
Ceterum in problematis natura fundatum est, ut methodi quaecunque continuo prolixiores
evadant, quo maiores sunt numeri, ad quos applicantur.
[It is in the nature of the problem that any method will become more prolix as the numbers
to which it is applied grow larger.]

— Carl Friedrich Gauß, Disquisitiones Arithmeticae (1801)
English translation by A.A. Clarke (1965)

Illam vero methodum calculi mechanici taedium magis minuere, praxis tentantem docebit.
[Truly, that method greatly reduces the tedium of mechanical calculations; practice will
teach whoever tries it.]

— Carl Friedrich Gauß, “Theoria interpolationis methodo nova tractata” (c. 1805)

After much deliberation, the distinguished members of the international committee decided
unanimously (when the Russian members went out for a caviar break) that since the
Chinese emperor invented the method before anybody else had even been born, the method
should be named after him. The Chinese emperor’s name was Fast, so the method was
called the Fast Fourier Transform.

— Thomas S. Huang, “How the fast Fourier transform got its name” (1971)

A
Fast Fourier Transforms

[Read Chapters 0 and 1 first.]
Status: Beta

A.1 Polynomials

Polynomials are functions of one variable built from additions, subtractions, and multipli-
cations (but no divisions). The most common representation for a polynomial p(x) is as
a sum of weighted powers of the variable x:

p(x) =
n
∑

j=0

a j x
j .

The numbers a j are called the coefficients of the polynomial. The degree of the polynomial
is the largest power of x whose coefficient is not equal to zero; in the example above, the
degree is at most n. Any polynomial of degree n can be represented by an array P[0 .. n]
of n+ 1 coefficients, where P[j] is the coefficient of the x j term, and where P[n] ̸= 0.

Here are three of the most common operations performed on polynomials:

© 2023 Jeff Erickson http://algorithms.wtf 1

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://algorithms.wtf

A. FAST FOURIER TRANSFORMS

• Evaluate: Give a polynomial p and a number x , compute the number p(x).

• Add: Give two polynomials p and q, compute a polynomial r = p + q, so that
r(x) = p(x) + q(x) for all x . If p and q both have degree n, then their sum p + q
also has degree n.

• Multiply: Give two polynomials p and q, compute a polynomial r = p · q, so that
r(x) = p(x) · q(x) for all x . If p and q both have degree n, then their product p · q
has degree 2n.

We learned simple algorithms for all three of these operations in high-school algebra.
The addition and multiplication algorithms are straightforward generalizations of the
standard algorithms for integer arithmetic.

Evaluate(P[0 .. n], x):
X ← 1 〈〈X = x j〉〉
y ← 0
for j← 0 to n

y ← y + P[j] · X
X ← X · x

return y

Add(P[0 .. n],Q[0 .. n]):
for j← 0 to n

R[j]← P[j] +Q[j]
return R[0 .. n]

Multiply(P[0 .. n],Q[0 .. m]):
for j← 0 to n+m

R[j]← 0
for j← 0 to n

for k← 0 to m
R[j + k]← R[j + k] + P[j] ·Q[k]

return R[0 .. n+m]

Evaluate uses O(n) arithmetic operations.1 This is the best we can hope for, although
we can cut the number of multiplications in half using Horner’s rule:

p(x) = a0 + x(a1 + x(a2 + . . .+ xan)).

Horner(P[0 .. n], x):
y ← P[n]
for i← n− 1 down to 0

y ← x · y + P[i]
return y

The addition algorithm also runs in O(n) time, and this is clearly the best we can do.

1All time analysis in this lecture assumes that each arithmetic operation takes O(1) time. This may not
be true in practice; in fact, one of the most powerful applications of fast Fourier transforms is fast integer
multiplication. The fastest algorithm currently known (in terms of bit-complexity) for multiplying two n-bit
integers, published by David Harvey and Joris van der Hoeven in 2019, uses O(n log n) bit operations and is
based on fast Fourier transforms.

2

A.2. Convolutions

The multiplication algorithm, however, runs in O(n2) time. In Chapter 1, we saw
a divide-and-conquer algorithm (due to Karatsuba) for multiplying two n-bit integers
in only O(nlg3) steps; precisely the same approach can be applied here. Even cleverer
divide-and-conquer strategies lead to multiplication algorithms whose running times are
arbitrarily close to linear—O(n1+ϵ) for your favorite value e > 0—but except for a few
simple cases, these algorithms not worth the trouble in practice unless n is extremely
large, thanks to large hidden constants.

A.2 Convolutions

Before we continue discussing polynomials, let me appear to take a brief digression.
Suppose we have two arrays A[0 .. m] and B[0 .. n] of numbers, which are not necessarily
of the same length. The convolution of A and B is another array (A ∗ B)[0 .. n + m]
defined by the equation

(A∗ B)[k] =
min{m,k}
∑

i=max{0,k−n}

A[i] · B[k− i]

or more simply:
(A∗ B)[k] =

∑

i+ j=k

A[i] · B[j]

For example, if A= [0,1, 2] and B = [3,4, 5,6, 7], then A∗ B = [0, 3,10, 13,16, 19,14],
because

(A∗ B)[0] = 0 · 3 = 0
(A∗ B)[1] = 0 · 4 + 1 · 3 = 3
(A∗ B)[2] = 0 · 5 + 1 · 4 + 2 · 3 = 10
(A∗ B)[3] = 0 · 6 + 1 · 5 + 2 · 4 = 13
(A∗ B)[4] = 0 · 7 + 1 · 6 + 2 · 5 = 16
(A∗ B)[5] = 1 · 7 + 2 · 6 = 19
(A∗ B)[6] = 2 · 7 = 14

Convolutions arise naturally in probability and statistics (for example, to compute moving
averages and cross-correlations), image and signal processing (for example, to filter
out noise), and several fields of science and engineering. They are also useful tools in
algorithm design. sometimes in surprising ways.2

Sharp-eyed readers will notice the uncanny resemblance between my convolution
example and a brute-force multiplication algorithm. (If not, try tilting your head 90
degrees.) That’s not a coincidence;this isn’t a digression at all! If A and B are the
coefficient vectors of polynomials a(x) and b(x), their convolution A∗ B is precisely the
coefficient vector of the product polynomial a(x) · b(x).

