
Algorithms Lecture 15: Streaming Algorithms and Dimensionality Reduction [Fall 2024]

Casus ubique valet; semper tibi pendeat hamus:
Quominime credas gurgite, piscis erit.

[Luck a�ects everything. Let your hook always be cast.
Where you least expect it, there will be a fish.]

—Publius Ovidius Naso [Ovid], Ars Amatoria, Book III (2 AD)

There is no sense being precise
when you don’t even knowwhat you’re talking about.

—Attributed to John von Neumann

15 Streaming Algorithms and Dimensionality Reduction

Randomness is an essential tool for designing streaming algorithms, which is a different model
of computation that we will see in this lecture. A data stream is an extremely long sequence of
items from a universe that can only be read once, in order. Some examples of data streams are
packets passing through a network router, a sequence of google search queries, New York Stock
Exchange trades.

Standard algorithms are not suitable for computation in a streaming setting because there is
simply too much data to store, and it arrives too quickly for complex computations. Ideally, one
would like to compute properties of the data stream with a small memory (and time as well).
In particular, given an input stream a1, a2, . . . , am where each ai comes from a universe U of n
elements, the holy grail in the streaming setting is an algorithm that uses poly(log m, log n) bits
of memory. Note that log m bits are needed to remember which element of the stream we are
processing and log n bits are needed to remember the current element in the stream. Typically,
the length of the stream is not known, and in practice one either assumes some upper bound on
the length or design algorithms that are oblivious to the length of the stream.

Streaming algorithms are sometimes used even in non-streaming settings. One particularly
important example of this is to process data in massive data centers. The amount of data is
typically gigantic — at a scale of petabytes — and is stored on hard disks which are slow to
read and write. A low-memory algorithm is desired in such settings since the data relevant
for performing the computation can then be stored in the RAM where faster read and write
operations are available.

Examples. Let us look at some basic properties of the input stream one would want to compute
to get an idea of how one would design a streaming algorithm.

Sum (or Average). Suppose each item ai of the stream is an O(log(n))-bit number, and we
want to store the sum (or average) of the items seen so far. The streaming algorithm just has to
remember the sum (or average) of the items seen thus far. Since, the the sum of m O(log(n))-bit
numbers is at most 2O(log n)m, the space requires is O(log n+ log m) bits.

Minimum or Maximum. Consider the same setting as above where now we want to maintain
the minimum or maximum of all the numbers seen so far. This only requires O(log n) bits of
space, since one only has to keep the current maximum or minimum in the memory.

Median. Now suppose we want to maintain the median of all the numbers seen so far. It is
not obvious how to design a small space streaming algorithm for this, since one has to remember

© Copyright 2024 Makrand Sinha.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
Partly based on lectures notes from courses taught by Je� Erickson (UIUC), Rajesh Jayaram (NYU), Jelani Nelson (UC Berkeley) and Roman Vershynin (UC Irvine).

1

http://creativecommons.org/licenses/by-nc-sa/4.0/

Algorithms Lecture 15: Streaming Algorithms and Dimensionality Reduction [Fall 2024]

the bottom or top half of all the elements to determine the median at the end of the stream. In
fact, computing the median exactly requires Ω(n) bits of space in the streaming setting. The
proof of this fact is not difficult but we omit it here, since we will see a similar proof soon.

In-class Exercises. The following are some puzzles to get used to designing algorithms in a
streaming setting.

1. Suppose the input stream is a1, a2, . . . , an where each ai ∈ [n+ 1] and the ai ’s are distinct.
Find the missing value using O(log n) space.

Storesumofalltheelementsofthestreamsofar.Output
∑

i∈[n+1]i−
∑

i∈[n]ai.

2. Given a stream a1, a2, . . . , am of distinct elements, sample a uniformly random element
from all the elements seen so far, using only O(log n+ log m) bits of space.

LetSbethesamplewestoreinthememory.Considerthefollowingalgorithm:

•InitializeS←a1.

•Whenaiarrives,withprobability
1
i,setS←ai.

WhyisSuniformlydistributed?Considerthesituationwhentheitemaiarrives.Notethat
P[S=ai]=

1
iandforallj6=i,wehaveP[S=aj]=

�

1−
1
i

�

·
1

i−1=
1
i.Thus,Sisuniformly

distributedamonga1,...,ai.

