
Potes enim videre in hac margine, qualiter hoc operati fuimus, scilicet quod
iunximus primum numerum cum secundo, videlicet 1 cum 2; et secundum cum
tercio; et tercium cum quarto; et quartum cum quinto, et sic deinceps. . . .
[You can see in the margin here how we have worked this; clearly, we combined the
first number with the second, namely 1 with 2, and the second with the third, and
the third with the fourth, and the fourth with the fifth, and so forth. . . .]

— Leonardo Pisano, Liber Abaci (1202)

Those who cannot remember the past are condemned to repeat it.
— Jorge Agustín Nicolás Ruiz de Santayana y Borrás,

The Life of Reason, Book I: Introduction and Reason in Common Sense (1905)

You know what a learning experience is?
A learning experience is one of those things that says,
“You know that thing you just did? Don’t do that.”

— Douglas Adams, The Salmon of Doubt (2002)

3
Dynamic Programming

3.1 Mātrāvr.tta

One of the earliest examples of recursion arose in India more than 2000 years ago,
in the study of poetic meter, or prosody. Classical Sanskrit poetry distinguishes
between two types of syllables (aks.ara): light (laghu) and heavy (guru). In
one class of meters, variously called mātrāvr. tta or mātrāchandas, each line of
poetry consists of a fixed number of “beats” (mātrā), where each light syllable
lasts one beat and each heavy syllable lasts two beats. The formal study of
mātrā-vr. tta dates back to the Chandah. śāstra, written by the scholar Piṅgala
between 600bce and 200bce. Piṅgala observed that there are exactly five 4-beat
meters: ——, —••, •—•, ••—, and ••••. (Here each “—” represents a
long syllable and each “•” represents a short syllable.)1

1In Morse code, a “dah” lasts three times as long as a “dit”, but each “dit” or “dah” is followed
by a pause with the same duration as a “dit”. Thus, each “dit-pause” is a laghu aks.ara, each

1

3. DYNAMIC PROGRAMMING

Although Piṅgala’s text hints at a systematic rule for counting meters with a
given number of beats,2 it took about a millennium for that rule to be stated
explicitly. In the 7th century ce, another Indian scholar named Virahān. ka wrote
a commentary on Piṅgala’s work, in which he observed that the number of
meters with n beats is the sum of the number of meters with (n− 2) beats and
the number of meters with (n− 1) beats. In more modern notation, Virahān. ka’s
observation implies a recurrence for the total number M(n) of n-beat meters:

M(n) = M(n− 2) +M(n− 1)

It is not hard to see that M(0) = 1 (there is only one empty meter) and M(1) = 1
(the only one-beat meter consists of a single short syllable).

The same recurrence reappeared in Europe about 500 years after Virahān. ka,
in Leonardo of Pisa’s 1202 treatise Liber Abaci, one of the most influential
early European works on “algorism”. In full compliance with Stigler’s Law
of Eponymy,3 the modern Fibonacci numbers are defined using Virahān. ka’s
recurrence, but with different base cases:

Fn =

0 if n= 0

1 if n= 1

Fn−1 + Fn−2 otherwise

In particular, we have M(n) = Fn+1 for all n.

Backtracking Can Be Slow

The recursive definition of Fibonacci numbers immediately gives us a recur-
sive algorithm for computing them. Here is the same algorithm written in
pseudocode:
“dah-pause” is a guru aks.ara, and there are exactly five letters (M, D, R, U, and H) whose codes last
four mātrā.

2The Chandah. śāstra contains two systematic rules for listing all meters with a given number
of syllables, which correspond roughly to writing numbers in binary from left to right (like
Greeks) or from right to left (like Egyptians). The same text includes a recursive algorithm to
compute 2n (the number of meters with n syllables) by repeated squaring, and (arguably) a
recursive algorithm to compute binomial coefficients (the number of meters with k short syllables
and n syllables overall).

