LECTURE 16 ( October 17%')

Dumensionality  Reduckion /Sketching

How do we deol with data in hiph dimensions ?
We often visvalize data and a(éron%hms in 1,2 or 3 dmensions je.g. a gra/Dh or 3D plot

Bt high dimensional Space 15 not Lke low dimengonal space , as we will see n the Sfint
patt of this lectore, so svch visvalization 15 not  very iquDrma{ivc

In the second pavt of the lecture , we ar éfoing 4o tE’nm’C our own advice and
look at Skatchthg, aka, dc'mehsl'onallél vedvucton techm'q/ues

H l’gh - dimensional  Geometyy

Recall that cnner Froducf of two vectors in d dimehsions
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&: tow many mutually gythoponal untt vectors «,...x, can we find i d dimensions ?
\__V___J
This means ,’XZ XJ-J =0 ¥ jelt]

Answer = |Ne can find d such vectors

Q: How many heavly orthopond onit vectore x,,...x, Can we find in d dimensions ?

Thic meqns Jx;Txll <0.01 ¥ ¢ yel) OR the vectors are fav qu’f:

A: There cgn be ZﬂCd) such vectors = In peneval p z}f we want chner }orocwct o be

atmost € ,then there can be 28 ) 5,0k vectors .

Corse of dimensionality — Suppase we want to find neavest heighbors w high dimensions.
We tylpica(()/ need an exponential amovnt of data before
we cee doce foinis if ovr data s ﬁruly rqndom



The existence of lower dimensional structure (n our data s
often the Oh[}/ yeason we cah hoFe to learn

Let’s look at another wcamflc Ih h{gﬁ-c{imenszbna[ Eeomcb*/

Consider the umt ball th d dimensions
What fraction of volome of By falls in the E-shell

g
P
ls é arvound the boundqy ?

kz;j In 201 3-dimension _this (s small , O(g) Fraction

\ ‘ | , -B(d)
Bot th d -dimension, this fraction almost = 1 -2
. . 2
o\ AR What fraction of volome ic close i the equator
ITARAREAIENAINIi
Tn 20r3 duvgchs&oln , this (s small ‘ _oE4)
But tn d - dimension , this {raction (s = 1 -2
$ Mot of the volome lives n the shaded vegion
A\ _ L
i AT High dimensonal ball looks nothing” kke the 2D -ball

Sketching or Dimensionalcty Reduction

Deslaiéc the foct that low dimenconal space behaves hothine- ke hgﬁh—dlhehslbhal
space,, we aan Still leverage its wierdness to our advantage

In Paﬂ;l'cular ; Suppose we have data x,,.... xy € R

. . , -
We want to find Some wey of making it low -dimensional | say i IR
wheve n< d

©



This is some sort of dota com]m’ess{on

Of course , we should not emect logsless data compression
but we would also kke 4 preserve ge_ome‘ty of our data

For us, & widl be Faifose distances between 4he ?odnﬂ
that is a)?fwox[maie{/\/ preserved

Tlow s this vseful 7 Let’s [ook at an examPle from computational
geom&h/ , where such a 'thing & Vvery useful

Consicler the k-means c(u.cﬁering— ?rob[em
IhEut Ay yome Ay € fRd ahd an integer k21
OUtEUb Find Yiie=-Y € Rd suth that

no, Cuen? C
S . DX =Y5), s minimized
=t e

Basigally, we wanrt +o PQY-LI:'I:{'d)') the L'n})dt ito k - dusters and
y;'s are the centtrs of Hhese

-.'*\, clusters & we want to minimize
80N o the sum of distances of- points
PAETRN |\.\_.$rl j{'YOm ’H?E,if CIC).SE.S‘b Cen{;er

R
Note : The fact that J's are the centars
of the clos‘ﬁe.r Veiufr&‘ a proof
which we wtll hot over here

In fm’bfculqr, this problem only boks at fafrwise distahcgs Iaeﬁt:oeen
Paihts ,thue if we have g way of redUcL'néD' the dimension while
approxima iel)/ Pfesevv{ng’ 'ihe distanes , we aan Soje approx(mate
k- means fayter in low dimenswons

Similarly for other Problems lke. nearest neL('SaAbow search and so on

Johnson - Lndenstravss Lemma

n
“This gives a way : data Dr“,_.'x”elkd ——> R where n«d

In particlar, n= O(log N ) where N s the pumber of datn points
S0, we gseb an exponential :byfvovemenf



And e way Yo embed ddta s via a lLhear map or lineqr transormation,
in other words a matrix

< d D
)
h A = Ax T«
i , ) !
& ! ‘ y — Low-dtmensional dats
mP‘(e,sSlon or
S<ebohing Moartvix

L d- dimensional datq

“Theorem ( Johnson- Lindenstrauss '84)

For all points ... Ay € R

: nxd
, 3n=ClgN ard a matlix A € R
such that

093 lx; -x;l, ¢ U Ax; — A% I £ vor Ix-xjll ¥ ijeN]
How do we find such an A 7 Juss pickng a matrix fardornly wovld work

witth h:'gh })robabtll'%j'

To prove, thes , we meed some more probabz'ltb/ tools S0 we 4pke a small detour

Gauvssian or Novmal Distytbytion

We will work with contiuoos Pmbabi/l{/l distrbution;s f)r a bt , th }aqrﬂ'culqr
distribotions on the real line R. or h d- dimensional veal .(7QC€ R4

Continvous  distributions have a Pmbabl,'lt%] densit;/ fonction [P.d.f.) which tells

us the wc!:ght the dustrbubion give: 4o a farucular Yeg'ion

Eg_. th 1- dimension P-"72 — ’R;o

and Probabc'l/g/ af an htevwgl T = [ P(z)do(
1

Gaussan distvibution s one of the most useful distribiions
he pdf of 1-dimensional standard Gauvssian 1s