3. Given a stream a1, a2, . . . , am with distinct elements, sample a uniformly random set of k
elements (without replacement) from all the elements seen so far, using O(k(log n+ log m))
bits of space.

Leftasexercise.

Distinct Element Estimation

The main problem we will look in this lecture is the distinct element estimation problem: given
a stream a1, a2, . . . , am where each ai ∈ U for a universe U of n elements, count the number of
distinct elements in the stream. Typically, the number of distinct elements is denoted F0.

Here are some naive streaming algorithms one can come up with for the above problem.

1. Store an indicator vector which records the elements of the universe we have seen thus far.
This requires storing an n-bit vector at each step.

2. Store the set of all the elements we have seen so far in the stream. This requires space
O(m log n) bits.

Both of these algorithms require space that is linear in either m or n. This leads us to the
very natural question: can we design a poly(log m, log n) space algorithm for this problem?

It turns out that both randomization and approximation are necessary to solve this problem.
In particular, one can show that every deterministic algorithm requires Ω(n) bits, even for a 0.1

2

Algorithms Lecture 15: Streaming Algorithms and Dimensionality Reduction [Fall 2024]

approximation (i.e., computing a number D such that 0.9F0 ≤ D ≤ 1.1F0) and every randomized
algorithm that computes the exact number of distinct elements F0 requires Ω(m) bits of space.
We will only prove a lower bound on the space complexity of exact deterministic algorithms here.
Proving that both approximation and randomization are necessary as mentioned above requires
some more techniques that we will not have time to cover in this course.

Lemma. Assume that n≥ 2m, where n is the size of the universe and m is the length of the stream.
Then, any deterministic algorithm that exactly counts the number of distinct elements requires Ω(m)
space.

Proof. Suppose the algorithm uses s bits of memory, then there are at most 2s possibilities for the
contents of the memory just before the final item is received. Without loss of generality, let us
focus on the input streams where the first m− 1 elements are all distinct. There are

� n
m−1

�

sets of
distinct items that the algorithm could observe among the first m− 1 elements of the stream.

We claim that if the algorithm always exactly computes the number of distinct elements, then
it the number of possible memory configurations must be more than the number of possible sets
of distinct items among the first m− 1 elements. More concretely,

2s ≥
�

n
m− 1

�

≥
�

2m
m− 1

�

,

which implies that s = Ω(m).
To prove this we argue by contradiction: suppose 2s <

� n
m−1

�

, then by the pigeonhole principle,
there must be two different sets S and T of m− 1 distinct items that lead to the same memory
configuration. Since S and T are distinct and of equal size, there exists elements x and y such
that x ∈ S \ T and y ∈ T \ S. Now, because the memory configuration is the same for both S and
T before the final element is received, the answer of the algorithm is a deterministic function
of the final element of the stream and the memory contents. In particular, the answer of the
algorithm on S ∪ {x} is the same as the answer on T ∪ {x}. However, the number of distinct
element in the two cases differ, so the algorithm must err on one of them.

Randomized Algorithm for Distinct Element Estimation

Thus, the only possibility in this setting is to allow for both approximation and randomness.
In particular, given a stream a1, . . . , am, we would like to design a randomized algorithm that
outputs a number D such that:

P [(1− ε)F0 ≤ D ≤ (1+ ε)F0]≥ 1−δ,

for parameters 0< ε,δ < 1.
The best algorithm for this problem is due to Kane, Nelson and Woodruff from 2010. This

algorithm uses O
��

ε−2 + log n
�

· log 1
δ

�

) space, which is optimal in terms of space complexity.
Here we shall see a simpler algorithm due to Chakraborty, Vinodchandra and Meel from 2023
that uses O

�

ε−2 · log n · log m
δ

�

space.
The basic idea behind the algorithm is the following: Suppose we randomly sample a set

X where each distinct element in the stream is included with probability p independently.
Then, denoting by |X | the size of the set X , we have that E[|X |] = pF0 and thus E[|X |p] = F0.
Furthermore, by Chernoff bounds, for any 0< ε, we have that

P
h
�

�

�|X | −E[|X |]
�

�

�≥ εE[|X |]
i

≤ e−
ε2 ·E[|X |]

2+ε ,

3

Algorithms Lecture 15: Streaming Algorithms and Dimensionality Reduction [Fall 2024]

which implies that

P
�
�

�

�

|X |
p
− F0

�

�

�≥ εF0

�

≤ e−ε
2·pF0 .