3“No scientific discovery is named after its original discoverer.” In his 1980 paper that gives the
law its name, the statistician Stephen Stigler jokingly claimed that this law was first proposed by
sociologist Robert K. Merton. However, similar statements were previously made by Vladimir
Arnol’d in the 1970’s (“Discoveries are rarely attributed to the correct person.”), Carl Boyer in
1968 (“Clio, the muse of history, often is fickle in attaching names to theorems!”), Alfred North
Whitehead in 1917 (“Everything of importance has been said before by someone who did not
discover it.”), and even Stephen’s father George Stigler in 1966 (“If we should ever encounter a
case where a theory is named for the correct man, it will be noted.”). We will see many other
examples of Stigler’s law in this book.

2

3.1. Mātrāvr.tta

RecFibo(n):
if n= 0

return 0
else if n= 1

return 1
else

return RecFibo(n− 1) +RecFibo(n− 2)

Unfortunately, this naive recursive algorithm is horribly slow. Except for the
recursive calls, the entire algorithm requires only a constant number of steps:
one comparison and possibly one addition. Let T (n) denote the number of
recursive calls to RecFibo; this function satisfies the recurrence

T (0) = 1, T (1) = 1, T (n) = T (n− 1) + T (n− 2) + 1,

which looks an awful lot like the recurrence for Fibonacci numbers them-
selves! Writing out the first several values of T (n) suggests the closed-form
solution T(n) = 2Fn+1 − 1, which we can verify by induction (hint, hint). So
computing Fn using this algorithm takes about twice as long as just counting
to Fn. Methods beyond the scope of this book4 imply that Fn = Θ(φn), where
φ = (

p
5+ 1)/2≈ 1.61803 is the so-called golden ratio. In short, the running

time of this recursive algorithm is exponential in n.
We can actually see this exponential growth directly as follows. Think of the

recursion tree for RecFibo as a binary tree of additions, with only 0s and 1s
at the leaves. Since the eventual output is Fn, exactly Fn of the leaves must
have value 1; these leaves represent the calls to RecRibo(1). An easy inductive
argument (hint, hint) implies that RecFibo(0) is called exactly Fn−1 times. (If
we just want an asymptotic bound, it’s enough to observe that the number
of calls to RecFibo(0) is at most the number of calls to RecFibo(1).) Thus,
the recursion tree has exactly Fn + Fn−1 = Fn+1 = O(Fn) leaves, and therefore,
because it’s a full binary tree, 2Fn+1 − 1= O(Fn) nodes altogether.

Memo(r)ization: Remember Everything

The obvious reason for the recursive algorithm’s lack of speed is that it com-
putes the same Fibonacci numbers over and over and over. A single call to
RecFibo(n) results in one recursive call to RecFibo(n− 1), two recursive calls
to RecFibo(n− 2), three recursive calls to RecFibo(n− 3), five recursive calls
to RecFibo(n− 4), and in general Fk−1 recursive calls to RecFibo(n− k) for
any integer 0≤ k < n. Each call is recomputing some Fibonacci number from
scratch.

We can speed up our recursive algorithm considerably by writing down the
results of our recursive calls and looking them up again if we need them later.

4See http://algorithms.wtf for notes on solving backtracking recurrences.

3

http://algorithms.wtf

3. DYNAMIC PROGRAMMING

F5

F3F4

F2 F1

F1 F0

F3

F2 F1

F1 F0

F2

F1 F0

F4

F3

F2 F1

F1 F0

F2

F1 F0

F6 F5

F3F4

F2 F1

F1 F0

F3

F2 F1

F1 F0

F2

F1 F0

F7

Figure 3.1. The recursion tree for computing F7; arrows represent recursive calls.

This optimization technique, now known as memoization (yes, without an R), is
usually credited to Donald Michie in 1967, but essentially the same technique
was proposed in 1959 by Arthur Samuel.5

MemFibo(n):
if n= 0

return 0
else if n= 1

return 1
else

if F[n] is undefined
F[n]←MemFibo(n− 1) +MemFibo(n− 2)

return F[n]

Memoization clearly decreases the running time of the algorithm, but by
how much? If we actually trace through the recursive calls made by MemFibo,
we find that the array F[] is filled from the bottom up: first F[2], then F[3],
and so on, up to F[n]. This pattern can be verified by induction: Each entry
F[i] is filled only after its predecessor F[i − 1]. If we ignore the time spent in
recursive calls, it requires only constant time to evaluate the recurrence for each
Fibonacci number Fi . But by design, the recurrence for Fi is evaluated only once
for each index i. We conclude that MemFibo performs only O(n) additions, an
exponential improvement over the naïve recursive algorithm!

