬂ -
F(X)-" Z P: x*t

Let ous -rerfe.se.n—t the Polynoml'al P with an array I if;\‘l j
Hhat holds the valves of the coeffecients P®

There are several Drem‘hbns one. covld do o Pol)/homlhls

* Evalvate p on an infut— x

EvaLuaTE(P[0..n], x):
Xe1 (Xx=x)
y<0
forj—Oton

y<y+P[jl-X
Xe—X-x
return y

ﬁme. = OM)

e Add pdynomials p and g,

App(P[0..n],Q[0..n]):
forj<—Oton L
R[j] < P[j1+Q[j] Time = O()
return R[0..n]

. Mul{;irly polynomials p and g

MuctipLy(P[0..n],Q[0..m]):
forj—Oton+m : -
R[j]«0 Time = O(n™) — By the end of the lectore
forje—Oton we will improve this to
fork —0tom
Rj+K] — REj + K]+ P[j1-QLK] O(rlog n)
return R[0..n + m]




However , there are other ways of vepresenting polynomials that are also vseful

log) oW
L')(O.)I’ln) Cxuy)

[2] Sample points

We know that given a Llne ()= ax+b
two points determine the line oniguely
Plx) PYn)
Similarly, for a degree -1 polynomial having (n+4) - sample  values (o,¥o) 1orme 10X 1Y)
vnigdy  determines -the. - polynomial 7

we can choese
whatever is convenient

Thee s @(acti/ ohe cle_g’/e& 3 Folyﬂom/b(
that passes &woug%, these 4 pts

I this vepresentation, Adddion takes Oh) Hime
Mutiplication takes OCh) time  Needs 2n+1 sample pouts
Evalvation — how do we evalvate polynomials
(h this fe?rcsenta-lz‘an on a new valve x 7

There. s an exact formula b)/ Lagrange from the 17005 to ComptL{re the
um'sze Polynom:‘a[ rassing— thfough g»'ven sarn/J(e foinés

n—1
- Y _
p(x) Z(Hk#(xj_xk) [ [€3 xk))

=0 k#j
To evalvate (s expression , we need OCh®) tme haw

We have made moltiplication faster bot evaloation slower

Root yﬁore,ren{:afrbn

Fundamnta( theorem cf algcim qus :Hm{ cvery Po])/namlla{ can bc wnl-ken as
P(X) =c (x-1,) - (X-7)

Evalvatton  0OCh) Hme

Mulbfpl(mﬁon 0(n) time

Addlrtion oo < Can not compute exactly Shce roots of
p+9 might hot a hice expression in terms

OJC Yoots %C f and voots Of 2



To summarze, we ave left with two usefol representatons

representation | evaluate add multiply

coefficients : O(n) O(n) OMm?) <— Fast Evalvation
samples on2?) o) o) <« Ffast My H’|'f>ll'c ation

If we can convert from coefficient +o sam}a]e 7e701e<ehf:a‘l:rbn and back quickly
we can do all opevations faster — just convert o the r%oresnntaﬁ'on where_
that operation is fast , do the operation in thaf vepresntafion and convert
back +4o the orginal representation

Let's thunk about what the convervsion s Soppase

h-1

pex) = _ZaixL and SamPIc Paints ave (%, --- An.,)
- 7PN Yot = (POB) ... PCX.)

Then , we have the fo//ow.hg' velationship

1 xq Xy X ay Yo
2 n—1
1R, xy X a; Y1
2. n—1
1 x5 X5 Xy a | =\ ¥
2 n—1
1 Xnp—1 xn_l Xn_l ap—1 Yn—1

Thus, - conve rang: wefficients Samﬂc— valves s a linear temsformation

The space of af( degrce-n. Po/ynom'ab is a vector spae where You use
wefficients 4o cpecify the polynomial in one basis and  sample valoes th
ahother bascs

So, when yov are dolhg this matrix- vector multiplication , what you are doiher
s converting from ane basis 1o the other

The matrix above is called the Vandermonde matrix. It s guavanbecd 0 not
be s(ngular ancl ks determmant s non-zeve.

So, we can convert from cocfficients to sample valves by evalvating~ this
matny - vector rrac[uct. How lahg does (& take ? O(n?)