Note that the probability of being far from F0 is small if pF0 which is the expected size of
X is not too small. Thus, we can randomly sample a set X as above, divide its size by p, and
hope to approximate F0, provided the size of the set is not too small. In particular, if we set
p = 100

ε2F0
log

�m
δ

�

, then the probability is at most δ
4m and the expected size of X is 100

ε2 log
�m
δ

�

. Let
us define the parameter thresh := 100

ε2 log
�m
δ

�

.
However, there are two problems to carry out the above plan: first, how can we independently

sample each distinct element with probability p? And second, how do we set the sampling rate
p? For the latter, the Chernoff bound calculation says that we do not want p to be too small, but
we do not want p to be too large either. For example, if p = 1, then X is the set of all distinct
items and storing it in the memory would be too costly. Ideally, we want p ≈ thresh/F0 so that
the expected size of X is close to thresh, but this would require us knowing F0!

Let’s see how to resolve these problems one by one.

Sampling from Distinct Elements. Consider the following streaming algorithm that maintains
a random subset X of all the distinct elements seen thus far. Let X be the current set stored in
the memory and ai be the next item, then the algorithm does the following:

Algorithm 1 Sampling from the set of distinct elements with probability p
1: if ai ∈ X then
2: Remove ai from X
3: end if
4: Add ai to X with probability p

It is easy to check by a simple case analysis that each distinct element is included in X
independently with probability p when executing the above algorithm.

Rate of Sampling. The key idea to get around the fact that we do not know the correct rate
of sampling is to try all rates pk = 2−k for different values of k. In particular, for k ∈ N, let Xk

be a random subset of the set of distinct elements where each distinct element is sampled at
rate 2−k independently. In particular, X0 is the set of all the distinct elements, X1 is obtained by
sampling each distinct element with probability 1/2, X2 is obtained by sampling each distinct
element with probability 1/4 and so on. Note that one can also obtain Xk+1 by subsampling1
each element of Xk independently with probability 1/2.

Consider the following thought experiment, where we maintain all sets X0, X1, X2, . . . , Xkmax

in the memory for some value of kmax. As long as the set Xkmax
is not too small, we can use any of

the sets X0, . . . , Xkmax
with the corresponding rate to estimate F0. However, as you might already

have noticed that storing all the sets X0, X1, X2, . . . , Xkmax
is every costly. Even just storing X0 is

already very costly. So we cannot do this, if we want to design a low-space algorithm.

1To ensure independence, this needs to be done carefully. See the original paper: Distinct Elements in Streams:
An Algorithm for the (Text) Book. Sourav Chakraborty, N. V. Vinodchandran, and Kuldeep S. Meel. In Proceedings of
European Symposium of Algorithms (ESA) 2022.

4

Algorithms Lecture 15: Streaming Algorithms and Dimensionality Reduction [Fall 2024]

The main observation to overcome this obstacle is that we only need one of the sets
X0, X1, X2, . . . , Xkmax

with the corresponding rate in order to estimate F0. In particular, we keep a
threshold for the size of our current set given by the parameter thresh. If the current set exceeds
this size, we throw it away and move to the next one and keep track of the fact that the value of
p has halved.

The overall algorithm is the following.

Algorithm 2 Estimate F0 on input stream a1, . . . , am

1: Initialize: p← 1, X ←∅
2: for i = 1 to m do
3: . Sample from distinct elements at the current rate p
4: if ai ∈ X then
5: Remove ai from X
6: end if
7: Add ai to X with probability p
8:

9: if |X | ≥ thresh then
10: . Subsample half the elements and decrease the rate by half
11: Throw away each element of X with probability 1

2
12: p← p

2
13: end if
14: end for
15: Output |X |p

The above algorithm uses O
�

ε−2 · log n · log m
δ

�

space. Furthermore, the following lemma
shows that the expected size of the set maintained by the above algorithm at the end is large
enough to get a 1± ε approximation of F0 using the Chernoff bounds.