5Michie proposed that programming languages should support an abstraction he called a
“memo function”, consisting of both a standard function (“rule”) and a dictionary (“rote”), instead
of separately supporting arrays and functions. Whenever a memo function computes a function
value for the first time, it “memorises” (yes, with an R) that value into its dictionary. Michie was
inspired by Samuel’s use of “rote learning” to speed up the recursive evaluation of checkers game
trees; Michie describes his more general proposal as “enabling the programmer to ‘Samuelize’ any
functions he pleases.” (As far as I can tell, Michie never used the term “memoisation” himself.)
Memoization was used even earlier by Claude Shannon’s maze-solving robot “Theseus”, which
he designed and constructed in 1950.

4

3.1. Mātrāvr.tta

F2 F1

F1 F0F1 F0

F3

F2 F1

F1 F0

F2

F1 F0

F3F4

F2 F1

F1 F0

F3

F2 F1

F1 F0

F2

F1 F0

0 1 1 2 3 5 8 13

F5

F3F4

F3

F1

F1 F0

F2

F4

F6 F5

F7

F2

Figure 3.2. The recursion tree for F7 trimmed by memoization. Downward green arrows indicate
writing into the memoization array; upward red arrows indicate reading from the memoization array.

Dynamic Programming: Fill Deliberately

Once we see how the array F[] is filled, we can replace the memoized recurrence
with a simple for-loop that intentionally fills the array in that order, instead of
relying on a more complicated recursive algorithm to do it for us accidentally.

IterFibo(n):
F[0]← 0
F[1]← 1
for i← 2 to n

F[i]← F[i − 1] + F[i − 2]
return F[n]

Now the time analysis is immediate: IterFibo clearly uses O(n) additions and
stores O(n) integers.

This is our first explicit dynamic programming algorithm. The dynamic
programming paradigm was formalized and popularized by Richard Bellman
in the mid-1950s, while working at the RAND Corporation, although he was
far from the first to use the technique. In particular, this iterative algorithm
for Fibonacci numbers was already proposed by Virahān. ka and later Sanskrit
prosodists in the 12th century, and again by Fibonacci at the turn of the 13th
century!6

6More general dynamic programming techniques were independently deployed several times
in the late 1930s and early 1940s. For example, Pierre Massé used dynamic programming
algorithms to optimize the operation of hydroelectric dams in France during the Vichy regime.
John von Neumann and Oskar Morgenstern developed dynamic programming algorithms to
determine the winner of any two-player game with perfect information (for example, checkers).
Alan Turing and his cohorts used similar methods as part of their code-breaking efforts at Bletchley

5

3. DYNAMIC PROGRAMMING

Many years after the fact, Bellman claimed that he deliberately chose the
name “dynamic programming” to hide the mathematical character of his work
from his military bosses, who were actively hostile toward anything resembling
mathematical research.7 The word “programming” does not refer to writing
code, but rather to the older sense of planning or scheduling, typically by filling
in a table. For example, sports programs and theater programs are schedules
of important events (with ads); television programming involves filling each
available time slot with a show (and ads); degree programs are schedules of
classes to be taken (with ads). The Air Force funded Bellman and others to
develop methods for constructing training and logistics schedules, or as they
called them, “programs”. The word “dynamic” was not only a reference to
the multistage, time-varying processes that Bellman and his colleagues were
attempting to optimize, but also a marketing buzzword that would resonate
with the Futuristic Can-Do Zeitgeist™ of post-WWII America.8 Thanks in part
to Bellman’s proselytizing, dynamic programming is now a standard tool for
multistage planning in economics, robotics, control theory, and several other
disciplines.

Don’t Remember Everything After All

In many dynamic programming algorithms, it is not necessary to retain all
intermediate results through the entire computation. For example, we can
significantly reduce the space requirements of our algorithm IterFibo by
maintaining only the two newest elements of the array:

Park. Both Massé’s work and von Neumann and Mergenstern’s work were first published in 1944,
six years before Bellman coined the phrase “dynamic programming”. The details of Turing’s
“Banburismus” were kept secret until the mid-1980s.