2To riff on Arlo Guthrie: Remember algorithms? These are lecture notes about algorithms.

3

A. FAST FOURIER TRANSFORMS

A.3 Alternative Representations

Part of what makes multiplication so much harder than the other two operations is
our input representation. Coefficient vectors are the most common representation for
polynomials, but there are at least two other useful representations.

Roots

The Fundamental Theorem of Algebra states that every polynomial p of degree n has
exactly n roots r1, r2, . . . rn such that p(r j) = 0 for all j. Some of these roots may
be irrational; some of these roots may by complex; and some of these roots may be
repeated. Despite these complications, this theorem implies a unique representation of
any polynomial of the form

p(x) = s
n
∏

j=1

(x − r j)

where the r j ’s are the roots and s is a scale factor. Once again, to represent a polynomial
of degree n, we need a list of n+ 1 numbers: one scale factor and n roots.

Given a polynomial in this root representation, we can clearly evaluate it in O(n)
time. Given two polynomials in root representation, we can multiply them in O(n) time
by multiplying their scale factors and concatenating the two root sequences.

Unfortunately, if we want to add two polynomials in root representation, we’re out
of luck. There’s essentially no correlation between the roots of p, the roots of q, and
the roots of p + q. We could convert the polynomials to the more familiar coefficient
representation first—this takes O(n2) time using the high-school algorithms—but there’s
no easy way to convert the answer back. In fact, for most polynomials of degree 5 or
more in coefficient form, it’s impossible to compute roots exactly.3

Samples

Our third representation for polynomials comes from a different consequence of the
Fundamental Theorem of Algebra. Given a list of n + 1 pairs {(x0, y0), (x1, y1), . . . ,
(xn, yn)}, there is exactly one polynomial p of degree n such that p(x j) = y j for all j.
This is a natural generalization of the fact that any two points determine a unique line,
because a line is the graph of a polynomial of degree 1. We say that the polynomial p
interpolates the points (x j , y j). As long as we agree on the sample locations x j in
advance, we once again need exactly n+1 numbers to represent a polynomial of degree n.

Adding or multiplying two polynomials in this sample representation is straightfor-
ward, as long as they use the same sample locations x j. To add the polynomials, add
their sample values. To multiply two polynomials, multiply their sample values; however,
if we’re multiplying two polynomials of degree n, we must start with 2n+ 1 sample

3This is where numerical analysis comes from.

4

A.4. Converting Between Representations

values for each polynomial, because that’s how many we need to uniquely represent
their product. Both algorithms run in O(n) time.

Unfortunately, evaluating a polynomial in this representation is no longer straightfor-
ward. The following formula, due to Lagrange, allows us to compute the value of any
polynomial of degree n at any point, given a set of n+ 1 samples.

p(x) =
n−1
∑

j=0

y j
∏

k ̸= j(x j − xk)

∏

k ̸= j

(x − xk)

!

Hopefully it’s clear that formula actually describes a polynomial function of x , since
each term in the sum is a scaled product of monomials. It’s also not hard to verify that
p(x j) = y j for every index j; most of the terms of the sum vanish. As I mentioned
earlier, the Fundamental Theorem of Algebra implies that p is the only polynomial that
interpolates the points {(x j , y j)}. Lagrange’s formula can be translated mechanically
into an O(n2)-time algorithm.

Summary

We find ourselves in the following frustrating situation. We have three representations
for polynomials and three basic operations. Each representation allows us to almost
trivially perform a different pair of operations in linear time, but the third takes at least
quadratic time, if it can be done at all!

representation evaluate add multiply
coefficients O(n) O(n) O(n2)
roots + scale O(n) ∞ O(n)

samples O(n2) O(n) O(n)

A.4 Converting Between Representations

What we need are fast algorithms to convert quickly from one representation to another.
Then if we need to perform an operation that’s hard for our default representation, we
can switch to a different representation that makes the operation easy, perform the
desired operation, and then switch back. This strategy immediately rules out the root
representation, since (as I mentioned earlier) finding roots of polynomials is impossible
in general, at least if we’re interested in exact results.

So how do we convert from coefficients to samples and back? Clearly, once we
choose our sample positions x j , we can compute each sample value y j = p(x j) in O(n)
time from the coefficients using Horner’s rule. So we can convert a polynomial of degree
n from coefficients to samples in O(n2) time. Lagrange’s formula can be used to convert
the sample representation back to the more familiar coefficient form. If we use the naïve

5

A. FAST FOURIER TRANSFORMS

algorithms for adding and multiplying polynomials (in coefficient form), this conversion
takes O(n3) time.

We can improve the cubic running time by observing that both conversion problems
boil down to computing the product of a matrix and a vector. The explanation will be
slightly simpler if we assume the polynomial has degree n−1, so that n is the number of
coefficients or samples. Fix a sequence x0, x1, . . . , xn−1 of sample positions, and let V be
the n× n matrix where vi j = x j

i (indexing rows and columns from 0 to n− 1):

V =

















1 x0 x2
0 · · · xn−1

0

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn−1 x2
n−1 · · · xn−1

n−1

















.

The matrix V is called a Vandermonde matrix. The vector of coefficients a⃗ =
(a0, a1, . . . , an−1) and the vector of sample values y⃗ = (y0, y1, . . . , yn−1) are related
by the matrix equation

V a⃗ = y⃗ ,

or in more detail,

















1 x0 x2
0 · · · xn−1

0

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn−1 x2
n−1 · · · xn−1

n−1

































a0

a1

a2
...

an−1

















=

















y0

y1

y2
...

yn−1

















.

Given this formulation, we can clearly transform any coefficient vector a⃗ into the
corresponding sample vector y⃗ in O(n2) time.

Conversely, if we know the sample values y⃗ , we can recover the coefficients by solving
a system of n linear equations in n unknowns, which can be done in O(n3) time using
Gaussian elimination.4 But we can speed this up by implicitly hard-coding the sample
positions into the algorithm, To convert from samples to coefficients, we can multiply
the sample vector by the inverse of V , again in O(n2) time:

a⃗ = V−1 y⃗ .

