LECTURE 2 ( November 21°°)

Move Appvoxfm ation Algord:hnﬁ

Set Gyver & Randomized Rounding

Set' Cover Problem Let v, l:e a Um'\/t:)’se of n e_fernents

Let 8 ..., S, €U be a fam[/y of svbsets of U
with associated Costs ¢, ,.-- ¢,

Goal: Pick a minimum (ost set cover of U
H/_’-—-)

L’COHGCHDI‘) 6f sels svch that
there  unioh ecZuaLs' U

Note  This genemlizes the vertex cdver Froblem _Ssince
U= {e;,-8,] ae the edpes of the graph
S, > e ) e is incident on vertex u f
Set Gower s also NP hard , but we will see an appyoximation
alg ovcthm  for &, with O (log n) approxination , using” a LP

relaxation .

Inteper Linear Proprammno- Formulation
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Frst, leb us sec what dpproximation we can obtan by using
o deterministic Younding scheme ahalogou.s o Vvertex cover.

/

let F be the maximom freczue,ncy of any element (..
maximum nombey of subsets any element appears in.

Frst we colve the 1P to obtain a f’qci-/‘onal solvtion x*
Note that the LP ohjectve valve
OPT* = o %;

(]

satisfies that  OPT" £0PT where OPT is 4he (oSt of
o?-h'mql set cover

Theh ,we vound t as  follows

x = il T S Y=
o o/wW

Then X = (x_.“,-. (I S an im%egva( Solvkion that g}ws a
set Cover

Moveover, cost of Yis set aver s

m m
7 . A
[oPT ¢) Zex, < F Sewi” = F-OPT
(]

'mUs’ this set cover (s an F—qr}D”OXL'mafI‘M.

For veftex cover, F =2,% we Oblamed a 2-approximation
but F can be m @ general , m which the approximation is
trivial oS the same can be achleved by [ncludz'ng al svksets
S~ Sy Ih the cover,

“lo obtain a mouch belter af}?f@(l'ma'b’on, we wil use a vandomized
algrordhm for YDUndth.

Randomized EOUndl'ng’ for Seb Cover

Colve the LP relaxation and obloin a fmcélbnal Solution #* as AEfare.

[—1 this will be ovv wounded l'n{egrql
<olvton A

@ For each i=1,..m, round df —> 1 wah Frabqbc'h'zy x*

(Ce. thelude set S weth Fmbab[:h:b/ % %)

B Repeat B ontil all elements are covered



The inboitlon behind Hhis s that he ht'gher the x5 value (n the LP solution
the higher probability of picking his set.

The above aIAO'OféH\m is harder o cmalyée co we consider a smaqll
vavant :

Solve the LP relaxation and oblnin a fractional solution 2 as bgfbre.
. this will be ooy vounded integral
B} Repeat logn +2 dimes: T e solv:gn A
For each (=1,..m, round “L* — 1  wih ffobabch't x*
(Ce. thclude sef S weith Frobab[h@ x*)

B ZIf the final integral solvtion does pot cover all elepents or cost |s
more than (4log n+8) factor of the LP solution, repeat [2]

To analyze this algowthm , bt's se te cost of a s:hg/e mundc'ng— Step th [Z]

Let Y = 21 if Sk P"Cde ]23' This (¢ a yanddm variable

(8 o/

After step (B finishes, Y= ( Y,.-. Yu) bc the integral solution

Then !E.[gc;‘/;] = igc; By ] - ;;z""cl-fx;‘ = opT”

So, the Cx)?ecied cost of the solvtion is exqc-tp( the LP objective vale o’
Over all the logn +2 rtevatons, the ex;)ecfcc{ cost =< C/og hez) -OPT”

By Markov's inequalt'tjv, wih ])Yalaabc'b'y/ Ye,, the cost of the final l'ntegfa(
solvtlon (s < (éllogrn +8) - OPT"

What (s the pYababl:(fty that this L'nte,gml solvkion s not a Set aver !

Consider any fixed element of the wivewe | say «,

one

Plu s not overed in an execwtion of the vounding ste/o]

= T [P[S; is not Pl'cked] LP consStyairt im’JDlt'es
CueS; r x' 21 ¥ uel
" i:u&Si
* —‘7"* B Z'XL
= T (1-87) ¢ T o™t - o " 2
L-yes; ‘:-'U.ES\: e
1 logh'l'Z
. - <[ X £ 1
?[ 4 is not coveved in an)/ qc the bg n+2 S“’ef"] = Ce) In



By unioh bound

ﬂ?[au that is not covered in any qf ‘the_] ¢ n L =Z,j:

lag’n + 2 sl;efs an
Thus, P | Funal iniegfa[ Soln aflef «S’EE'D
s a cover wrth cost < (‘tlogn-fs)-OPT*
é _'L. + i = l
i 4 2

Thus, n exPeCi'aHon , Step 12 needs +o be relaea{ec{ 2 times
and in the end we find a set cover Whose wst (s

Y N ’
< (4lopn+8 )-__> LP objective valve

< (4log h+8) -JOFT} — ILP objective valwe

Thus, we obtain a O(log 1) a/)/:mxdnahbn.

