LECTURE. 25 ( November 19%")

NP- havdness & APFdeima‘h'on A{’g’dn’i‘ﬂ?m

We have seen pol)/no{vqt'c\( hme algoni%m_s fb« c/[ﬁcmht kinds of /:rob(em
But often in veal life , the problems we want 4o sohe Seef to be hard

' How do we fecogntée d
¢ How do we get arovnd 1t ?

The complexdty classes P & NP

A way 7o mcogni%e that yoor PYOHCM is hard s via the b‘wem’/ %ﬁ NP-hardpess,
which allowe vs 1o cafegow'ae the ?roblem.c accarc()/bg to their d/ﬁ%‘cu/y h @ way.

To sirnfl:ﬂ our lfe, for the moment we will only look at decision probiems

input

—— oubput € {YES Nof

L
where the output 's a decision or a boolean value

( decision)

The com)plexr.é)/ Class P (s -the class of ?Voblem_s 7%7 which —here are
pol>/nob1iaé tHme agcrmc'fhﬂ'\&

The con—,lalex[%)/ class NP is Hhe class 0]5 [ decision) Problems for which we
cah vcrr'fy “the answer (s Corvect h fol)/noqul time given a proof of this Jack

For exarnple, gi«/en a 3-SAT insince
(5 v5av %) a (G ¥ A ¥ %) A

one can Venify that the ﬁ)fmola LS Saz';isfz'zb/c ov hot
I J:ol)/nom(al Hme giVeh anh asszc'gynment.

Thus , 3-SAT < NP

In genefal, Pe NP bot it is belreved ‘H’\qt P2 NP sine l%’geem_s
difficos to find proofs that would \/cv{f)/ the solution in )oo/)momt'a/ tine
Fov instance, for 3-SAT rt is believed hat Be best alponthm to find

a gabl'sﬂing assn;gnment must take ex}?onelrh'a{ time |

NP-havq problems e problems that awe hader than any poblem i NP,
eg. havder than 3-SAT.



Jhus, If you can show -that yevr poblem s NP-had | you have <hown
that one cannot expect a polynomial dime a(lgon'-b‘\m

How o prove NP hardness ? o Reductions
Show that if you ave given an alpovihm for your problem , you can ue (&

to solve some kbown NP -hard problem , eg. 3-SAT, wwith yolynoml'ql/y mahy aalls
f6 +the svbhvoutihe. It is eascest +o explain it via an exarnfle

Mayimum Independent Set

let G be an undivected grarh. Anp Owdefende,nt set in G (s a svbset of verices
with ho edge betyveen any o vertes ih the set

The ved vertices form an l:hdePende,ht cef

TRe  maimum indef)endehi: set Froblem asks f g;'ven a gra/pb G and
an Ihbeger K, whether +he maximum lhde/;endent set in the qu]:h has

size ot least k.

We will show that this ))roblern is NP -hard 1:)/ Shovﬂ}wg' that ff there s an
algorithm for this problm, then vang (& as a subrovtihe polyromally many
Limes, we can Sole 3-SAT.

This would mean that o is Unllke()/ that this problem wouH have a foly—ifme
a{gon"thm otherwise Jov  wovld find @ foly~‘bbve a?'aﬂfhm for 3SAT which
is not believed 1o exist,

Suppose  we ave gen a 3SAT instance
(v #2v K3 ) ALV KGN T ) ~em s

with n vaviables § m davuses -

We will constuct o graph G as follovis.

G will have 2m verbices , one for each [dewal in the clavses.
Two vertices will have an €dgc ijﬁf
etther (1) they covvespond 1o [devals 1n Hhe same clause

(2) they wrvespond fo a varable and rts negation



Py exarn}vle,

(a Vv b vc\/\(b\fcjvg)/\[a\/c vd)/\(avg\/c?) gives

o)
ol

Sl
(@)

“This grq,:l; can be constructed in lnear Hme .

Now , o decide if the 3-SAT instance (s saticfiable or not , we heed
46 call ouvr algov[—H\m that soles the bwdeloehdehf set Fvab(em

We wil show -that

« if 6 has an independent set of size m = 3SAT formula i satisfiable
({.e. Mmax [ndependent set has size 2 m)

e if G has ro independent set of size m = 3-SAT formula is hot satisfiable
(i.e. max independenl set has size <m)

Proof Lavgest inde}:endehf set ih 6 has Size £ m Sihce ohe w@h onl/

choose one vertex from each clawe ih the independent set

R-AT
Claim qu-[nde{)endenf set size = m & formola s sa%:/‘sﬁz?b)e

If 2-SAT formola is satisfiasble | then Ja{:isfying a.rsrgnmefri‘

gives uvs an inde}aendent‘ set of sike m — just pick one lteval

in each clase “that qve twe ounder #his assionment , which exisks
since the formula s satisfable . Ths most be an hdependent set ( W}\y?)

