
LECTURE 25 (November 1gtY(

NP-hardness & Approximation Algorithms-

We have seen polynomial time algorithms for different kinds of problems
But often in real life , the problems we want to solve seem to be hard

· How do we recognize it ?
· How do we get around it ?

The complexity classes P & NP

# way to recognize that your problem is hard is via the theory of NP-hardness,
which allows us to categorize the problems according to their difficulty in a way .

To simplify our life , for the moment we will only look at decision problems

input- output ES YES
,
NO3

where the output is a decision or a boolean value

Idecision)
The complexity class P is the class of problems for which there are

polynomial time algorithms.

The complexity class NP is the class of (decision) problems for which we

can verify the answer is correct in polynomial time given a proof of this fact.

For example , given a 3 .SAT instance

(x , vxzvXz)n( vXyvXg]n ... . -

one can verify that the formula is satisfiable or not
in polynomial time given an assignment .

Thus
,

3. SAT -NP

# general , PINP but it is believed that P&NP since it seems

difficult to find proofs that would verify the solution in polynomial time
For instance

, for 3-SAT it is believed that the best algorithm to find
a satisfying assignment must take exponential time.

NP-hard problems are problems that are harder than any problem in NP
,

e .g
. harder than 3-SAT

.

①



#us
, if you can show that your problem is NP-hard

, you have shown

that one can not expect a polynomial time algorithm

How to prove NP hardness ? Via Reductions

show that if you are given an algorithm for your problem , you can use it

to solve some known NP-hard problem ,
e
.g .
3-SAT

,
with polynomially many calls

to the subroutine. It is easiest to explain it via an example

Maximum Independent Set

Let G be an undirected graph. An independent set in 6 is a subset of vertices
with no edge between any two vertices in the set.

·

↓
The red vertices form an independent set

The maximum independent set problem asks if given a graph G and

an integer K , whether the maximum independent set in the graph has
size at least K.

We will show that this problem is NP-hard by showing that if there is an

algorithm for this problem , then using it as a subroutine polynomially many
times

, we can solve 3-SAT .

This would mean that it is unlikely that this problem world have a poly-time
algorithm otherwise you would find a poly-time algorithm for 3-SAT which
is not believed to exist

.

Suppose we are given a 3-SAT instance

(x , 04 2vxz)x(Xivxjrk)n . . . . - .

with n variables & in clauses

We will construct a graph G as follows .

G will have 3m vertices
,
one for each literal in the clauses.

Two vertices will have an edge iff
either (1) they correspond to literals in the same clause

(2) they correspond to a variable and its negation ②



For example,

(a vb rc)x(bvc v)n(vc vd)n(avbvI) gives

·
⑱

This graph can be constructed in linear time.

Now
,
to decide if the 3-SAT instance is satisfiable or not , we need

to call our algorithm that solves the independent set problem

We will show that

· if G has an independent set of size m = 3 -SAT formula is satisfiable
Li . e . max independent set has size > 1)

· if G has no independent set of size m > 3-SAT formula ist satisfiable
Li . e . max independent set has size (m)

Proof Largest independent set in G has size <m since one can only
choose one vertex from each clarse in the independent set

3-SAT

&aim Max-independent set size = in E formula is satisfiable

If 3-sAT formula is satisfiable , then a satisfying assignment
gives us an independent set of size m - just pick one literal
in each clause that are true under this assignment , which exists
since the formula is satisfiable. This must be an independent set (Why ?

)

Similarly , if there is an independent set , then this would also give us
of size in

a satisfying assignment.
③



Thus
, max independent set is NP-hard

So
,
how do we deal with hard problems ?

(1) Assume our input has more structure or its random
(2) Be satisfied with approximate solutions

Approximation Algorithms

Suppose you are trying to solve an optimization problem (e .g . finding the size of
the maximum independent set) on an input x

Let OPT(x) denote the true optimal value & H(x) be the value given by
the algorithm

We say A gives an a(n) approximation if for every input x50 ,
13",

we have

= A(x) = OPTIC (for maximization problems(

OPT(X) = A(x) = an . OPT(x) (for minimization problems)

For many NP-hard problems , we can still find goodapproximation algorithms

#ertex cover

Given an undirected graph G = (VIE) , find the size of the smallest vertex cover.

Recall that a vertex cover is a set of vertices
5.t . every edge touches some vertex in the cover

This problem is NP-harc
,
but it has a simple 2-approximation algorithm .

c + 0 The minimum vertex cover - in fact every
While G has at least one edge vertex cover contains at least one of
54 ,03 = any edge in G the two vertices u and r chosen inside

6 = G)Eu ,V the while loop . Thus
,
this is a 2 approximation

c = C +54
,
03 algorithm .

It is believed that 2-E approximation
return C is hard

,
so this domb algorithm is the best

one can hope for
④