Note: It s NP-hard +o obpacn a petler afffoxl/"nabbn (71.‘ et cover,

Hardhess qf APP roxImattion

Unfovionately ot all problems can be approxinated beyend certain threshalck & poly-fine.
How do we prove that such problems are hard pecavse +hese are not decision }Jroblems-

The basic (dea (s Stmilar @ vedvce 4o o })fob(crn thot (s known +o be NP-hard
bot one heeds 10 take (nto account the @fvoxtbﬂa-tion factore 4o conwrk ot +to

a decision Pmblem.
let's see Some exam/)les.

Havdness of Traveling' Salesman Froblem

Waveling’ Salesman Problem

Given a list on n cties wrth distances d[,‘,/') , find the shovtest touvr that
visits  each cety exqu)/ once and reforns 6 the (ndial cdy.

We will prove “the fo”om.?



Theorem For any function f(n) that can be com,:uied i }Dolynom:'al +ime
in n, there (s no Fo/ynomiat--Hmc #(n) appYoximation a{g:ron"lj)m
for the TSP on gcnera/ weighttc{ g?qfh: vnless P=NP .

(approximating’)
Proof  Sketch If +heve iS an alg’on'thm for TSP, one can sohe the
i—lamiltom'an Cycle problem in poly - calls to the TSP qgon'ﬂqm.

~N

L This (s a decision problem -
Given a praph G=(VE) , is there a Hamiltenian Cycle
in g’mph or hot,

Since  Hamultonian C(yde s a khown NP-hard problem, it
follows that qf}amxt}nah‘ng TSP i« NP -hard in g’eneml.

Redvction Gen an instance G=(VE) or Hr Homilbonian Cycle Foblesm
we define a TSP inctance as  follows:

G wil be a com}D/d'e_ gmfh on V &
dci)) = i 1 Iif e eE
nf(n) ol

(Ves) Tf G had a Ham eycle =5 G has a door with cost <m

(No)  If G didet hae o Ham. cycle = every tour th G' has cost
Z nftn) + n-1

Cost =n
fe
\ Cost 3 h (fin)+1 -1.) 7 hf(h)

inplﬁ: to

thuf 1o
Ham. C}’CIC

1N

The tnain ,oroFcf-é)/ of redvctions that establish hardness (s he 2P

between dhe two cases.
This proves thet TSP s had to ap})voxz)naie wih any ]@C*OY fﬁﬂ.



How to deql wrth problems that are even hard 4o alpi)roxima%c ,such as TSP 7
Maybe our input have moe structure that we are not usihg.

Eg. for TSP, our distances satisfy the Ariangle l'nccza/alt'i'/ in many  cas
of thterest,

(N

d(c)) dci k) + d(k)) ¥ wvertices i ),k

In this case, there (s a Smple 2-approximation algorthm for TSP.

~

L, This is called 4he Metv,c TSP

Metric TSP alpordthm

2] Compute . minimonm s/oahnl'ng tree T of Ahe wefgln‘ec/ fh]uut' graph
2 Rrfirm a defﬂ?- fit draversal of T numberivg the verbces i this order

& Reton the toyr obtached by w‘s&tfng the verpices qccordc'ng to this numbenhg.

This can e improved
with new fools.

®)

- -

Theovem “This g;'ves o wox[mahbn +o metric TSP. J_)

Proof  First, Consider the tour Computed by walking- the edges oft MST
on the ovrder gfven b/ deFH') ~f:‘rs£ seqrch. Thie s not a valid TSP
door Since we will Vit vertices move H4han once. But

cost of Hhis tow” £ 2-cost of- MST ,She each edge i travexsed
atmort twice
The final 4owr is Obtatned by Ye,rnovfng dvplicate vertices in the "tour”
This does not increase he cost becavse of tnangle inegualidy , gons-
Straight only casts less.

On the othey hand, cost of MST S cost of optimal tovr [Why?]

Thos, this gives us a 2 qp})/oxima—ﬂ'an -

G,



