
Simplicibus itaque verbis gaudet Mathematica Veritas, cum etiam per se
simplex sit Veritatis oratio. [And thus Mathematical Truth prefers simple words,
because the language of Truth is itself simple.]

— Tycho Brahe (quoting Seneca (quoting Euripides))
Epistolarum astronomicarum liber primus (1596)

When a jar is broken, the space that was inside
Merges into the space outside.
In the same way, my mind has merged in God;
To me, there appears no duality.

— Sankara, Viveka-Chudamani (c. 700), translator unknown

I
Linear Programming Algorithms

[Read Chapters G and H first.]
Status: Half-finished.

In this chapter I will describe several variants of the simplex algorithm for solving
linear programming problems, first proposed by George Dantzig in 1947. Although most
variants of the simplex algorithm perform well in practice, no deterministic simplex
variant is known to run in sub-exponential time in the worst case.1 However, if the
dimension of the problem is considered a constant, there are several variants of the
simplex algorithm that run in linear time. I’ll describe a particularly simple randomized
algorithm due to Raimund Seidel.

My approach to describing these algorithms relies much more heavily on geometric
intuition than the usual linear-algebraic formalism. This works better for me, but your
mileage may vary. For a more traditional description of the simplex algorithm, see
Robert Vanderbei’s excellent textbook Linear Programming: Foundations and Extensions

1However, there are randomized variants of the simplex algorithm that run in subexponential expected
time, most notably the RandomFacet algorithm analyzed by Gil Kalai in 1992, and independently by Jiří
Matoušek, Micha Sharir, and Emo Welzl in 1996. No randomized variant is known to run in polynomial
time. In particular, in 2010, Oliver Friedmann, Thomas Dueholm Hansen, and Uri Zwick proved that the
worst-case expected running time of RandomFacet is superpolynomial.

© 2018 Jeff Erickson http://algorithms.wtf 1

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://algorithms.wtf


I. LINEAR PROGRAMMING ALGORITHMS

[Springer, 2001], which can be freely downloaded (but not legally printed) from the
author’s website.

I.1 Bases, Feasibility, and Local Optimality

Consider the canonical linear program max{c · x | Ax ≤ b, x ≥ 0}, where A is an n× d
constraint matrix, b is an n-dimensional coefficient vector, and c is a d-dimensional
objective vector. We will interpret this linear program geometrically as looking for
the lowest point in a convex polyhedron in Rd , described as the intersection of n+ d
halfspaces. As in the last lecture, we will consider only non-degenerate linear programs:
Every subset of d constraint hyperplanes intersects in a single point; at most d constraint
hyperplanes pass through any point; and objective vector is linearly independent from
any d − 1 constraint vectors.

A basis is a subset of d constraints, which by our non-degeneracy assumption must
be linearly independent. The location of a basis is the unique point x that satisfies
all d constraints with equality; geometrically, x is the unique intersection point of
the d hyperplanes. The value of a basis is c · x , where x is the location of the basis.
There are precisely

�n+d
d

�

bases. Geometrically, the set of constraint hyperplanes defines
a decomposition of Rd into convex polyhedra; this cell decomposition is called the
arrangement of the hyperplanes. Every subset of d hyperplanes (that is, every basis)
defines a vertex of this arrangement (the location of the basis). I will use the words
‘vertex’ and ‘basis’ interchangeably.

A basis is feasible if its location x satisfies all the linear constraints, or geometrically,
if the point x is a vertex of the polyhedron. If there are no feasible bases, the linear
program is infeasible.

A basis is locally optimal if its location x is the optimal solution to the linear program
with the same objective function and only the constraints in the basis. Geometrically, a
basis is locally optimal if its location x is the lowest point in the intersection of those d
halfspaces. A careful reading of the proof of the Strong Duality Theorem reveals that
local optimality is the dual equivalent of feasibility; a basis is locally optimal for a linear
program Π if and only if the same basis is feasible for the dual linear program q. For
this reason, locally optimal bases are sometimes also called dual feasible. If there are no
locally optimal bases, the linear program is unbounded.2

Two bases are neighbors if they have d − 1 constraints in common. Equivalently, in
geometric terms, two vertices are neighbors if they lie on a line determined by some d−1
constraint hyperplanes. Every basis is a neighbor of exactly dn other bases; to change a
basis into one of its neighbors, there are d choices for which constraint to remove and n

2For non-degenerate linear programs, the feasible region is unbounded in the objective direction if and
only if no basis is locally optimal. However, there are degenerate linear programs with no locally optimal
basis that are infeasible.