But there i @ degree. ofﬁeedom here yve havent exl?loiteal — he
Sample Pos[ﬁons. Can we choose thems th a clever nay to com/:ube,
this matvix - vector /oroducé Zuz’ck/y 7



We will describe what properties we want from ovr sample valves first
and then we will describe how 4o satisfy them

So, think in terms of divide - and- conguer a:lgaribhms

Recall, Kavatsvba's algov%m where we wanted mul%iply 4wo
L'nl:e,gefs x and Y,

x = albl
y = c | d

and  we gplfl; them each (h paris and moltiplied the Paﬂs In Some WOy.

We ave going o do SOmE‘thlhg’ that, (ooks Strange bt & works oot bettey

. h-/
We will wrile px)= a, + ax + QZ'Xzf- (137(3 + ...+ 4, X

X Pouy (x*) + pem,(xz)

Example, plx) = S -3k +3x +&’
then Fodd x) = 24+

(x)= S+3x I_S_,Ej -2|1

even odd

Peven
Using the above , we want to veduee evalvation of a deg‘ree—h
polynomial in x to evaluating two degree ", polynomials in x:

So, we will start with n sample. valves and when we retorse wye
only need to evaluate hy, - distinet sqm})}e, valves.

To ensore this, we call a set of sampl valves X cllapsible. if
[X1=1

oY
¢ X'z 1 lwexlis collqrsibfe and has X! elements
2

So, to vecorse we will Just evaluate the smalley I -degree palynomials
on the set X2 =

We have reduced the problem of evalvating a degree -h polynomial on
n Fafnﬁ; +o eva[uaﬁng two clegree. Faiynam?ql_c 6n 1 points
2 =2

So, if Th) = time 4o evaluate a polynomial of degree-n on a collq,psible
set of n sample positions



theh , we have the vecorrenee
T(h) = ") + Oh
0 27(2) + o)
= O('n-[og h)
Example :  X= {1} is Col!aps:lalc
X=11,2,3,47 is hot cdllaFﬂ]:Ie
X= {1} is collapsible = X*= {13
In fact, takl'ng sqvave Yooks gf\/cs Us @ tecipe to @nstruet coIIQ/as/bIc sets
$13 — 1-1,13 — fi,-i,-, 1] — {21 2 Li ti 41}
2 Y2
So, we end UF Wl:t’h z"- th com}:lex roots qc un}t)/
Generally , we can use fioating Po[m‘: avithmetic. when coing” sfgna( pracessfng
since there (s noise n the .sv‘gnal anyway otherwise we do modolar
avithmetic modvlo some )mgra rime. . We will not discdss 4his here and
for the porposes Of this class, we can assume thal we can c:am}puie_

these square roots exacfy,

In general, the n?'-1o0t of onfty Wy, = (oS (&;l) . i-sin(zT")

2
)
(.J'} 2 Wn
n le= 21
//7\\ ahg T
KJ«;,:‘ =1

We are goin to we the 25~ yoots of unl;e)c as ouy COHQPSIHe set
and vse the divide and conquer stmteg)/

This strategy ic called the Fast Fourier “Tansform

The valve: of the polynomials on these wots of um‘#)l is aalled
the discrete fbuﬂ'ef transform (DFT)

n—1

DET Of P — | P¥[j] := p(w{J = Zp[k],w{]k

k=0




If we want to evalvate this , 1t looks like.

RADIX2FFT(P[0..n—1]):
ifn=1
return P

forj—O0Oton/2—1 " Y
even L U[j]< P[2]] «—— 0("z) ¥me
odd ——> VIjleP[2j+1] < 0(",) tme
U* « RaDIx2FFT(U[0..n/2—1])
V* « RaADIX2FFT(V[0..n/2—1])

E\/e_ry’ch(ng' else  tqkes

W, — cos(ZT”) - isin(%)

w1 C)Ch) -Hmf,
forje—0ton/2—1
P*[j] < U jl+w-V'[j] ,
Plj+n/21U]1-w-vij] | Overall, Olnlogn] time
W~ w-w,

return P*[0..n—1]

Take a polynomial of depree 4 and Com/JU’te this by hand

This (s known as the Cgoley-Tukey algorithm . It wvas devejofed b)l two
defense researchers named (ooley and Tokey , building an wovks by
others. 7hey wanted to detect Soviet Nuclear tests from selsmic
data! The above assumes degvee n is o power of dwo ,if not we
can st fqd it by 2eras but Cooley and Tf)ke)/ also ga\/e an alg’orl{hm
for q"}’ comfoaée; n

But in fact , this alg‘of;ﬁm was discovered by Gavss i is foll generldy
N the 1800s Who was -tfying 2 pred:'ot the locations of asterolds.