7Charles Erwin Wilson became Secretary of Defense in January 1953, after a dozen years as
the president of General Motors. “Engine Charlie” reorganized the Department of Defense and
significantly decreased its budget in his first year in office, with the explicit goal of running the
Department much more like an industrial corporation. Bellman described Wilson in his 1984
autobiography as follows:

We had a very interesting gentleman in Washington named Wilson. He was secretary of Defense,
and he actually had a pathological fear and hatred of the word “research”. I’m not using the term
lightly; I’m using it precisely. His face would suffuse, he would turn red, and he would get violent if
people used the term “research” in his presence. You can imagine how he felt, then, about the
term “mathematical”. . . . I felt I had to do something to shield Wilson and the Air Force from the
fact that I was really doing mathematics inside the RAND Corporation. What title, what name,
could I choose?

However, Bellman’s first published use of the term “dynamic programming” already appeared in
1952, several months before Wilson took office, so this story is at least slightly embellished.

8. . . and just possibly a riff on the iconic brand name “Dynamic-Tension” for Charles Atlas’s
famous series of exercises, which Charles Roman coined in 1928. Hero of the Beach!

6

♥3.2. Aside: Even Faster Fibonacci Numbers

IterFibo2(n):
prev← 1
curr← 0
for i← 1 to n

next← curr+ prev
prev← curr
curr← next

return curr

(This algorithm uses the non-standard but consistent base case F−1 = 1 so
that IterFibo2(0) returns the correct value 0.) Although saving space can be
absolutely crucial in practice, we won’t focus on space issues in this book.

♥3.2 Aside: Even Faster Fibonacci Numbers

Although the previous algorithm is simple and attractive, it is not the fastest
algorithm to compute Fibonacci numbers. We can derive a faster algorithm by
exploiting the following matrix reformulation of the Fibonacci recurrence:

�

0 1
1 1

��

x
y

�

=

�

y
x + y

�

In other words, multiplying a two-dimensional vector by the matrix
�

0 1
1 1

�

has
exactly the same effect as one iteration of the inner loop of IterFibo2. It follows
that multiplying by the matrix n times is the same as iterating the loop n times:

�

0 1
1 1

�n �
1
0

�

=

�

Fn−1
Fn

�

.

So if we want the nth Fibonacci number, we only need to compute the nth power
of the matrix
�

0 1
1 1

�

. If we use repeated squaring,9 computing the nth power of
something requires only O(log n) multiplications. Here, because “something” is
a 2× 2 matrix, that means O(log n) 2× 2 matrix multiplications, each of which
reduces to a constant number of integer multiplications and additions. Thus,
we can compute Fn in only O(logn) integer arithmetic operations.

We can achieve the same speedup using the identity Fn = FmFn−m−1 +
Fm+1Fn−m, which holds (by induction!) for all integers m and n. In particular,
this identity implies the following mutual recurrence for pairs of adjacent
Fibonacci numbers, first proposed by Édouard Lucas in 1898:

F2n−1 = F2
n−1 + F2

n

F2n = Fn(Fn−1 + Fn+1) = Fn(2Fn−1 + Fn)

9as suggested by Piṅgala for powers of 2 elsewhere in Chandah. śāstra

7

3. DYNAMIC PROGRAMMING

(We can also derive this mutual recurrence directly from the matrix-squaring
algorithm.) These recurrences translate directly into the following algorithm:

〈〈Compute the pair Fn−1, Fn〉〉
FastRecFibo(n) :
if n= 1

return 0,1
m← ⌊n/2⌋
hprv,hcur← FastRecFibo(m) 〈〈Fm−1, Fm〉〉
prev← hprv2 + hcur2 〈〈F2m−1〉〉
curr← hcur · (2 · hprv+ hcur) 〈〈F2m〉〉
next← prev+ curr 〈〈F2m+1〉〉
if n is even

return prev, curr
else

return curr,next

Our standard recursion tree technique implies that this algorithm performs only
O(log n) integer arithmetic operations.

This is an exponential speedup over the standard iterative algorithm, which
was already an exponential speedup over our original recursive algorithm.
Right?

Whoa! Not so fast!