4In fact, Lagrange’s formula is a special case of Cramer’s rule for solving linear systems.

6

http://en.wikipedia.org/wiki/Vandermonde_matrix

A.5. Divide and Conquer

Computing V−1 would take O(n3) time if we had to do it from scratch using Gaussian
elimination, but because we fixed the set of sample positions in advance, the matrix V−1

can be hard-coded directly into the algorithm.5

So we can convert from coefficients to samples and back in O(n2) time. At first
glance, this result seems pointless; we can already add, multiply, or evaluate directly in
either representation in O(n2) time, so why bother? But there’s a degree of freedom we
haven’t exploited yet: We get to choose the sample positions! Our conversion algorithm
is slow only because we’re trying to be too general. If we choose a set of sample positions
with the right recursive structure, we can perform this conversion more quickly.

A.5 Divide and Conquer

Any polynomial of degree at most n − 1 can be expressed as a combination of two
polynomials of degree at most (n/2)− 1 as follows:

p(x) = peven(x
2) + x · podd(x2).

The coefficients of peven are precisely the even-degree coefficients of p, and the coefficients
of podd are precisely the odd-degree coefficients of p. Thus, we can evaluate p(x) by
recursively evaluating peven(x2) and podd(x2) and performing O(1) additional arithmetic
operations.

Now call a set X of n values collapsing if either of the following conditions holds:

• X has one element.

• The set X 2 =
�

x2
�

� x ∈ X
	

has exactly n/2 elements and is (recursively) collapsing.

The size of a collapsing set must be a power of 2. Given a polynomial p of degree n− 1,
and a collapsing set X of size n, we can compute the set {p(x) | x ∈ X } of sample values
as follows:

1. Recursively compute the sample values
�

peven(x2)
�

� x ∈ X
	

=
�

peven(x̂)
�

� x̂ ∈ X 2
	

.

2. Recursively compute the sample values
�

podd(x2)
�

� x ∈ X
	

=
�

podd(x̂)
�

� x̂ ∈ X 2
	

.

3. For each x ∈ X , compute the sample value p(x) = peven(x2) + x · podd(x2).

The running time of this algorithm satisfies the familiar “mergesort” recurrence T (n) =
2T (n/2) +Θ(n), which as we all know solves to T (n) = Θ(n log n).

Great! Now all we need is a sequence of arbitrarily large collapsing sets. The simplest
method to construct such sets is to invert the recursive definition: If X is a collapsible set
of size n that does not contain the number 0, then

p
X = {±

p
x | x ∈ X } is a collapsible

5Actually, it is possible to invert an n×n matrix in o(n3) time, using fast matrix multiplication algorithms
that closely resemble Karatsuba’s sub-quadratic divide-and-conquer algorithm for integer/polynomial
multiplication. On the other hand, my numerical-analysis colleagues have reasonable cause to shoot me in
the face for daring to suggest, even in passing, that anyone actually invert a matrix at all, ever.

7

A. FAST FOURIER TRANSFORMS

set of size 2n. This observation gives us an infinite sequence of collapsible sets, starting
as follows:6

X1 := {1}
X2 := {1, −1}
X4 := {1, −1, i, −i}

X8 :=

�

1, −1, i, −i,

p
2

2
+
p

2
2

i, −
p

2
2
−
p

2
2

i,

p
2

2
−
p

2
2

i, −
p

2
2
+
p

2
2

i

�

A.6 The Discrete Fourier Transform

For any n, the elements of Xn are called the complex nth roots of unity; these are the
roots of the polynomial xn − 1= 0. These n complex values are spaced exactly evenly
around the unit circle in the complex plane. Every nth root of unity is a power of the
primitive nth root

ωn = e2πi/n = cos
2π
n
+ i sin

2π
n

.

A typical nth root of unity has the form

ωk
n = e(2πi/n)k = cos

�

2π
n

k
�

+ i sin
�

2π
n

k
�

.

These complex numbers have several useful properties for any integers n and k:
• There are exactly n different nth roots of unity: ωk

n =ω
k mod n
n .

• If n is even, then ωk+n/2
n = −ωk

n; in particular, ωn/2
n = −ω0

n = −1.

• 1/ωk
n =ω

−k
n =ωk

n = (ωn)k, where the bar represents complex conjugation: a+ bi =
a− bi

• ωn =ωk
kn. Thus, every nth root of unity is also a (kn)th root of unity.

These properties imply immediately that if n is a power of 2, then the set of all nth roots
of unity is collapsible!

If we sample a polynomial of degree n− 1 at the nth roots of unity, the resulting list
of sample values is called the discrete Fourier transform of the polynomial (or more
formally, of its coefficient vector). Thus, given an array P[0 .. n− 1] of coefficients, its
discrete Fourier transform is the vector P∗[0 .. n− 1] defined as follows:

P∗[j] := p(ω j
n) =

n−1
∑

k=0

P[k] ·ω jk
n

6In this chapter, lower case italic i always represents the square root of −1. Computer scientists are
used to thinking of i as an integer index into a sequence, an array, or a for-loop, but we obviously can’t
do that here. The engineers’ habit of using j =

p
−1 just delays the problem—How do engineers write

quaternions?—and typographical hacks like I or i or ι or Mathematica’s ıı◦ are missing the point.

8

http://en.wikipedia.org/wiki/Root_of_unity
http://en.wikipedia.org/wiki/Discrete_Fourier_transform

A.6. The Discrete Fourier Transform

As we already observed, the fact that sets of roots of unity are collapsible implies that we
can compute the discrete Fourier transform in O(n log n) time. The resulting algorithm,
called the fast Fourier transform, was popularized by Cooley and Tukey in 1965.7 The
algorithm assumes that n is a power of two; if necessary, we can pad the coefficient
vector with at most n zeros.

Radix2FFT(P[0 .. n− 1]):
if n= 1

return P

for j← 0 to n/2− 1
U[j]← P[2 j]
V [j]← P[2 j + 1]

U∗← Radix2FFT(U[0 .. n/2− 1])
V ∗← Radix2FFT(V [0 .. n/2− 1])

ωn← cos(2π
n) + i sin(2π

n)
ω← 1

for j← 0 to n/2− 1
P∗[j] ← U∗[j] +ω · V ∗[j]
P∗[j + n/2]← U∗[j]−ω · V ∗[j]
ω←ω ·ωn

return P∗[0 .. n− 1]

Figure A.1. The Cooley-Tukey radix-2 fast Fourier transform algorithm.