2
P(’X) = i'_. B—X z
VTt ;
The probabz,'h't)/ Of an interval of size dx s PCK)dX o 7



Te mean is M=E[6] = /x pe)dx ana/%ofou; fo the discrete case
R
0 Z«-!P[X:;Y]

—
—

Apother czuqfrﬁ't}/ that s t'm/?ortant (s the variance
2

s = E[G-u)*] = fxzpwdx = 1
R

The standard 1-D Gaussian or Normal distrébvtion (s depoted by N(o,1)

One can have a Gaussian 9u(/\n/r'th?_rm:am U & variance s denoted N(u,&
with the Pd-f e %

-

(e

Properties of the Gaussian Distribution

The normal distribution has o lot of umzzue prapeft/‘e.s

[J Tal Boonds

for example, Suppose we tfors n [ndependent coihs
X,pocoee X, € 3£1T, 50 P[X;=+1] =P[X=-1]Y,

let X-= ;_’X- . Then, E[X]=0

_tr,

And  Cherneff  bounds [m])é/ that [P[ /X/Bt] <e
R

s, X = E[X] , since the decay & superexponential

But in fact something move s trve, as m— ©

X — N(0,1) ,so the distribotion starts to
Jn bok. ke a Gavssian

. , -t7
The tadl t'nacbualté}/ of the form IF[ IGI>t ) ge ‘ s called a

Gaussian tmil bound becauce # holds when G & N(0,1)
(Proof : Calcolus]



Sum and scaling
let 6, be N(u,&*) and G, be N(xi,s;z’)
‘hen, 06,+G, is N (M +4,, §“+62) < Sum of Gaussians (s
a Ggussiah wWith
Note: “This also holds for som of many Gavssians  drffevent meah & vaviane
Similarly , if G s N(u, s?)

Then, oG s N (U, 's") < \Vanance <cales by a
foctor of oF L mean

Q/afacfm o]ﬁa(

Molivanate Gaussian Distribytion

A standard Gausstar distribvtion in d- dimensions (s o vector
G = (61/ Gz/ t~==- v GJ) WhCVC E,C(Cf) COOYC[(.I?a.IfC 6;'
(s an 1'nc(2f36ndm£ N,1)
rahdom variable

The Pdf of this (s g}‘\/en b/

PCXy,..xd) = plx) - pGd)
“— pdf of 1-dimehsional Gavssian

)
1 e"xd /2
J=m

2
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where X = (%,,.. ag)ellid

Pt’ctofl‘au)/ , the 2- Climen.siond Pc‘f looks [tke

X
// o




One basic property of a hig’h ~dimensional Gaussian s the
4hin Shell Phenomﬁhah

I we Samfle many Point_f fmm a d-dimensional Gaussian

most of them arve clse to the swface of a Vd -radivs ball
eyeh fhouf/) the Pdf has a hfg’hcr valve arovnd 0.

This is smilar to the fact Mmentioned before that most of the
volume of the ontt ball & near (s surface.

CO“C“’—‘LQJ)’  the thin shell theorem says that
for a d- duensiond] <standard Gavssian G = (6,,.- GJ)

P[ ossid < I6) = 1:000@] » 1- &
for some. constant ¢

Proof of Johnson- Lindenstrasss  Lemma

We now have all the +4ools Ho prove the Johpson - Lindenstravss lemma.

“Theorem ( Johnson- Lindenstrauvss '84)

' d : nxd
For all points ..y € R® | I n= ClogN ard o matfix A € R

suoch 4hat
093 I, -x;l, ¢ I Ax; — Ax I € ror Ix-xjll ¥ ijeN]

Proof  Picking A=G to be a vandom Gaussian matrix will work with high probab)2l'y

G
n
f 8 Each entv)/ of the matrix S an angoendené
I G N©,1) ~ Gavsian , ie. , Gy ~ N(0,1)
nxd Gavussian

matrix

Let's first understand what this matvix does to a fixed vector 2 &/kc’

FACT| ¥ z€ IR“, 2l =1 C(ie, 2 is a unt veclor)

Gz (s a w-dimensiohal Standard Gavssian |, ce,
—

Mabfix- vectr  each coordinate (G=): s N(o,1) & [nde]Dehde_n-l;
product )



— d —

We have (62); = ‘% G
L

and 2

H = Piﬁdud, of 5 Y0V Of-G

Each G,‘J‘ (s independent N'(©,1)
Each term Gl'j 2, s N(0o,%")
som of al terms s N (0, 2% +2,>+ - +24°)

=N (0, I2I*) = N(0,1) Since 2 is q
unit vector

All coordinates of Gz are alo ndependent sinee  each
ow of G (s inc(Cfendemt

We want to prove all pairwise distances are af}?voxt'mq*e// preserved
So, let us pick & }Dal“r of points

. / X; Consider 2= X 7K
Koo I =¥l

“Then, Gz is standard n- dimensional Gaussion
and by ‘Thin shetl thearem

=

B|oggm ¢ LGO—®) < 1-01] >1-¢e
! ;- 5l

i ~C
<= P | 099 Ix-yll < I S x -6 ” = 10 leg-xJn] >1-€
Th vh
—— T

|

This (s ovr matrix A

Mos, the probability that the evenb  NAx Ayl ¢ [099 50, 1o1be%l]
wll & Fyj holds for a given pair (i) s e

What (s the yrobqbih'ty that there (s some pa)‘r Giyj) wheye. E,-J- holds 7

P3Gy e (2',) : Ef)_] = ? TE[E"J] = N e by umon bound

So, if Mz ¢ logl\‘ for a lavge enough c the ?fob is ot most ;j';.go

Thus, @ vandom mabrix works with high Probability )