Lemma. The probability that p < thresh
4F0

at any point during the execution of the algorithm is at
most δ.

In particular the above implies that the expected size of the set X at the end is at least
thresh/4 with probability at least 1−δ.

Proof. Suppose at some iteration i ∈ [m], the probability decreases from 2−` to 2−`−1 where
2−`−1 < thresh

4F0
≤ 2−`. This can only happen when the subsampled set X at the rate 2−` has

reached its maximum allowed size. However, note that thresh
8 < E[|X |] ≤ thresh

4 . Since, in X
each of the F0 distinct elements is included independently with probability 2−`−1, by Chernoff
bounds, the probability that its size is a constant times larger than its expectation is very small.
In particular,

P [|X | ≥ thresh]≤ e−(2/9)·thresh ≤ δ/m.

By union bound over all the m iterations, the probability that p decreases below thresh
4F0

at any
point during the execution is at most δ.

5

Algorithms Lecture 15: Streaming Algorithms and Dimensionality Reduction [Fall 2024]

Dimensionality Reduction

How do we deal with data in high dimensions? We often visualize data and algorithms in one,
two, or three dimensions, e.g., a graph or a 3D plot. But high-dimensional space does not behave
like low-dimensional space, as we will see in the first part of this lecture, so such visualization is
not very informative.

In the second part of the lecture, we will ignore our own advice and look at sketching, also
known as dimensionality reduction techniques. In particular, we will see that the properties of
high-dimensional spaces that seem counterintuitive also give us a lot of utility.

High-dimensional spaces are strange! Recall that the inner product of two vectors x =
(x1, . . . , xd) and y = (y1, . . . , yd) in d dimensions is given by:

〈x , y〉= x> y = y>x =
d
∑

i=1

x i yi = ‖x‖ · ‖y‖ · cosθ ,

where θ is the angle between the two vectors and ‖x‖ denotes the Euclidean length of x . One
can ask how many mutually orthogonal unit vectors x1, x2, . . . , xd can we find in d dimensions?
The answer is there are exactly d such vectors. But if we relax this condition a little bit, for
instance, suppose we want to find the largest number of nearly mutually orthogonal unit
vectors x1, . . . , x t in d dimensions, i.e. |〈x i , x j〉| ≤ 0.01 for all pairs i 6= j. It turns out that
there can be exp(Θ(d)) such vectors. In general, if we want the inner product to be at most
ε, then there can be exp(Θ(εd)) such vectors. Thus, in high-dimensional spaces, we can find
exponentially many vectors that are all far apart from each other. This is one example of the curse
of dimensionality that occurs when solving computational problems involving high-dimensional
data. For example, solving the nearest neighbor problem is intractable in high-dimensions if our
data is truly random, because we will need an exponential amount of data before we start seeing
even a single point that is close. In fact, the existence of some kind of low-dimensional structure
is often the only reason we can hope to solve such computational problems.

Let’s look at another example of the strangeness of high-dimensional spaces. Consider the
unit ball in d dimensions Bd = {x ∈ Rd | ‖x‖ ≤ 1}. One can wonder what fraction of the volume
of the ball resides in an ε-shell around its surface, i.e. in the region {x ∈ Rd | 1− ε≤ ‖x‖ ≤ 1}.
In 2 or 3 dimensions, the fraction is O(ε) which is very small if ε is small say 0.01. However, it
turns out that in d dimensions, almost the entire volume resides in the ε-shell, in particular, the
fraction of the volume of the ball in the shell is 1− exp(−Θ(εd)). Similarly, one can ask, how
much of the volume is within an ε band of the equator, i.e. in the region {x ∈ Rd | |x1| ≤ ε}
where x = (x1, . . . , xd) in its coordinate representation. Again, our 2- or 3-dimensional intuition
would suggest that the fraction of volume in the band is small if ε is small, but it turns out that
almost all of the volume is in this band if d is large. Note that we can choose any equator and
the same holds true. To summarize, most of the volume of the d-dimensional ball is close to its
surface and close to any equator. In a nutshell, the high-dimensional ball looks nothing like the 2-
or 3-dimensional ball.

Sketching or Dimensionality Reduction

Despite the fact that low-dimensional space behaves nothing like high-dimensional space, we can
still leverage its strangeness to our advantage.