Variants of this divide-and-conquer algorithm were previously described by Good
in 1958, by Thomas in 1948, by Danielson and Lánczos in 1942, by Stumpf in 1937, by
Yates in 1932, and by Runge in 1903; some special cases were published even earlier
by Everett in 1860, by Smith in 1846, and by Carlini in 1828. But the algorithm, in its
full modern recursive generality, was first described and used by Gauss around 1805
for calculating the periodic orbits of asteroids from a finite number of observations.
In fact, Gauss’s recursive algorithm predates even Fourier’s introduction of harmonic
analysis by two years. So, of course, the algorithm is universally called the Cooley-Tukey
algorithm. Gauss’s work built on earlier research on trigonometric interpolation by
Bernoulli, Lagrange, Clairaut, and Euler; in particular, the first explicit description of the
discrete “Fourier” transform was published by Clairaut in 1754, more than half a century
before Fourier’s work. Alas, nobody will understand you if you talk about Gauss’s fast

7Tukey apparently developed this algorithm to help detect Soviet nuclear tests without actually visiting
Soviet nuclear facilities, by interpolating off-shore seismic readings. Without his rediscovery, the nuclear test
ban treaty might never have been ratified, and we might all be speaking Russian, or more likely, whatever
language radioactive glass speaks.

9

http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm

A. FAST FOURIER TRANSFORMS

Clairaut transform algorithms. Hooray for Stigler’s Law!8

A.7 More General Factoring

The algorithm in Figure A.1 is often called the radix-2 fast Fourier transform to
distinguish it from other FFT algorithms. In fact, both Gauss and (much later) Cooley
and Tukey described a more general divide-and-conquer strategy that does not assume n
is a power of two, but can be applied to any composite order n. Specifically, if n= pq,
we can decompose the discrete Fourier transform of order n into simpler discrete Fourier
transforms as as follows. For all indices 0≤ a < p and 0≤ b < q, we have

x∗aq+b =
pq−1
∑

ℓ=0

x jp+k (ω
jp+k
pq)ℓ

=
p−1
∑

k=0

q−1
∑

j=0

x jp+kω
(aq+b)(jp+k)
pq

=
p−1
∑

k=0

q−1
∑

j=0

x jp+kω
b j
q ω

bk
pqω

ak
p

=
p−1
∑

k=0

q−1
∑

j=0

x jp+k (ω
b
q)

j

!

ωbk
pq

!

(ωa
p)

k,

The innermost sum in this expression is one coefficient of a discrete Fourier transform
of order q, and the outermost sum is one coefficient of a discrete Fourier transform of
order q. The intermediate factors ωbk

pq are now formally known as “twiddle factors”.
No, seriously, that’s actually what they’re called. This wall of symbols implies that the
discrete Fourier transform of order n can be evaluated as follows:

1. Write the input vector into a p× q array in row-major order.

8Lest anyone believe that Stigler’s Law has treated Gauss unfairly, remember that “Gaussian elimination”
was not discovered by Gauss; the algorithm was not even given that name until the mid-20th century!
Elimination became the standard method for solving systems of linear equations in Europe in the early
1700s, when it appeared in Isaac Newton’s influential textbook Arithmetica universalis.9 Although Newton
apparently (and perhaps even correctly) believed he had invented the elimination algorithm, it actually
appears in several earlier works, including the eighth chapter of the Chinese manuscript The Nine Chapters
of the Mathematical Art. The authors and precise age of the Nine Chapters are unknown, but commentary
written by Liu Hui in 263CE claims that the text was already several centuries old. It was almost certainly
not invented by a Chinese emperor named Fast.

9Arithmetica universalis was compiled from Newton’s lecture notes and published over Newton’s
strenuous objections. He refused to have his name associated with the book, and he even considered buying
up every copy of the first printing to destroy them. Apparently he didn’t want anyone to think it was his
latest research. The first edition crediting Newton as the author did not appear until 25 years after his
death.

10

A.7. More General Factoring

2. Apply a discrete Fourier transform of order p to each column of the 2d array.
3. Multiply each entry of the 2d array by the appropriate twiddle factor.
4. Apply a discrete Fourier transform of order q to each row of the 2d array.
5. Extract the output vector from the p× q array in column-major order.

The algorithm is described in more detail in Figure A.2.

FactorFFT(P[0 .. pq− 1]):
〈〈Copy/typecast to 2d array in row-major order〉〉
for j← 0 to p− 1

for k← 0 to q− 1
A[j, k]← P[jp+ k]

〈〈Recursively apply order-p FFTs to columns〉〉
for k← 0 to q− 1

B[·, k]← FFT(A[·, k])

〈〈Multiply by twiddle factors〉〉
for j← 0 to p− 1

for k← 0 to q− 1
B[·, k]← B[·, k] ·ω jk

pq

〈〈Recursively apply order-q FFTs to rows〉〉
for j← 0 to p− 1

C[j, ·]← FFT(C[j, ·])

〈〈Copy/typecast to 1d array in column-major order〉〉
for j← 0 to p− 1

for k← 0 to q− 1
P∗[j + kq]← C[j, k]

return P∗[0 .. pq− 1]

Figure A.2. The Gauss-Cooley-Tukey FFT algorithm

We can recover the original radix-2 FFT algorithm in Figure A.1 by setting p = n/2
and q = 2. The lines P∗[j]← U∗[j]+ω ·V ∗[j] and P∗[j+ n/2]← U∗[j]−ω ·V ∗[j] are
applying an order-2 discrete Fourier transform; in particular, the multipliers ω and −ω
are the “twiddle factors”.

Both Gauss10 and Cooley and Tukey recommended applying this factorization
approach recursively. Cooley and Tukey observed further that if all prime factors of n
are smaller than some constant, so that the subproblems at the leaves of the recursion
tree can be solved in O(1) time, the entire algorithm runs in only O(n log n) time.