But he abandoned it because 16 century observations of asterods were
noiz)/ dhd FFT deesnt work well when there is a lot of roise .

So, Bavss said that becavse of Kepler s law , T know the ofbit has to
be an ellipse and I shovid try to find the best ellipse that matches
the data. This led to the invention of the method of least squares.

In the process, he vsedf othey thinpis that existed but are now named after
hin.

Going' back to v task, we can now convert from cefficients 4o Squla czu;'cld)/

representation | evaluate add multiply

Q coefficients | O(n) O(n) O(n?) <— Fast Evalvation

O[.h[ogh)
time

samples o(n?2) o) O0(n) <« fast Mu({n}:ll'caéa‘on

Can we convert back a{}),'dzb: as well 7 ¢e. Can we ondo the FFT?



Recall thay to convert from coefficients o sample valves, ve
CDrn)outco( the matrix-vector Pwducl:

V= Va where

11 1 1 1
1 w, w? 3 !
1 52 w?t wb . wZ(nfl) = NN
_ . . 4 i ond QA = arvcy efficlents
I ? o
1 ol 2D 31 L 1P

To po back , we need 4o compute the inverse - transformation v
and the carfes;:onding’ modnx - vectpr Produd-

a=v'y
It torns ovt thot the nverse Of this malvix is almast the same matrix
LemmaAx. V7' =V/n < $hork proof can be Found in the lecture notes

To camput—e. the inverse FFT, we an ]usb om pute the co;y"ugqtzs

INVERSERADIX2FFT(P*[0..n—1]):
ifn=1
return P

forj—O0ton/2—1
U*[j] < P*[2j]

INVERSEFFT(P*[0..n—1]): Vi[jle Pr2j+1]
P[0..n—1] « FFT(P*) U « INVERSERADIX2FFT(U*[0..n/2—1])
forj —0ton—1 V « INVERSERADIX2FFT(V*[0..n/2 —1])
P[j]« P[j]/n @, « cos(%£) —isin(3E) B complex cory'ug’ate
return P[0..n—1] w1
forje—0ton/2—1 takes care qf- -the
P(j] < Uljl+®-V[jD/2 «1— scaling factor
P[j+n/2] U]~ 3 V[j])/2 of
W w-w

n

return P[0..n—1]

So, going back from samples o coefficients Is es.ceh{'fa”)l the smme process

representation | evaluate add multiply

coefficients o(n) O(n) Ofa?) ‘
Otnlogn) j O (n- (og'n) tme
e samples Ogﬂ') o(n) o(n) )




So, o ml)(ﬁ'f)ly two f)ol})nomials n OCn-logr\) dime,

FFTMuLtipLy(P[0..m—1],Q[0..n—1]):
forje—mtom+n—1
P[jl<0
forje—ntom+n—1
Q[jl<o0
P* « FFT(P)
—T> Q"< FFT(Q)
logr h Qer
OCFT g ) forje—Otom+n—1
time. R'[j] < P*[j]-Q[j]
—— b return INVERSEFFT(R*)

!,

More generally , the came opevation as mvltiPI/ing— two. polynomials
oh seziuence; or vectors or arra ys is called a convolution

If we have tpwo se_%uence_s
a= (ao,al o~ - ,am_') < Think of these as
weffrcients of two

b= (bo, by, e , b ) < polynomials

then, the convolotion of a and b s given l>)/

asb = ¢ = Cco:~--~—-rCrn+n—1.)
wheve. ¢ = 3 a; b; «— This is then e
=k

Coeff['u'ehf of the
Pfoc[ucf Polyhom{ql

Convolution has other qP}Jlica'bions as we well see on the homeworks
ahd the next lecture.

NEXT LECTURE Move Convolution and Dynamic ngmmmthg