6

Algorithms Lecture 15: Streaming Algorithms and Dimensionality Reduction [Fall 2024]

Suppose we have data x1, X2, . . . , xN ∈ Rd and we want to find some way of making it
low-dimensional, say we want to convert it to a lower dimensional space Rk where k� d. This is
a form of data compression and of course, we should not expect lossless compression. Regardless,
we would like to preserve the geometry of our data in some of way. Here, we will look at
(approximately) preserving the pairwise distances between points.

Such compression has lots of applications. One particular area where it is very helpful is
computational geometry where it allows one to approximately solve high-dimensional problems by
moving to lower dimensions. As a concrete example consider the k-means clustering problem:
given a set of points x1, . . . , xN ∈ Rd and an integer k > 1, we want to find y1, . . . , yk ∈ Rd such
that

N
∑

i=1

min
j∈[k]
‖x i − y j‖2,

is minimized. One can show that this problem boils down to partitioning the input points into k
clusters, with each cluster having a center, and we want to minimize the sum of squared distances
between the points and their closest center. Since this problem only considers pairwise distances
between the input points, if we can find a way to make our problem low-dimensional while
approximately preserving the pairwise distances, we can solve k-means approximately much
faster by working in the low-dimensional space. A similar situation arises for other problems like
nearest neighbor search.

Johnson-Lindenstrauss Lemma. Our key tool to convert high-dimensional data to low-
dimensional data is by a powerful result called the Johnson-Lindenstrauss Lemma proven
in 1984 by Johnson and Lindenstrauss. This lemma gives a way to embed N data points from
Rd in Rn where n = C log N , for a universal constant C while approximately preserving the
pairwise distances. Note that one can always assume that if we have N points in d-dimensional
space, then d ≤ N by restricting to the hyperplane that contains all the points which is atmost
N -dimensional. So, applying the above lemma gives an exponential reduction in the dimension
of the space, since it goes down from N to O(log N).

The embedding is done via a linear map, aka, a linear transformation that maps Rd to Rn. In
other words, we can find a n× d dimensional matrix A and our embedding will map the point
x ∈ Rd to the n-dimensional vector Ax while approximately preserving the distances.

A : Rd → Rk

Theorem. For any x1, . . . , xN ∈ Rd , there exists an integer n ≤ C log N for a universal positive
constant C and a matrix A∈ Rn×d , such that the following holds for every i, j ∈ [N],

(1− ε)‖x i − x j‖ ≤ ‖Ax i − Ax j‖ ≤ (1+ ε)‖x i − x j‖

How do we find such a matrix A? In fact, we will see the power of randomness in this example
again — picking a random matrix will work with high probability. It will also turn out that the
random matrix does not even depend on the data points and can be sampled ahead of time.

In order to prove the above lemma, we will need to work with the Gaussian distribution (also
called the Normal distribution), so we take a small detour to look at its properties.

7

Algorithms Lecture 15: Streaming Algorithms and Dimensionality Reduction [Fall 2024]

Gaussian or Normal Distribution. Wewill work with continuous probability distributions, such
as distributions on the real line or in the d-dimensional real space Rd . Continuous distributions
have a probability density function (pdf) which gives the “weight” the distribution gives to a
particular region. For example, in 1-dimensional space, the pdf is a function p : R→ R≥0 and the
probability of an interval I ⊂ R is given by

∫

I p(x)d x .
Gaussian distribution is one of the most useful probability distributions. The probability

density function (pdf) of a 1-dimensional standard Gaussian is given by:

p(x) =
1
p

2π
exp

�

−
x2

2

�

The mean of the 1-dimensional standard Gaussian G is given by

µ= E[G] =
∫

R
x p(x)d x = 0.

Note that this is analogous to the expression we saw for the expectation of a discrete random
variable X where E[X] =

∑

x x · P[X = x].
Another important quantity is the variance of the standard gausssian:

σ2 = E[(G −µ)2] =
∫

R
x2p(x)d x = 1.