10Gauss wrote: “Nulla iam amplius explicatione opus erit, quomodo illa partitio adhuc ulterius extendi
et ad eum casum applicari possit, ubi multitudo omnium valorum propositorum numerus e tribus pluribusve
factoribus compositus est, e.g. si numerus µ rursus esset compositus, in quo casu manifesto quaevis periodus µ
terminorum in plures periodos minores subdividi potest.” [“There is no need to explain how that division can
be extended further and applied to the case where most of the proposed values are composed of three or
more factors, for example, if the number µ is again composite, in which case each period of µ terms can
obviously be subdivided into several smaller periods.”]

11

A. FAST FOURIER TRANSFORMS

Using a completely different approach, Charles Rader and Leo Bluestein described
FFT algorithms that run in O(n log n) time when n is an arbitrary prime number, by
reducing to two FFTs whose orders have only small prime factors. Combining these two
approaches yields an O(n log n)-time algorithm to compute discrete Fourier transforms
of any order n.

A.8 Inverting the FFT

We also need to recover the coefficients of the product from the new sample values.
Recall that the transformation from coefficients to sample values is linear; the sample
vector is the product of a Vandermonde matrix V and the coefficient vector. For the
discrete Fourier transform, each entry in V is an nth root of unity; specifically,

v jk =ω
jk
n

for all integers j and k. More explicitly:

V =





















1 1 1 1 · · · 1

1 ωn ω2
n ω3

n · · · ωn−1
n

1 ω2
n ω4

n ω6
n · · · ω2(n−1)

n

1 ω3
n ω6

n ω9
n · · · ω3(n−1)

n
...

...
...

...
. . .

...
1 ωn−1

n ω2(n−1)
n ω3(n−1)

n · · · ω(n−1)2
n





















To invert the discrete Fourier transform, converting sample values back to coefficients,
it suffices to multiply the vector P∗ of sample values by the inverse matrix V−1. The
following amazing fact implies that this is almost the same as multiplying by V itself:

Lemma A.1. V−1 = V/n

Proof: It suffices to show that M = V V is the identity matrix scaled by a factor of n. We
can compute a single entry in M as follows:

m jk =
n−1
∑

l=0

ω jl
n ·ωn

lk =
n−1
∑

l=0

ω jl−lk
n =

n−1
∑

l=0

(ω j−k
n)l

If j = k, then ω j−k
n =ω0

n = 1, so

m jk =
n−1
∑

l=0

1= n,

12

A.9. Fast Polynomial Multiplication / Convolution

and if j ̸= k, we have a geometric series

m jk =
n−1
∑

l=0

(ω j−k
n)l =

(ω j−k
n)n − 1

ω
j−k
n − 1

=
(ωn

n)
j−k − 1

ω
j−k
n − 1

=
1 j−k − 1

ω
j−k
n − 1

= 0. □

In other words, if W = V−1 then w jk = v jk/n = ω
jk
n /n = ω

− jk
n /n. What this

observation implies for us computer scientists is that any algorithm for computing the
discrete Fourier transform can be trivially adapted or modified to compute the inverse
transform as well; see Figure A.3.

InverseFFT(P∗[0 .. n− 1]):
P[0 .. n− 1]← FFT(P∗)
for j← 0 to n− 1

P[j]← P[j]/n
return P[0 .. n− 1]

InverseRadix2FFT(P∗[0 .. n− 1]):
if n= 1

return P

for j← 0 to n/2− 1
U∗[j]← P∗[2 j]
V ∗[j]← P∗[2 j + 1]

U ← InverseRadix2FFT(U∗[0 .. n/2− 1])
V ← InverseRadix2FFT(V ∗[0 .. n/2− 1])

ωn← cos(2π
n)− i sin(2π

n)
ω← 1

for j← 0 to n/2− 1
P[j] ← (U[j] +ω · V [j])/2
P[j + n/2]← (U[j]−ω · V [j])/2
ω←ω ·ωn

return P[0 .. n− 1]

Figure A.3. Generic and radix-2 inverse FFT algorithms.

A.9 Fast Polynomial Multiplication / Convolution

Finally, given two polynomials p and q, represented by an arrays of length m and n,
respectively, we can multiply them in Θ((m+ n) log(m+ n)) arithmetic operations as
shown in Figure A.4. First, pad the coefficient vectors with zeros to length m+ n (or to
the next larger power of 2 if we plan to use the radix-2 FFT algorithm). Then compute
the discrete Fourier transforms of each coefficient vector, and multiply the resulting
sample values one by one. Finally, compute the inverse discrete Fourier transform of the
resulting sample vector.

Exactly the same algorithm computes the convolution of any two arrays in the
same time, because multiplying two polynomials represented by coefficients is exactly
the same as convolution of their coefficient vectors. Most applications of fast Fourier

13

A. FAST FOURIER TRANSFORMS

FFTMultiply(P[0 .. m− 1],Q[0 .. n− 1]):
for j← m to m+ n− 1

P[j]← 0
for j← n to m+ n− 1

Q[j]← 0

P∗← FFT(P)
Q∗← FFT(Q)
for j← 0 to m+ n− 1

R∗[j]← P∗[j] ·Q∗[j]
return InverseFFT(R∗)

Convolution(A[0 .. m], B[0 .. n]):
for j← m to m+ n

A[j]← 0
for j← n to m+ n

B[j]← 0

A∗← FFT(A)
B∗← FFT(B)
for j← 0 to m+ n

C∗[j]← A∗[j] · B∗[j]
return InverseFFT(C∗)

Figure A.4. Polynomial multiplication and convolution in O((m+ n) log(m+ n)) time. Yes, of course it’s exactly
the same algorithm—it’s exactly the same problem!

transforms are aremore naturally expressed in terms of convolution, instead of polynomial
multiplication.

With a bit more care, the running time can be reduced from O(n log n) to O(n log m)
when m< n. I’ll leave the details of this improvement as an easy exercise.

♥A.10 Numerical Issues

Computing the discrete Fourier transform exactly is impossible in practice, because
we cannot compute or manipulate exact complex roots of unity using finite-precision
hardware. Most implementations of FFTs use standard floating-point arithmetic, and the
numerical error is quite small in practice. However, in the worst case, a floating-point
implementation of the radix-2 FFT on a vector of length n loses O(log n) bits of precision,
and even this analysis assumes floating-point-accurate twiddle factors. The error bounds
are worse for implementations with inaccurate twiddle factors (for example, using
common implementations of sine and cosine functions) and for other FFT algorithms.

