
LECTURE 2 (August 28th)

Fast Fourier Transform

Last time we looked at Karatsuda's integer multiplication algorithm which multiplied twon-digit
numbers in 0 (MES

...

) time

Fast Fourier Transform is one tool which is used to get an Onlogn) time algorithm

It has many other applications as well and today we will talk about operations on polynomials
where Fast Forrier Transform is very useful

Recall that a polynomial is any function of the form

p(x)= x

Letis represent the polynomial p with an array1l
that holds the values of the coffecients P(i)

There are several operations one could do to polynomials

· Evaluate p on an input X

Time = OCH)

· Add polynomials p and q

Time = O(H)

· Multiply polynomials p and q

Time = O(n2) -> By the end of the Lecture

we will improve this to

O(r . 10g n)

①

However
,
there are other ways of representing polynomials that are also useful

sample points ((Y
,)

#We know that given a line ((x) = ax+b -

two points determine the line uniquely
P(Xo] PCYn)
11

Similarly , for a degree - 11 polynomial having (n+ 1)-sample values (Xo
,Yo) ----- , (n / Yn)

uniquely determines the polynomial # ↑

we can choose

whatever is convenient

The is exactly one degree 3 polynomial
that passes through these 4 pts

In this representation . Addition takes O(n) time

Multiplication takes OCH) time Needs 2n +I sample points
Evaluation - how do we evaluate polynomials

in this representation on a new value x ?

There is an exact formula by Lagrange from the 1700's to compute the

unique polynomial passing through given sample points

To evaluate this expression , we need OChE time now

We have made multiplication faster but evaluation slower

& Root representation

Fundamental theorem of algebra says that every polynomial can be written as
p(x) = c(X- r,) (X- Vn)

Evaluation OCH) time

Multiplication OCH) time

Addition * => can not compute exactly since roots of
p + q might not a nice expression in terms

of roots of p and roots ofa

②

To summarize
,
we are left with two useful representations

-

- Fast Evaluation

=> Fast Multiplication

If we can convert from coefficient to sample representation and back quickly
we can do all operations faster - just convert to the representation where
that operation is fast , do the operation in that representation and convert
back to the original representation

Let's think about what the conversion is. Suppose
n-1

p(x) = Sax" and sample points are (x ... -X,
240s----- Yn-) = (p(X) ,er-phall

Then
,
we have the following relationship

Thus
, converting coefficients to sample values is a linear transformation

The space of all deoree - 2 polynomials is a rector space where you use-

coefficients to specify the polynomial in one basis and sample values in
another basis

So
,
when you are doing this matrix-vector multiplication , what you are doing

is converting from one basis to the other

The matrix above is called the Vandermonde matrix
.
It is guaranteed to not

be singular and its determinant is non-zero .

So
,
we can convert from coefficients to sample values by evaluating this

matrix-rector product. How long does it take ? OCHY

But there is a degree of freedom here we haven't exploited - the
sample positions. Can we choose them in a clever way to compute
this matrix-vector product quickly ?

③

We will describe what properties we want from our sample values first
and then we will describe how to satisfy them

So
,
think in terms of divide-and-conquer algorithms

Recall
,
Karatsuba's algorithm where we wanted to multiply two

integers X and y

x = 14

y
= d)

and we split them each in parts and multiplied the parts in some way.

We are going to do something that looks strange but it works out better

We will write p(x) = a. + a, x + a2x" + azX3 +... + an - X
n - 1

= X . Podd(x2) + Peven (x2)

Example , p(x) = 5 - 2x + 3x2 +x #2 13 1 = /

↓ Ythen , Podd (x) = -2 + x

Peven (x)= 5 + 3x / #
even odd

Using the above
,
we want to reduce evaluation of a degree - nS

polynomial in x to evaluating two degree polynomials in X?