The 1-dimensional standard Gaussian is denoted by N(0,1). In general, one can have a
Gaussian with a different mean µ and variance σ2. Such a Gaussian is denoted by N(µ,σ2) and
its pdf for parameters µ,σ ∈ R is given by

p(x) =
1

p
2πσ2

exp

�

−
(x −µ)2

2σ2

�

Properties of the Gaussian distribution The normal distribution has several important and
unique properties, which make it widely useful in probability and statistics.

Tail Bounds. Suppose we toss n independent coins, where X1, . . . , Xn are the outcomes of
these tosses. Each X i ∈ {−1, 1} with P[X i = 1] = P[X i = −1] = 1

2 . Let Sn =
∑n

i=1 X i .
Note that E[Sn] = 0. Also, the Chernoff bound provides an exponential decay in the

probability of large deviations from the mean, implying that:

P
��

�

�

�

Snp
n

�

�

�

�

≥ t

�

≤ 2e−t2/2.

In fact, something stronger is true: as n increases, the distribution of Sn approaches a
Gaussian distribution. This is the essence of the Central Limit Theorem, which implies that for
large n, the distribution of Sn/

p
n is approximately N(0,1).

A tail inequality of the form
P[|G|> t]≤ 2e−t2/2,

is called a Gaussian tail bound because it holds when G is N(0, 1). In particular, it shows that
the probability of observing a large value from a Gaussian distribution decreases exponentially

8

Algorithms Lecture 15: Streaming Algorithms and Dimensionality Reduction [Fall 2024]

with the square of the value. The proof of the above tail bound for a standard Gaussian follows
from basic calculus and we omit it here.

Sum and scaling of Gaussians. Suppose G1 ∼ N(µ1,σ2
1) and G2 ∼ N(µ2,σ2

2). Then the
sum of these two independent Gaussian variables is also a Gaussian:

G1 + G2 ∼ N(µ1 +µ2,σ2
1 +σ

2
2)

This property generalizes to the sum of many independent Gaussian variables, each with
potentially different means and variances.

Similarly, if G ∼ N(µ,σ2), then for any scalar a, the random variable aG is also Gaussian:

aG ∼ N(aµ, a2σ2)

This shows that scaling a Gaussian random variable changes its mean by a factor of a and
variance by the factor of a2.

Multivariate Gaussian distribution. A multivariate Gaussian distribution in d dimensions is
a vector G = (G1, . . . , Gd) where each coordinate Gi is an independent N(0, 1) random variable.
Denoting the pdf of the one dimensional standard Gaussian by p, the probability density function
(pdf) of this distribution is a function pd : Rd → R≥0 given by:

pd(x) = p(x1) · p(x2) · · · · · p(xd) =
1

(2π)d/2
exp

�

−
1
2

d
∑

i=1

x2
i

�

=
1

(2π)d/2
exp

�

−
1
2
‖x‖2

�

,

where x = (x1, . . . , xd) in its coordinate representation.
Pictorially, the 2-dimensional pdf looks like a bell-shaped surface in three-dimensional space,

where the height represents the probability density at that point.

Thin shell phenomenon. A remarkable property of high-dimensional Gaussians is the thin
shell phenomenon. Although, based on the probability density function, it seems like most of the
probability mass of the d-dimensional standard Gaussian is near the origin, this is not true in
high dimensions. In fact, if we sample points from a d-dimensional standard Gaussian, most of
them will lie close to the surface of a ball of radius

p
d, even though the probability density is

highest at the origin.
Concretely, the thin shell theorem states that for a standard Gaussian vector G ∈ Rd , the

norm ‖G‖ is concentrated around
p

d:

P
�

0.99
p

d ≤ ‖G‖ ≤ 1.01
p

d
�

≥ 1− e−cd ,

for some constant c.
This is similar to the fact mentioned earlier about the unit ball in high dimensions, where

most of the volume is concentrated near the surface rather than at the center.

9

Algorithms Lecture 15: Streaming Algorithms and Dimensionality Reduction [Fall 2024]

Proof of the Johnson-Lindenstrauss Lemma. We now have all the tools to prove the Johnson-
Lindenstrauss Lemma, which we restate below.