For sequences of integers, we can use modular arithmetic instead of exact complex
arithmetic to define the discrete Fourier transform transform and compute it exactly.
In this setting, discrete Fourier transforms are sometimes called number-theoretic
transforms.

Let A[0 .. n − 1] be an array of n non-negative integers, and let M be an integer
modulus that is larger than both n and any integer A[i]. A primitive nth root of unity
mod M is any integer α such that α j mod M = 1 if and only if j mod n = 0. The
number-theoretic transform of A modulo M is the array A∗[0 .. n− 1] where

A∗[j] =
n−1
∑

k=0

A[k] ·α jk mod M

for every index j, where α is any primitive nth root of unity mod M .

14

♥A.10. Numerical Issues

Of course, this definition only makes sense if primitive nth root of unity mod M
actually exist. For any array length n, there are several good choices of modulus M .
The simplest choice is any prime number M such that M mod n = 1; standard results
in number theory imply that such prime numbers always exist. When M is prime, the
integers from 1 to M − 1 define a cyclic multiplication group ZM with respect to modular
multiplication; that is, this group has at least one generator g, which is a primitive
(M −1)th root of unity modulo M . Then the integer α = g (M−1)/n mod M is a primitive
nth root of unity modulo M .

In particular, if n is a power of 2, it is convenient to choose a primemodulus M = 2K+1
for some integer K . Then only do we have a well-defined discrete Fourier transform, we
also immediately have a well-defined radix-2 fast Fourier transform algorithm.

As an example, consider the arrays X = [0,1, 1,0] and Y = [1, 0,1, 1]; the standard
lattice algorithm gives us Z = X ∗ Y = [0,1, 1,1, 2,1, 0]. After padding all arrays to
length 8 with zeros, we can compute their discrete Fourier transforms modulo the Fermat
prime M = 24 + 1 = 17 as follows. The integer α = 2 is a primitive 8th root of unity
modulo 17, so the mod-17 DFT is equivalent to multiplying (modulo 17) by the following
Vandermonde matrix:11

















1 1 1 1 1 1 1 1
1 α α2 α3 α4 α5 α6 α7

1 α2 α4 α6 1 α2 α4 α6

1 α3 α6 α α4 α7 α2 α5

1 α4 1 α4 1 α4 1 α4

1 α5 α2 α7 α4 α α6 α3

1 α6 α4 α2 1 α6 α4 α2

1 α7 α6 α5 α4 α3 α2 α

















=

















1 1 1 1 1 1 1 1
1 2 4 8 16 15 13 9
1 4 16 13 1 4 16 13
1 8 13 2 16 9 4 15
1 16 1 16 1 16 1 16
1 15 4 9 16 2 13 8
1 13 16 4 1 13 16 4
1 9 13 15 16 8 4 2

















So we have

X = [0, 1,1, 0,0, 0,0, 0] =⇒ X ∗ = [2, 6, 3, 4, 0, 2, 12, 5]

Y = [1, 0,1, 1,0, 0,0, 0] =⇒ Y ∗ = [3,13, 13,16, 1,14, 4,12]

Z = [0, 1,1, 1,2, 1,0, 0] =⇒ Z∗ = [6,10, 5,13, 0,13, 14, 9]

And sure enough, each component of Z∗ is the product of the corresponding components
of X ∗ and Y ∗, modulo 17.

Unfortunately, the only known primes of the form 2K + 1 are the Fermat primes
21 + 1 = 3, 22 + 1 = 5, 24 + 1 = 17, 28 + 1 = 257, and 216 + 1 = 65537. But in fact,
Fermat numbers 22k

+1 can still be used as moduli even when they are composite, for any
n= 2t such that t ≤ k+2. In particular, the integer 2 is a primitive (2k+1)th root of unity
modulo 22k

+ 1. Using a Fermat-number modulus M = 22k
+ 1 has the added practical

benefit that any number can be reduced mod M using only addition, subtraction, and

11I could have used the primitive root 9 here instead of 2, leading to a formally different linear
transformation, but with the same convolutional properties.

15

A. FAST FOURIER TRANSFORMS

bit-shifting; moreover, all twiddle factors used by the radix-2 FFT algorithm are powers
of 2, so multiplication by a twiddle factor again reduces to bit-shifting.

In the late 1970s and early 1970s, Arnold Schönhage and Volker Strassen showed
how to use a variant of “discrete Fermat transforms” to multiply n-but integers in
O(n log n log log n) bit operations.

A huge variety of other number-theoretic transforms have been developed over the
last several decades; indeed, this is still an active area of research.

A.11 Inside the Radix-2 FFT

Fast Fourier transforms are often implemented in hardware as circuits; Cooley and
Tukey’s radix-2 algorithm unfolds into a particularly nice recursive structure, as shown
in Figure A.5 for n= 16. On the left, the n top-level inputs and outputs are connected to
the inputs and outputs of the recursive calls, represented here as gray boxes. On the left
we split the input P into two recursive inputs U and V . On the right, we combine the
outputs U∗ and V ∗ to obtain the final output P∗.

P

FFT

FFT

U U*

V V*

P*

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0010

0100

0110

1000

1010

1100

1110

0001

0011

0101

0111

1001

1011

1101

1111

0000

0100

1000

1100

0010

0110

1010

1110

0001

0101

1001

1101

0011

0111

1011

1111

0000

1000

0100

1100

0010

1010

0110

1110

0001

1001

0101

1101

0010

1011

0111

1111

Butterfly networkBit-reversal permutation

Figure A.5. The recursive structure of the radix-2 FFT algorithm.

If we expand this recursive structure completely, we see that the circuit splits naturally
into two parts.

• The left half computes the bit-reversal permutation of the input. To find the position
of P[k] in this permutation, write k in binary and then read the bits backward.
For example, in an 8-element bit-reversal permutation, P[3] = P[0112] ends up in
position 6= 1102.