2



I.2. The Simplex Algorithm

choices for which constraint to add. The graph of vertices and edges on the boundary of
the feasible polyhedron is a subgraph of the basis graph.

The Weak Duality Theorem implies that the value of every feasible basis is less than
or equal to the value of every locally optimal basis; equivalently, every feasible vertex
is higher than every locally optimal vertex. The Strong Duality Theorem implies that
(under our non-degeneracy assumption), if a linear program has an optimal solution,
it is the unique vertex that is both feasible and locally optimal. Moreover, the optimal
solution is both the lowest feasible vertex and the highest locally optimal vertex.

I.2 The Simplex Algorithm

Primal: Falling Marbles

From a geometric standpoint, Dantzig’s simplex algorithm is very simple. The input is a
set H of halfspaces; we want the lowest vertex in the intersection of these halfspaces.

PrimalSimplex(H):
if ∩H =∅

return Infeasible
x ← any feasible vertex
while x is not locally optimal
〈〈pivot downward, maintaining feasibility〉〉
if every feasible neighbor of x is higher than x

return Unbounded
else

x ← any feasible neighbor of x that is lower than x
return x

Let’s ignore the first three lines for the moment. The algorithm maintains a feasible
vertex x . At each so-called pivot operation, the algorithm moves to a lower vertex, so
the algorithm never visits the same vertex more than once. Thus, the algorithm must
halt after at most

�n+d
d

�

pivots. When the algorithm halts, either the feasible vertex x is
locally optimal, and therefore the optimum vertex, or the feasible vertex x is not locally
optimal but has no lower feasible neighbor, in which case the feasible region must be
unbounded.

Notice that we have not specified which neighbor to choose at each pivot. Many
different pivoting rules have been proposed, but for almost every known pivot rule, there
is an input polyhedron that requires an exponential number of pivots under that rule.
No pivoting rule is known that guarantees a polynomial number of pivots in the worst
case, or even in expectation.3

3In 1957, Hirsch conjectured that for any linear programming instance with d variables and n+ d
constraints, starting at any feasible basis, there is a sequence of at most n pivots that leads to the optimal
basis. This long-standing conjecture was finally disproved in 2010 by Fransisco Santos, who described an
counterexample with 43 variables and 86 constraints, where the worst-case number of required pivots is 44.

3



I. LINEAR PROGRAMMING ALGORITHMS

Dual: Rising Bubbles

We can also geometrically interpret the execution of the simplex algorithm on the dual
linear program q. Again, the input is a set H of halfspaces, and we want the lowest
vertex in the intersection of these halfspaces. By the Strong Duality Theorem, this is the
same as the highest locally-optimal vertex in the hyperplane arrangement.

DualSimplex(H):
if there is no locally optimal vertex

return Unbounded
x ← any locally optimal vertex
while x is not feasbile
〈〈pivot upward, maintaining local optimality〉〉
if every locally optimal neighbor of x is lower than x

return Infeasible
else

x ← any locally-optimal neighbor of x that is higher than x
return x

Let’s ignore the first three lines for the moment. The algorithm maintains a locally
optimal vertex x . At each pivot operation, it moves to a higher vertex, so the algorithm
never visits the same vertex more than once. Thus, the algorithm must halt after at most
�n+d

d

�

pivots. When the algorithm halts, either the locally optimal vertex x is feasible,
and therefore the optimum vertex, or the locally optimal vertex x is not feasible but has
no higher locally optimal neighbor, in which case the problem must be infeasible.

Figure I.1. The primal simplex (falling marble) and dual simplex (rising bubble) algorithms in action.

From the standpoint of linear algebra, there is absolutely no difference between
running PrimalSimplex on any linear program Π and running DualSimplex on the

4



I.3. Computing the Initial Basis

dual linear program q. The actual code is identical. The only difference between the
two algorithms is how we interpret the linear algebra geometrically.

I.3 Computing the Initial Basis

To complete our description of the simplex algorithm, we need to describe how to find
the initial vertex x in the third line of PrimalSimplex or DualSimplex. There are several
methods to find feasible or locally optimal bases, but perhaps the most natural method
uses the simplex algorithm itself. Our approach relies on two simple observations.