Similav)y , Hf there 1s an independent: set , then this would also give us
of sie m
a scrh‘s—fying assighment



Thus, max [nc[efendemﬁ set s NP-harl
So, how do we deal wth had )Dmblem ?
(V) Assume our ihplﬂf has move structue or ds vandom

(2) Be satisfied with afpvoxt)ane solutions

AP p roximation Al 00 Yithms

Suppose  you are tiying to solve an optimitation problem (e finding~ the size of
the  maxXimom indel;endent set) on an input X

Lev OPTCx) denote the brve optimal valle & AGx) be the valve gfven by
e alg'oﬂ'ﬁ'\m

We say A give: an o(n) a))}:voxirnaﬂ'on /'f for every c'n/w% XE {o,)?n,
we hque

OPT(x) £ Alx) £ OPT(x) (for maximizaton poblems)
o<(h)

OPTCx) = AG) = oun)-OPTCx)  (for minimization pmblemS)

For mary NP-hard problems , we can stil] find éfoocl aﬂDroxl'mcrbbn qkyow}H?ms

Vertey Cover

Giveh an uUndirecteq gvaph G = (V,E), find the size qf the smallest vertex aver,

Recall that @ vevtex cgver s a Set of verbices
s.i. every e_c(ge ouches Some vertex th dhe cover

This problem is NP-harl , but it has a s:'m/:le 2- a/a]woxima%ion ai(f)’dﬂ%hm.

C < The minimum vertex covev — in fuck every
while G has at least one e_dge vertex cover ontains at least one of
fuy} < any edge in G the two vertices d and v chosen inside
6 «— G\{iv,v7 the vhie loop. Thus , this s a 2 appvoximation
C <« Cu {uv? algorthm. H is peljeved that 2-€ approximatiy,
retirn  C 5 hard | co this domb alposcthm 5 the best

on€ can hope for.

@



To design approsimation algordhms for other problems, ve heed more powerfol tools , Such as
linear programming. Let’s cee an example.

Li ghi est \Vertex (ovey

Given a gm})h G =(V,E) where every veriex v has a non-nezgab‘w_ welght‘ wiv)

Goal - Com})u-l:e a vertex covey C with the mihimum total wexd‘so’hl' w(C) = £ W

vVeC

The dumb q)y})raxzh\at/bn algovﬁ%m can be vevy bad here

Bot one can gef Q 2-ap;aroxt}ncrbbn agron'thm by casiing the Prob/em

as an im‘/egfv (iheay program = this (s Jst a lihear program where

some variables are constvained 4o be iht%UeYs. In Ao’Cnera[, m'leger

Lineay progTamning s allo NP-harcl , so this by itself (s hot vseful

without additionql work..

For the | ghtes% verfex Cowy, we cah wrte dhe fb//owi%o' c}ﬂ‘:eéye/ lnear progYam

min W) vy
v

sthect B A + Ay 71 Y edges fu,vs
%, € 10,17 ¥ vertex V

let  OPT = welpht of lightest vertex Cover
Then, objective value of the inteper Linear program (s OPT.

As we said befve, e can't solve 4his ihi:eg’cr lineay )DY%O’VOm
bob what if we relax the inteper constvaints.

min 2 W) Yy
v
SUE)e,cl; 10 ?Cq + Xy 71 & Cdges Ju,vi

05, £1 ¥ vertex V

This becomes a linear progvam which wWe can sole ih PO}/-'b'mf,
but s 1t dSeJQ)l 7

“This Llineay program s Called the Lp velaxakion of the &ﬁgﬁ’er linear
progvam .



let " dencte +he a)?b'mal solvtion of the LP velayhon
and OPT* - %’wcvw:, its optimal value .

Unfovtunaz‘,el/, x* may ot be imdegval , since x, € L0, may
be fractional and i+ does not mfrec}oond 16 a vertex Qver direcdy.
x* s called the oyﬁmal f‘mc%ional solvtion. Nevertheless, this i sl

Us‘eﬁ)l ﬁn’ iwo vegsons

Every feasl'ble frrtegval solvtion 1t the m’léﬂ'nal integer lineay PYoédYam
s also a fasible solution to the LP refaxation.

Thus,
OPT = OPT as the LP valve can be eveh Smdler

@ We an derive a g’ood a?froximaﬁ‘on v the l?ghb&?ﬁ vertex cover A)/
voonding the optimal fyactional solution . Specrfically,

. +
% "/{L{ — yovhd 1o x, = 1

\
O

Fox* <3

v <7 = feond to x, =

For evev/ edge Juyv3, the consba ik 'x: st 7

= max CX‘:,X\)*) >/i/Z

Thus, esther %y =21 or xy =1
0, A s the indicator velbor
for a vertey Cover,

On the other hand = x, < 2%3 Y verdex v.

< * = . +* < .
Therefre, S W) o, £ 2 T WK, = 2 \ciL 2:0PT
‘ ]}d:egev LP
LP . velaxation objective vale
objective. valve

_ﬁ\usl we olrbaih Qa Sl'thlc 2- quronmofIbn aﬂgmﬂ:thm.

Geheral vedpe : [1) Wnie dowr an (nteger linear progran (ILP) for
Your  problem

@ Relmx L1': to Ob*al\h an LP 2{ S'o/\/e «the relaxcrh‘oo
to obtalh a frac’dbna} <olution

Roond the fractonal solution to obtain an approximate
solotion. =3 Next time : other techniques for rounding” S