• The right half of the FFT circuit is called a butterfly network. Butterfly networks are
often used to route between processors in massively-parallel computers, because
they allow any two processors to communicate in only O(log n) steps.

16

Exercises

When n is a power of 2, recursively applying the more general FactorFFT gives us
exactly the same recursive structure, just clustered differently. For many applications of
FFTs, including polynomial multiplication, the bit-reversal permutation is unnecessary
and can actually be omitted.

Exercises

0. Describe and analyze an algorithm to compute the convolution of two arrays of
different lengths. That is, given two arrays A[0 .. m] and B[0 .. n] as input, your
algorithm should return their convolution A∗ B as an array (A∗ B)[0 .. m+ n]. To
simplify your algorithm, assume that m and n are both powers of 2 and that m≤ n.
For full credit, your algorithm should run in O(n log m) time.

½. The circular convolution A�B of two equal-length arrays A[0 .. n−1] and B[0 .. n−1]
is defined as the array C[0 .. n− 1] where

C[k] =
∑

i+ j mod n=k

A[i] · B[j].

Describe and analyze an algorithm to compute A� B in O(n log n) time, given the
arrays A and B as input.

1. For any two sets X and Y of integers, the Minkowski sum X + Y is the set of all
pairwise sums {x + y | x ∈ X , y ∈ Y }.

(a) Describe an analyze an algorithm to compute the number of elements in X +Y in
O(n2 log n) time, where n= |X |+ |Y |. [Hint: The answer is not always |X | · |Y |.]

(b) Describe and analyze an algorithm to compute the number of elements in X + Y
in O(M log M) time, where M is the largest absolute value of any element of
X ∪ Y . [Hint: What’s this lecture about?]

2. Supposewe are given a bit string B[1 .. n]. A triple of distinct indices 1≤ i < j < k ≤ n
is called a well-spaced triple in B if B[i] = B[j] = B[k] = 1 and k− j = j − i.

(a) Describe a brute-force algorithm to determine whether B has a well-spaced triple
in O(n2) time.

(b) Describe an algorithm to determine whether B has a well-spaced triple in
O(n log n) time. [Hint: Hint.]

(c) Describe an algorithm to determine the number of well-spaced triples in B in
O(n log n) time.

3. (a) Describe an algorithm that determines whether a given set of n integers contains
two elements whose sum is zero, in O(n log n) time.

17

A. FAST FOURIER TRANSFORMS

(b) Describe an algorithm that determines whether a given set of n integers contains
three elements whose sum is zero, in O(n2) time.

(c) Now suppose the input set X contains only integers between −10000n and
10000n. Describe an algorithm that determines whether X contains three
elements whose sum is zero, in O(n log n) time. [Hint: Hint.]

4. The Hamming distance between two bit strings is the number of positions where the
strings have different bits. For example, the Hamming distance between the strings
01101001 and 11010001 is 4.

Suppose we are given two bit strings P[1 .. m] (the “pattern”) and T[1 .. n] (the
“text”), where m ≤ n. Describe and analyze an algorithm to find the minimum
Hamming distance between P and a substring of T of length m. For full credit, your
algorithm should run in O(n log n) time.

For example, if P = 1100101 and T = 1111111010101000000, your algorithm
should return 1, which is the Hamming distance between P and the substring
1110101 of T :

1111111010101000000
1100101

[Hint: Consider 0s and 1s separately.]

5. The Hamming distance between two bit strings is the number of indices where the
strings have different bits. For example, the Hamming distance between the strings
01101001 and 11010001 is 4.

For any bitstring w and any integer k, let w⟲ k denote the rotation of w obtained
by swapping the last k bits of w and the rest of w. For example, 01001011 ⟲ 3 =
01101001.

Suppose we are given two bit strings x and y of equal length. Describe an
algorithm to find a rotation of x that has minimum Hamming distance from y . For
example, if x = 01011010 and y = 11000101, your algorithm should return the bit
string x ⟲ 4= 10100101, which has Hamming distance 2 from y .

6. Describe an algorithm that applies the bit-reversal permutation to an array A[1 .. n]
in O(n) time when n is a power of 2.

BIT- ⇐⇒ BTI-

REVERSAL ⇐⇒ RRVAESEL

BUTTERFLYNETWORK ⇐⇒ BYEWTEFRUNROTTLK

THISISTHEBITREVERSALPERMUTATION! ⇐⇒ TREUIPRIIAIATRVNHSBTSEEOSLTTHME!

18

Exercises

7. For any two equal-length arrays A[1 .. n] and B[1 .. n] of real numbers, suppose we
define the function

FA,B(x) =
n
∑

i=1

1
A[i] · x + B[i]

The function FA,B is a rational function of degree n, meaning it can be expressed as
the ratio of two polynomials:

FA,B(x) =

∑n−1
i=0 C[i] · x i

∑n
i=0 D[i] · x i

For example, if A= [1, 2] and B = [3, 4], we have

FA,B =
1

x + 3
+

1
2x + 4

=
(2x + 4) + (x + 3)
(x + 3)(2x + 4)

=
3x + 7

2x2 + 10x + 12

Describe an algorithm to compute coefficient arrays C[0 .. n − 1] and D[0 .. n] of
the function FA,B in near-linear time, given the arrays A and B as input. [Hint:
Divide-and-conquer!]

(The coefficient arrays C and D are not unique; your algorithm can return any
arrays that describe the function correctly. In particular, don’t even try to reduce the
degree of the polynomials in the ratio.)

♥8. Your new boss at the Dixon Ticonderoga Pencil Factory asks you to design an algorithm
to solve the following problem. Suppose you are given N pencils, each with one of c
different colors, and a non-negative integer k. How many different ways are there
to choose a set of k pencils? Two pencil sets are considered identical if they contain
the same number of pencils of each color.

For example, suppose you have two red pencils, four green pencils, and one
blue pencil. Then you can form exactly five different two-pencil sets (RR, RG, RB,
GG, GB), exactly six different four-pencil sets (RRGG, RRGB, RGGG, RGGB, GGGG,
GGGB), and exactly three different six-pencil sets (RRGGGG, RRGGGB, RGGGGB).