Well, not exactly. Fibonacci numbers grow exponentially fast. The nth Fibonacci
number is approximately n log10φ ≈ n/5 decimal digits long, or n log2φ ≈ 2n/3
bits. So we can’t possibly compute Fn in logarithmic time — we need Ω(n) time
just to write down the answer!

The way out of this apparent paradox is to observe that we can’t perform
arbitrary-precision arithmetic in constant time. Let M(n) denote the time
required to multiply two n-digit numbers. The running time of FastRecFibo
satisfies the recurrence T (n) = T (⌊n/2⌋) + M(n), which solves to T (n) =
O(M(n)) via recursion trees. The fastest integer multiplication algorithm
known (as of 2019) runs in O(n log n) time, so that is also the running time of
the fastest algorithm known (as of 2019) to compute Fibonacci numbers.

Is this algorithm slower than our “linear-time” iterative algorithms? Actually,
no—addition isn’t free, either! Adding two n-digit numbers requires O(n) time,
so the iterative algorithms IterFibo and IterFibo2 actually run in O(n2) time.
(Do you see why?) So FastRecFibo is significantly faster than the iterative
algorithms, just not exponentially faster.

In the original recursive algorithm, the extra cost of arbitrary-precision
arithmetic is overwhelmed by the huge number of recursive calls. The correct

8

3.3. Interpunctio Verborum Redux

recurrence is T (n) = T (n− 1) + T (n− 2) +O(n), which still has the solution
T (n) = O(φn).

3.3 Interpunctio Verborum Redux

For our next dynamic programming algorithm, let’s consider the text segmenta-
tion problem from the previous chapter. We are given a string A[1 .. n] and a
subroutine IsWord that determines whether a given string is a word (whatever
that means), and we want to know whether A can be partitioned into a sequence
of words.

We solved this problem by defining a function Splittable(i) that returns True
if and only if the suffix A[i .. n] can be partitioned into a sequence of words. We
need to compute Splittable(1). This function satisfies the recurrence

Splittable(i) =

True if i > n
n
∨

j=i

�

IsWord(i, j) ∧ Splittable(j + 1)
�

otherwise

where IsWord(i, j) is shorthand for IsWord(A[i .. j]). This recurrence translates
directly into a recursive backtracking algorithm that calls the IsWord subroutine
O(2n) times in the worst case.

But for any fixed string A[1 .. n], there are only n different ways to call
the recursive function Splittable(i)—one for each value of i between 1 and
n+ 1—and only O(n2) different ways to call IsWord(i, j)—one for each pair
(i, j) such that 1≤ i ≤ j ≤ n. Why are we spending exponential time computing
only a polynomial amount of stuff?

Each recursive subproblem is specified by an integer between 1 and n+1, so
we can memoize the function Splittable into an array SplitTable[1 .. n+ 1]. Each
subproblem Splittable(i) depends only on results of subproblems Splittable(j)
where j > i, so the memoized recursive algorithm fills the array in decreasing
index order. If we fill the array in this order deliberately, we obtain the dynamic
programming algorithm shown in Figure ??. The algorithm makes O(n2) calls to
IsWord, an exponential improvement over our earlier backtracking algorithm.

3.4 The Pattern: Smart Recursion

In a nutshell, dynamic programming is recursion without repetition. Dynamic
programming algorithms store the solutions of intermediate subproblems, often
but not always in some kind of array or table. Many algorithms students
(and instructors, and textbooks) make the mistake of focusing on the table—
because tables are easy and familiar—instead of the much more important

9

3. DYNAMIC PROGRAMMING

FastSplittable(A[1 .. n]):
SplitTable[n+ 1]← True
for i← n down to 1

SplitTable[i]← False
for j← i to n

if IsWord(i, j) and SplitTable[j + 1]
SplitTable[i]← True

return SplitTable[1]
Figure 3.3. Interpunctio verborum velox

(and difficult) task of finding a correct recurrence. As long as we memoize the
correct recurrence, an explicit table isn’t really necessary, but if the recurrence
is incorrect, we are well and truly hosed.

Dynamic programming is not about filling in tables.
It’s about smart recursion!