First, the feasibility of a vertex does not depend on the choice of objective vector;
a vertex is either feasible for every objective function or for none. Equivalently (by
duality), the local optimality of a vertex does not depend on the exact location of the d
hyperplanes, but only on their normal directions and the objective function; a vertex
is either locally optimal for every translation of the hyperplanes or for none. In terms
of the original matrix formulation, feasibility depends on A and b but not c, and local
optimality depends on A and c but not b.

Second, every basis is locally optimal for some objective vector. Specifically, it suffices
to choose any vector that has a positive inner product with each of the normal vectors
of the d chosen hyperplanes. Equivalently, every basis is feasible for some offset vector.
Specifically, it suffices to translate the d chosen hyperplanes so that they pass through
the origin, and then translate all other halfspaces so that they strictly contain the origin.

Thus, to find an initial feasible vertex for the primal simplex algorithm, we can
choose an arbitrary vertex x , rotate the objective function so that x becomes locally
optimal, and then find the optimal vertex for the rotated objective function by running
the (dual) simplex algorithm. This vertex must be feasible, even after we restore the
original objective function!

Equivalently, to find an initial locally optimal vertex for the dual simplex algorithm,
we can choose an arbitrary vertex x , translate the constraint hyperplanes so that x
becomes feasible, and then find the optimal vertex for the translated constraints by
running the (primal) simplex algorithm. This vertex must be locally optimal, even after
we restore the hyperplanes to their original locations!

Pseudocode for both algorithms is given in Figures I.4 and I.5. As usual, the input
to both algorithms is a set H of halfspaces, and the algorithms either return the lowest
vertex in the intersection of those halfspaces, report that the linear program is infeasible,
or report that the linear program is unbounded.

5



I. LINEAR PROGRAMMING ALGORITHMS

(a) (b) (c)

Figure I.2. Primal simplex with dual initialization: (a) Choose any basis. (b) Rotate the objective to make the basis
locally optimal, and pivot “up” to a feasible basis. (c) Pivot down to the optimum basis for the original objective.

(a) (b) (c)

Figure I.3. Dual simplex with primal optimization: (a) Choose any basis. (b) Translate the constraints to make
the basis feasible, and pivot down to a locally optimal basis. (c) Pivot up to the optimum basis for the original
constraints.

DualPrimalSimplex(H):
x ← any vertex
H̃ ← any rotation of H that makes x locally optimal

while x is not feasible
if every locally optimal neighbor of x is lower (wrt H̃) than x

return Infeasible
else

x ← any locally optimal neighbor of x that is higher (wrt H̃) than x

while x is not locally optimal
if every feasible neighbor of x is higher than x

return Unbounded
else

x ← any feasible neighbor of x that is lower than x
return x

Figure I.4. The primal simplex algorithm with dual initialization.

6



I.4. Network Simplex

PrimalDualSimplex(H):
x ← any vertex
H̃ ← any translation of H that makes x feasible

while x is not locally optimal
if every feasible neighbor of x is higher (wrt H̃) than x

return Unbounded
else

x ← any feasible neighbor of x that is lower (wrt H̃) than x

while x is not feasible
if every locally optimal neighbor of x is lower than x

return Infeasible
else

x ← any locally-optimal neighbor of x that is higher than x
return x

Figure I.5. The dual simplex algorithm with primal initializzation.

I.4 Network Simplex

ÆÆÆThis section needs revision.

Our first natural examples of linear programming problems were shortest paths,
maximum flows, and minimum cuts in edge-weighted graphs. It is instructive to
reinterpret the behavior of the abstract simplex algorithm in terms of the original input
graphs; this reinterpretation allows for a much more efficient implementation of the
simplex algorithm, which is normally called network simplex.