Theorem (Johnson-Lindenstrauss ‘84). For any x1, . . . , xN ∈ Rd , there exists an integer n≤ C log N
for a universal positive constant C and a matrix A∈ Rn×d , such that the following holds for every
i, j ∈ [N],

(1− ε)‖x i − x j‖ ≤ ‖Ax i − Ax j‖ ≤ (1+ ε)‖x i − x j‖

Proof. We will choose the matrix A= 1p
n · G where G is an n× d Gaussian random matrix, i.e.

each entry Gi j is independent and N(0,1). We will show that with high probability, such a matrix
satisfies the lemma.

Let us first understand what this matrix does to a fixed vector z ∈ Rd .

Fact. Let z = (z1, . . . , zd) be a unit vector in Rd , i.e., ‖z‖= 1. Then, Gz is a standard multivariate
Gaussian in n dimensions. In other words, each coordinate of Gz is a Gaussian random variable
N(0, 1), and all coordinates are independent.

Proof of Fact. Each coordinate i of the vector Gz is given by:

(Gz)i =
d
∑

j=1

Gi jz j

Note that each term Gi jz j is N(0, z2
j) since it is a scaling of a standard Gaussian. Hence, the

sum of all these Gaussians is distributed as

N(0, z2
1 + z2

2 + · · ·+ z2
d) = N(0,‖z‖2) = N(0,1),

where the last equality follows since z is a unit vector. Furthermore, all coordinate of Gz are
independent since to compute (Gz)i we compute the product of the ith row of G with z and all
the rows of G are independent.

Now, consider a pair of points x i and x j . We want to show that the distances between these
points are approximately preserved. Define

z =
x i − x j

‖x i − x j‖
.

Then, Gz is a standard n-dimensional Gaussian and by the thin shell theorem we have that

P
�

0.99
p

n≤ |‖G‖| ≤ 1.01
p

n
�

≥ 1− e−cn.

Rearranging the above gives us that

P
�

0.99‖x i − x j‖ ≤

�

G
p

n

�

x i −
�

G
p

n

�

x j

≤ 1.01‖x i − x j‖
�

≥ 1− e−cn.

Since A= 1p
n · G, it follows that the probability that the bad event

Ei j =
��

�‖Ax i − Ax j‖
�

� /∈ [0.99‖x i − x j‖, 1.01‖x i − x j‖]
	

,

10

Algorithms Lecture 15: Streaming Algorithms and Dimensionality Reduction [Fall 2024]

holds for a fixed pair i, j is at most exp(−cn).
By a union bound the probability that there is some pair i, j for which the above event Ei j

holds is atmost
P[∪i, j Ei j]≤

∑

i j

P[Ei j]≤ N2 exp(−cn).

If we choose n≥ C log N for a large enough constant C , the probability above is at most N−100.
Thus, with probability at least 1 − N−100, the matrix A satisfies the desired property. This
completes the proof.

Prologue. If high dimensional geometry is so different from low-dimensional geometry, why
is dimensionality reduction possible? Does Johnson-Lindenstrauss Lemma not tell us that
high-dimensional geometry can be approximated in low dimensions? Note that the Johnson-
Lindenstrauss Lemma only preserves distances between the N data points x1, . . . , xN ∈ Rd , not
all points in Rd . In particular, we are now using the strange behavior of high-dimensional
spaces to our advantage — previous we saw that d-dimensional space can contain 2Θ(d) mutually
orthogonal unit vectors. When d = C log N for a large enough C , this is enough to embed N unit
vectors that might be mutually almost orthogonal.

One final remark for the interested reader: one may wonder whether we can sample a
Gaussian random matrix in practice since it is a continuous distribution. In fact, there are various
practical ways of generating samples from a Gaussian distribution that are already widely used
(Matlab already does this, for instance). However, it turns out that, with more work, one can
even work with a simpler discrete distribution. It is possible to show that even choosing G to be a
random ±1 matrix, i.e. a matrix where each entry is chosen independently to be an unbiased ±1
random variable, works with high probability. In fact, one can remove the randomness from the
above construction in some sense. After a long line of work, there are now even fast deterministic
algorithms to find the Johnson-Lindenstrauss matrix A given the data set as input.

© Copyright 2024 Makrand Sinha.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
Partly based on lectures notes from courses taught by Je� Erickson (UIUC), Rajesh Jayaram (NYU), Jelani Nelson (UC Berkeley) and Roman Vershynin (UC Irvine).

11

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Streaming Algorithms and Dimensionality Reduction