Describe an algorithm to solve this problem, and analyze its running time. Your
input is an array Pencils[1 .. c] and an integer k, where Pencils[i] stores the number of
pencils with color i. Your output is a single non-negative integer. For example, given
the input Pencils= [2, 4,1] and k = 2, your algorithm should return the integer 5.

For full credit, report the running time of your algorithm as a function of the
parameters N (the total number of pencils), c (the number of colors), and k (the size
of the target pencil sets). Assume that k≪ c≪ N , but do not assume that any of
these parameters is a constant. Assume for this problem that all arithmetic operations
take O(1) time.

19

A. FAST FOURIER TRANSFORMS

Hint:

(1+ x + x2)
︸ ︷︷ ︸

2 red pencils

· (1+ x + x2 + x3 + x4)
︸ ︷︷ ︸

4 green pencils

· (1+ x)
︸ ︷︷ ︸

1 blue pencil

= 1+ 3x + 5x2
︸︷︷︸

5 2-pencil sets

+ 6x3 + 6x4
︸︷︷︸

6 4-pencil sets

+ 5x5 + 3x6
︸︷︷︸

3 6-pencil sets

+ 1

9. The FFT algorithm we described in this lecture is limited to polynomials with 2k

coefficients for some integer k. Of course, we can always pad the coefficient vector
with zeros to force it into this form, but this padding artificially inflates the input
size, leading to a slower algorithm than necessary.

Describe and analyze a similar DFT algorithm that works for polynomials with 3k

coefficients, by splitting the coefficient vector into three smaller vectors of length
3k−1, recursively computing the DFT of each smaller vector, and correctly combining
the results.

10. Fix an integer k. For any two k-bit integers i and j, let i ∧ j denote their bitwise
And, and let Σ(i) denote the number of 1s in the binary expansion of i. For example,
when k = 4, we have 10∧ 7= 1010∧ 0111= 0010= 2 and Σ(7) = Σ(0111) = 3.

The kth Sylvester-Hadamard matrix Hk is a 2k × 2k matrix indexed by k-bit
integers, each of whose entries is either +1 or −1, defined as follows:

Hk[i, j] = (−1)Σ(i∧ j)

For example:

H3 =































+1 +1 +1 +1 +1 +1 +1 +1

+1 −1 +1 −1 +1 −1 +1 −1

+1 +1 −1 −1 +1 +1 −1 −1

+1 −1 −1 +1 +1 −1 −1 +1

+1 +1 +1 +1 −1 −1 −1 −1

+1 −1 +1 −1 −1 +1 −1 +1

+1 +1 −1 −1 −1 −1 +1 +1

+1 −1 −1 +1 −1 +1 +1 −1































(a) Prove that the matrix Hk can be decomposed into four copies of Hk−1 as follows:

Hk =

�

Hk−1 Hk−1

Hk−1 −Hk−1

�

(b) Prove that Hk ·Hk = 2k · Ik, where I is the 2k × 2k identity matrix.

20

Exercises

(c) For any vector x⃗ ∈ R2k
, the product Hk x⃗ is called theWalsh-Hadamard transform

of x⃗ . Describe an algorithm to compute the Walsh-Hadamard transform in
O(n log n) time, given the integer k and a vector of n= 2k integers as input.

♥11. The discrete Hartley transform of a vector x⃗ = (x0, x1, . . . , xn−1) is another vector
X⃗ = (X0, X1, . . . , Xn−1) defined as follows:

X j =
n−1
∑

i=0

x i

�

cos
�

2π
n

i j
�

+ sin
�

2π
n

i j
��

Describe an algorithm to compute the discrete Hartley transform in O(n log n) time
when n is a power of 2.

12. Suppose n is a power of 2. Prove that if we recursively apply the FactorFFT algorithm,
factoring of n into arbitrary smaller powers of two, the resulting algorithm still runs
in O(n log n) time.

13. Let f : Z→ Z be any function such that 2≤ f (n)≤
p

n for all n≥ 4. Prove that the
recurrence

T (n) =







1 if n≤ 4

f (n) · T
�

n
f (n)

�

+
n

f (n)
· T (f (n)) + O(n) otherwise

has the solution T (n) = O(n log n). For example, setting f (n) = 2 for all n gives us
the standard mergesort/FFT recurrence.

14. Although the radix-2 FFT algorithm and the more general recursive factoring algo-
rithm both run in O(n log n) time, the latter algorithm is more efficient in practice
(when n is large) due to caching effects.

Consider an idealized two-level memory model, which has an arbitrarily large
but slow main memory and a significantly faster cache that holds the C most recently
accessed memory items. The running time of an algorithm in this model is dominated
by the number of cache misses, when the algorithm needs to access a value in memory
that it not stored in the cache.

The number of cache misses seen by the radix-2 FFT algorithm obeys the following
recurrence:

M(n)≤

¨

2 M(n/2) +O(n) if n> C

O(n) if n≤ C

If the input array is too large to fit in the cache, then every memory access in both the
initial and final for-loops will cause a cache miss, and the recursive calls will cause
their own cache misses. But if the input array is small enough to fit in cache, the

21

A. FAST FOURIER TRANSFORMS

initial for-loop loads the input into the cache, but there are no more cache misses,
even inside the recursive calls.

(a) Solve the previous recurrence for M(n), as a function of both n and C . To simplify
the analysis, assume both n and C are powers of 2.

(b) Suppose we always recursively call FactorFFT with p = C and q = n/C . How
many cache misses does the resulting algorithm see, as a function of n and C? To
simplify the analysis, assume n= Ck for some integer k. (In particular, assume C
is a power of 2.)

(c) Unfortunately, it is not always possible for a program (or a compiler) to determine
the size of the cache. Suppose we always recursively call FactorFFT with
p = q =

p
n. How many cache misses does the resulting algorithm see, as a

function of n and C? To simplify the analysis, assume n= C2k
for some integer k.

© 2023 Jeff Erickson http://algorithms.wtf22

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://algorithms.wtf

	Fast Fourier Transforms
	Polynomials
	Convolutions
	Alternative Representations
	Converting Between Representations
	Divide and Conquer
	The Discrete Fourier Transform
	More General Factoring
	Inverting the FFT
	Fast Polynomial Multiplication / Convolution
	♥Numerical Issues
	Inside the Radix-2 FFT