As a concrete working example, I will consider a special case of the minimum-cost
flow problem called the transshipment problem. The input consists of a directed graph
G = (V, E), a balance function b : V → R, and a cost function $: E→ R, but no capacities
or lower bounds on the edges. Our goal is to compute a flow function f : E→ R that is
non-negative everywhere, satisfies the balance constraint

∑

u�v

f (u�v)−
∑

v�w

f (v�w) = b(v)

at every vertex v, and minimizes the total cost
∑

e f (e) · $(e).
We can easily express this problem as a linear program with a variable for each edge

and constraints for each vertex and edge.

maximize
∑

u�v

$(u�v) · f (u�v)

subject to
∑

u�v

f (u�v)−
∑

v�w

f (v�w) = b(v) for every vertex v 6= s

f (u→ v)≥ 0 for every edge u→ v

7



I. LINEAR PROGRAMMING ALGORITHMS

Here I’ve omitted the balance constraint for some fixed vertex s, because it is redundant;
if f is balanced at every vertex except s, then f must be balanced at s as well. By
interpreting the balance, cost, and flow functions as vectors, we can write this linear
program more succinctly as follows:

max $ · f
s.t. A f = b

f ≥ 0

Here A is the vertex-edge incidence matrix of G; this matrix has one row for each edge
and one column for each vertex, and whose entries are defined as follows:

A(x�y, v) =











1 if v = y

−1 if v = x

0 otherwise

Let G = (V, E) be the undirected version of G, defined by setting E = {uv | u�v ∈ E}. In
the following arguments, I will refer to “undirected cycles” and “spanning trees” in G;
these phrases are shorthand for the subset of directed edges in G corresponding to
undirected cycles and spanning trees in G.

To simplify the remaining presentation, I will make two non-degeneracy assumptions:
• The cost vector $ is non-degenerate: No residual cycle has cost 0.

• The balance vector is non-degenerate: No non-empty proper subset of vertices has
total balance 0.
Because the transshipment LP has E variables, a basis consists of E linearly indepen-

dent constraints. We call a basis balanced if it contains all V −1 balance constraints; any
flow consistent with a balanced basis is balanced at every vertex of G. Every balanced
basis contains exactly E − V + 1 edge constraints, and therefore omits exactly V − 1
edge constraints. We call an edge fixed if its constraint is included in the basis and free
otherwise. Any flow consistent with a balanced basis is zero on every fixed edge and
non-negative on every free edge.

Lemma I.1. For every balanced basis, the free edges define a spanning tree of G;
conversely, for every spanning tree T of G, there is a balanced basis for which T is the
set of free edges.4

Proof: First, fix an arbitrary balanced basis, let f be any flow consistent with that basis,
and let T be the set of V − 1 free edges for that basis. (The flow f need not be feasible.)

4More generally, every basis (balanced or not) is associated with a spanning forest F ; the basis contains
edge constraints for every edge not in F and all but one vertex constraint in each component of F .

8



I.4. Network Simplex

For the sake of argument, suppose T contains an undirected cycle. Then by pushing flow
around that cycle, we can obtain another (not necessarily feasible) flow f ′ that is still
consistent with our fixed basis. So the basis constraints do not determine a unique flow,
which means the constraints are not linearly independent, contradicting the definition of
basis. We conclude that T is acyclic, and therefore defines a spanning tree of G.

On the other hand, suppose T is an arbitrary spanning tree of G. We define a function
flowT : E→ R as follows:
• For each edge u�v ∈ T , we define flowT (u�v) to be sum of balances in the

component of T \ u�v that contains v. Our non-degeneracy assumption implies that
flowT (u�v) 6= 0.

• For each edge u�v 6∈ T , we define flowT (u�v) = 0.
Routine calculations imply flowT is balanced at every vertex; moreover, flowT is the
unique flow in G that is non-zero only on edges of T . We conclude that the V − 1
balance constraints and the E − V + 1 edge constraints for edges not in T are linearly
independent; in other words, T is the set of free edges of a balanced basis. �

For any spanning tree T and any edges u�v 6∈ T , let cycleT (u�v) denote the
directed cycle consisting of u�v and the unique residual path in T from v to u. Our
non-degeneracy assumption implies that the total cost $(cycleT (u�v)) of this cycle is not
equal to zero. We define the slack of each edge in G as follows:

slackT (u�v) :=

¨

0 if u�v ∈ T

$(cycleT (u�v)) if u�v 6∈ T

The function flowT : E→ R is the location of the balanced basis associated with T ;
the function slackT : E → R is essentially the location of the corresponding dual basis.
With these two functions in hand, we can characterize balanced bases as follows:
• The basis associated with any spanning tree T is feasible (and thus the dual basis is

locally optimal) if and only if flowT (e) ≥ 0 (and therefore flowT (e) > 0) for every
edge e ∈ T .