So
,
we will start with n sample values and when we recorse we

only need to evaluate"2-distinct sample values ·

To ensure this
,
we call a set of sample values X lapsible if

· IX1 = 1

Op

· X* = Ex'(xeX3 is collapsible and has #I elements

So
,
to recurse we will just evaluate the smaller 1-degree polynomials

on the set X
?

We have reduced the problem of evaluating a degree - n polynomial on
" points to evaluating two degree 1 polynomials on 1 points

So
, if T(n) = time to evaluate a polynomial of degree - n on a collapsible

set ofn sample positions

④

then
,
we have the recurrence

T(n) = 2T(z) + O()

= O(n . 10gn)

Example : X = E13 is collapsible

X = [1
,
2
,
3
, 43 is not collapsible

X= [113 is collapsible = X"= [13

In fact , taking square roots givesvs a recipe to construct collapsible sets

923 + 2- 1
,
13 - Ei

,
- i
,

= 1
,
13 - [= ,

i
, 1 13

So
,
we end up with 2"-th complex roots of unity

Generally , we can use floating point arithmetic when doing signal processing
since there is noise in the signal anyway ,

otherwise we do modular

arithmetic modulo some large prime . We will not discuss this here and

for the purposes of this class , we can assume that we can compute
these square roots exactly.

In general , the nt-root of unity Wh = cos() + isin(
3

WH
WH

&

e

angle
w = 1

& ⑧

O

We are going to use the zk-roots of unity as our collapsible set
and use the divide and conquer strategy

This strategy is called the Fast Forrier Transform

The value of the polynomials on these roots of unity is called

the discrete fourier transform (DFT)

DFT of P -

⑤

If we want to evaluate this , it looks like

even- > = O("/2) time

odd- = O(1/2) time

Everything else takes
O(H) time

Overall
, On logn) time

Exercise Take a polynomial of degree 4 and compute this by hand

This is known as the Cooley-Tukey algorithm .
It was developed by two

defense researchers named Cooley and Trkey , building on works by
others. They wanted to detect Soviet Nuclear tests from seismic

data ! The above assumes degreeh is a power of two , if not we
can just pad it by zeros , but Cooley and Tukey also gave an algorithm
for any composite n

But in fact , this algorithm was discovered by Gauss in its full generality
in the 1800s who was trying to predict the locations of asteroids .

But he abandoned it because 16th century observations of asteroids were

noisy and FFT doesn't work well when there is a lot of noise .

So
,
Garss said that because of Kepler's law , I know the orbit has to

be an ellipse and I should try to find the best ellipse that matches
the data. This led to the invention of the method of least squares .

In the process , he used other things that existed but are now named after
him

.

Going back to our task , we can now convert from coefficients to samples quickly

-

- Fast Evaluation

Chlo C => Fast Multiplication

Can we convert back quickly as well ? :. e. Can we undo the FFT ?

⑥

Recall that to convert from coefficients to sample values , we
computed the matrix-vector product

= V where

and a =

array of coefficients

To go back , we need to compute the inverse-transformation v
-E

and the corresponding matrix-rector product

a = v
-

7,

j

It turns out that the inverse of this matrix is almost the same matrix

=> short proof can be found in the lecture notes

To compute the inverse FFT , we can just compute the conjugates

= complex conjugate

takes care of the
= scaling factor

of R

So
, going back from samples to coefficients is essentially the same process

ooh(-XX & Ochlogn) time
time

⑰

So
,
to multiply two polynomials in 0 Ch . logn) time

S·
More generally , the same operation as multiplying two polynomials
on sequences or rectors or arrays

is called a convolution

If we have two sequences

a= (90 , 97 .. - - , am - 1) [Think of these as

coefficients of two
b = (bo

,
b,, Pn-1) = polynomials

then
,
the convolution of a and b is given by

ab = c = (6 , .
. . . --, (n +n - 1)

where a
= Soclibj = This is then the
i+j = k coefficient of the

product polynomial

Convolution has other applications as we will see on the homeworks

and the next lecture.

NEXT LECTURE More Convolution and Dynamic Programming

⑤