• The basis associated with any spanning tree T is locally optimal (and thus the dual
basis is feasible) if and only if slackT (e)≥ 0 (and therefore slackT (e)> 0) for every
edge e 6∈ T .

Notice that the complementary slackness conditions are automatically satisfied: For any
edge e, and for any spanning tree T , we have flowT (e) · slackT (e) = 0. In particular, if
T is the optimal basis, then either flowT (e)> 0 and slackT (e) = 0, or flowT (e) = 0 and
slackT (e)> 0.

A pivot in the simplex algorithmmodifies the current basis by removing one constraint
and adding another. For the transshipment LP, a pivot modifies a spanning tree T by
adding an edge ein 6∈ T and removing an edge eout ∈ T to obtain a new spanning tree T ′.

9



I. LINEAR PROGRAMMING ALGORITHMS

• The leaving edge eout must lie in the unique residual cycle in T + ein. The pivot
modifies the flow function by pushing flow around the unique residual cycle in T +ein,
so that some edge eout becomes empty. In particular, the pivot decreases the overall
cost of the flow by flowT (eout) · slackT (ein).

• Equivalently, the entering edge ein must have one endpoint in each component of
T − eout. Let S be the set of vertices in the component of T − eout containing the tail
of eout. The pivot subtracts slackT (ein) from the slack of every edge from S to V \ S,
and adds slackT (ein) to the slack of every edge from V \ S to S.

The primal simplex algorithm starts with an arbitrary feasible basis and then repeatedly
pivots to a new feasible basis with smaller cost. For the transshipment LP, we can find
an initial feasible flow using the FeasibleFlow algorithm from Chapter F. Each primal
simplex pivot finds an edge ein with negative slack and pushes flow around cycleT (ein)
until some edge eout is saturated. In other words, the primal network simplex algorithm
is an implementation of cycle cancellation.

The dual simplex algorithm starts with an arbitrary locally optimal basis and then
repeatedly pivots to a new locally optimal basis with larger cost. For the transshipment
LP, the shortest-path tree rooted at any vertex provides a locally optimal basis. Each pivot
operation finds an edge eout with negative flow, removes it from the current spanning
tree, and then adds the edge ein whose slack is as small as possible.

ÆÆÆ I’m not happy with this presentation. I really need to reformulate the dual LP in terms
of slacks, instead of the standard “distances”, so that I can talk about pushing slack across
cuts, just like pushing flow around cycles. This might be helped by a general discussion of
cycle/circulation and cut/cocycle spaces of G: (1) orthogonal complementary subspaces
of the edge/pseudoflow space of G, (2) generated by fundamental cycles and fundamental
cuts of any spanning tree of G. Also, this needs examples/figures.

I.5 Linear Expected Time for Fixed Dimensions

ÆÆÆ This section needs careful revision.

In most geometric applications of linear programming, the number of variables is a small
constant, but the number of constraints may still be very large.

The input to the following algorithm is a set H of n halfspaces and a set B of
b hyperplanes. (B stands for basis.) The algorithm returns the lowest point in the
intersection of the halfspaces in H and the hyperplanes B. At the top level of recursion,
B is empty. I will implicitly assume that the linear program is both feasible and bounded.
(If necessary, we can guarantee boundedness by adding a single halfspace to H, and we
can guarantee feasibility by adding a dimension.) A point x violates a constraint h if it
is not contained in the corresponding halfspace.

10



I.5. Linear Expected Time for Fixed Dimensions

SeidelLP(H, B) :
if |B|= d

return
⋂

B
if |H ∪ B|= d

return
⋂

(H ∪ B)
h← random element of H
x ← SeidelLP(H \ h, B) (∗)
if x violates h

return SeidelLP(H \ h, B ∪ ∂ h)
else

return x

The point x recursively computed in line (∗) is the optimal solution if and only if the
random halfspace h is not one of the d halfspaces that define the optimal solution. In
other words, the probability of calling SeidelLP(H, B ∪ h) is exactly (d − b)/n. Thus,
we have the following recurrence for the expected number of recursive calls for this
algorithm:

T (n, b) =







1 if b = d or n+ b = d

T (n− 1, b) +
d − b

n
· T (n− 1, b+ 1) otherwise

The recurrence is somewhat simpler if we write δ = d − b:

T (n,δ) =







1 if δ = 0 or n= δ

T (n− 1,δ) +
δ

n
· T (n− 1,δ− 1) otherwise

It’s easy to prove by induction that T (n,δ) = O(δ! n):

T (n,δ) = T (n− 1,δ) +
δ

n
· T (n− 1,δ− 1)

≤ δ! (n− 1) +
δ

n
(δ− 1)! · (n− 1) [induction hypothesis]

= δ! (n− 1) +δ!
n− 1

n
≤ δ! n

At the top level of recursion, we perform one violation test in O(d) time. In each of
the base cases, we spend O(d3) time computing the intersection point of d hyperplanes,
and in the first base case, we spend O(dn) additional time testing for violations. More
careful analysis implies that the algorithm runs in O(d! · n) expected time.

11



I. LINEAR PROGRAMMING ALGORITHMS

Exercises

1. Fix a non-degenerate linear program in canonical form with d variables and n+ d
constraints.

(a) Prove that every feasible basis has exactly d feasible neighbors.
(b) Prove that every locally optimal basis has exactly n locally optimal neighbors.

2. (a) Give an example of a non-empty polyhedron Ax ≤ b that is unbounded for every
objective vector c.

(b) Give an example of an infeasible linear program whose dual is also infeasible.
In both cases, your linear program will be degenerate.

3. Describe and analyze an algorithm that solves the following problem in O(n) time:
Given n red points and n blue points in the plane, either find a line that separates
every red point from every blue point, or prove that no such line exists.

4. In this exercise, we develop another standard method for computing an initial feasible
basis for the primal simplex algorithm. Suppose we are given a canonical linear
program Π with d variables and n+ d constraints as input:

max c · x
s.t. Ax ≤ b

x ≥ 0

To compute an initial feasible basis for Π, we solve a modified linear program Π′

defined by introducing a new variable λ and two new constraints 0 ≤ λ ≤ 1, and
modifying the objective function:

max λ

s.t. Ax − bλ≤ 0
λ≤ 1

x ,λ≥ 0

(a) Prove that x1 = x2 = · · ·= xd = λ= 0 is a feasible basis for Π′.

(b) Prove that Π is feasible if and only if the optimal value for Π′ is 1.

(c) What is the dual of Π′?

5. Suppose you have a subroutine that can solve linear programs in polynomial time,
but only if they are both feasible and bounded. Describe an algorithm that solves
arbitrary linear programs in polynomial time. Your algorithm should return an

12



Exercises

optimal solution if one exists; if no optimum exists, your algorithm should report that
the input instance is Unbounded or Infeasible, whichever is appropriate. [Hint:
Add one variable and one constraint.]

6. Suppose your are given a rooted tree T , where every edge e has two associated
values: a non-negative length `(e), and a cost $(e) (which may be positive, negative,
or zero). Your goal is to add a non-negative stretch s(e) ≥ 0 to the length of every
edge e in T , subject to the following conditions:

• Every root-to-leaf pathπ in T has the same total stretched length
∑

e∈π(`(e)+s(e))
• The total weighted stretch

∑

e s(e) · $(`) is as small as possible.

(a) Give a concise linear programming formulation of this problem.
(b) Prove that in any optimal solution to this problem, we have s(e) = 0 for every

edge on some longest root-to-leaf path in T . In other words, prove that the
optimally stretched tree has the same depth as the input tree. [Hint: What is a
basis in your linear program? When is a basis feasible?]

(c) Describe and analyze an algorithm that solves this problem in O(n) time. Your
algorithm should either compute the minimum total weighted stretch, or report
correctly that the total weighted stretch can be made arbitrarily negative.

7. Recall that the single-source shortest path problem can be formulated as a linear
programming problem, with one variable dv for each vertex v 6= s in the input graph,
as follows:

maximize
∑

v

dv

subject to dv ≤ `s→v for every edge s→ v

dv − du ≤ `u→v for every edge u→ v with u 6= s

dv ≥ 0 for every vertex v 6= s

This problem asks you to describe the behavior of the simplex algorithm on this
linear program in terms of distances. Assume that the edge weights `u→v are all
non-negative and that there is a unique shortest path between any two vertices in
the graph.

(a) What is a basis for this linear program? What is a feasible basis? What is a locally
optimal basis?

13



I. LINEAR PROGRAMMING ALGORITHMS

(b) Show that in the optimal basis, every variable dv is equal to the shortest-path
distance from s to v.

(c) Describe the primal simplex algorithm for the shortest-path linear program
directly in terms of vertex distances. In particular, what does it mean to pivot
from a feasible basis to a neighboring feasible basis, and how can we execute
such a pivot quickly?

(d) Describe the dual simplex algorithm for the shortest-path linear program directly
in terms of vertex distances. In particular, what does it mean to pivot from a
locally optimal basis to a neighboring locally optimal basis, and how can we
execute such a pivot quickly?

(e) Is Dijkstra’s algorithm an instance of network simplex? Is Shimbel-Bellman-Ford?
Justify your answers.

(f) Using the results in problem 9, prove that if the edge lengths `u�v are all integral,
then the optimal distances dv are also integral.

8. The maximum (s, t)-flow problem can be formulated as a linear programming
problem, with one variable fu→v for each edge u→ v in the input graph:

maximize
∑

w

fs→w −
∑

u

fu→s

subject to
∑

w

fv→w −
∑

u

fu→v = 0 for every vertex v 6= s, t

fu→v ≤ cu→v for every edge u→ v

fu→v ≥ 0 for every edge u→ v

This problem asks you to describe the behavior of the simplex algorithm on this linear
program in terms of flows.

(a) What is a basis for this linear program? What is a feasible basis? What is a locally
optimal basis?

(b) Show that the optimal basis represents a maximum flow.
(c) Describe the primal simplex algorithm for the flow linear program directly in

terms of flows. In particular, what does it mean to pivot from a feasible basis to a
neighboring feasible basis, and how can we execute such a pivot quickly?

(d) Describe the dual simplex algorithm for the flow linear program directly in terms
of flows. In particular, what does it mean to pivot from a locally optimal basis to a
neighboring locally optimal basis, and how can we execute such a pivot quickly?

(e) Is the Ford-Fulkerson augmenting-path algorithm an instance of network simplex?
Justify your answer. [Hint: There is a one-line argument.]

(f) Using the results in problem 9, prove that if the capacities cu�v are all integral,
then the maximum flow values fu�v are also integral.

14



Exercises

9. A minor of a matrix A is the submatrix defined by any subset of the rows and any
subset of the columns. A matrix A is totally unimodular if, for every square minor M ,
the determinant of M is −1, 0, or 1.

(a) Let A be an arbitrary totally unimodular matrix.
i. Prove that the transposed matrix A> is also totally unimodular.
ii. Prove that negating any row or column of A leaves the matrix totally unimod-

ular.
iii. Prove that the block matrix [A | I] is totally unimodular.

(b) Prove that for any totally unimodular matrix A and any integer vector b, the
canonical linear program max{c · x | Ax ≤ b, x ≥ 0} has an integer optimal
solution. [Hint: Cramer’s rule.]

(c) The unsigned incidence matrix of an undirected graph G = (V, E) is an |V |× |E|
matrix A, with rows indexed by vertices and columns indexed by edges, where
for each row v and column uw, we have

A[v, uw] =

¨

1 if v = u or v = w

0 otherwise

Prove that the unsigned incidence matrix of every bipartite graph G is totally
unimodular. [Hint: Each square minor corresponds to a subgraph H of G with k
vertices and k edges, for some integer k. Argue that at least one of the following
statements must be true: (1) H is disconnected; (2) H has a vertex with degree
1; (3) H is an even cycle.]

(d) Prove for every non-bipartite graph G that the unsigned incidence matrix of G is
not totally unimodular. [Hint: Consider any odd cycle.]

(e) The signed incidence matrix of a directed graph G = (V, E) is also an |V | × |E|
matrix A, with rows indexed by vertices and columns indexed by edges, where
for each row v and column u�w, we have

A[u, v�w] =











1 if v = w

−1 if v = u

0 otherwise

Prove that the signed incidence matrix of every directed graph G is totally
unimodular.

© 2018 Jeff Erickson http://algorithms.wtf 15

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://algorithms.wtf

	Linear Programming Algorithms
	Bases, Feasibility, and Local Optimality
	The Simplex Algorithm
	Computing the Initial Basis
	Network Simplex
	Linear Expected Time for Fixed Dimensions