Dynamic programming algorithms are best developed in two distinct stages.
1. Formulate the problem recursively. Write down a recursive formula

or algorithm for the whole problem in terms of the answers to smaller
subproblems. This is the hard part. A complete recursive formulation has
two parts:
(a) Specification. Describe the problem that you want to solve recursively,

in coherent and precise English—not how to solve that problem, but
what problem you’re trying to solve. Without this specification, it is
impossible, even in principle, to determine whether your solution is
correct.

(b) Solution. Give a clear recursive formula or algorithm for the whole
problem in terms of the answers to smaller instances of exactly the same
problem.

2. Build solutions to your recurrence from the bottom up. Write an
algorithm that starts with the base cases of your recurrence and works its
way up to the final solution, by considering intermediate subproblems in the
correct order. This stage can be broken down into several smaller, relatively
mechanical steps:

(a) Identify the subproblems. What are all the different ways your recursive
algorithm can call itself, starting with some initial input? For example,
the argument to RecFibo is always an integer between 0 and n.

10

3.5. Warning: Greed is Stupid

(b) Choose a memoization data structure. Find a data structure that can
store the solution to every subproblem you identified in step (a). This is
usually but not always a multidimensional array.

(c) Identify dependencies. Except for the base cases, every subproblem
depends on other subproblems—which ones? Draw a picture of your
data structure, pick a generic element, and draw arrows from each of
the other elements it depends on. Then formalize your picture.

(d) Find a good evaluation order. Order the subproblems so that each one
comes after the subproblems it depends on. You should consider the
base cases first, then the subproblems that depends only on base cases,
and so on, eventually building up to the original top-level problem. The
dependencies you identified in the previous step define a partial order
over the subproblems; you need to find a linear extension of that partial
order. Be careful!

(e) Analyze space and running time. The number of distinct subproblems
determines the space complexity of your memoized algorithm. To
compute the total running time, add up the running times of all possible
subproblems, assuming deeper recursive calls are already memoized. You
can actually do this immediately after step (a).

(f) Write down the algorithm. You know what order to consider the
subproblems, and you know how to solve each subproblem. So do that!
If your data structure is an array, this usually means writing a few nested
for-loops around your original recurrence, and replacing the recursive
calls with array look-ups.

Of course, you have to prove that each of these steps is correct. If your recurrence
is wrong, or if you try to build up answers in the wrong order, your algorithm
won’t work!

3.5 Warning: Greed is Stupid

If we’re incredibly lucky, we can bypass all the recurrences and tables and so forth,
and solve the problem using a greedy algorithm. Like a backtracking algorithm, a
greedy algorithm constructs a solution through a series of decisions, but it makes
those decisions directly, without solving at any recursive subproblems. While this
approach seems very natural, it almost never works; optimization problems that
can be solved correctly by a greedy algorithm are quite rare. Nevertheless, for
many problems that should be solved by backtracking or dynamic programming,
many students’ first intuition is to apply a greedy strategy.

For example, a greedy algorithm for the text segmentation problem might
find the shortest (or, if you prefer, longest) prefix of the input string that is

11

3. DYNAMIC PROGRAMMING

a word, accept that prefix as the first word in the segmentation, and then
recursively segment the remaining suffix of the input string. Similarly, a greedy
algorithm for the longest increasing subsequence problem might look for the
smallest element of the input array, accept that element as the start of the target
subsequence, and then recursively look for the longest increasing subsequence
to the right of that element. If these sound like stupid hacks to you, pat yourself
on the back; these aren’t even close to correct solutions.

Everyone should tattoo the following sentence on the back of their hands,
right under all the rules about logarithms and big-Oh notation:

Greedy algorithms never work!
Use dynamic programming instead!

What, never?
No, never!
What, never?
Well. . . hardly ever.10
Because the greedy approach is so incredibly tempting, but so rarely correct,

I strongly advocate the following policy in any algorithms course, even (or per-
haps especially) for courses that do not normally ask for proofs of correctness.11

You will not receive any credit for any greedy algorithm,
on any homework or exam, even if the algorithm is correct,

without a formal proof of correctness.

Moreover, the vast majority of problems for which students are tempted to
submit a greedy algorithm are actually best solved using dynamic programming.
So I always offer the following advice to my algorithms students.

Whenever you write—or even think—the word “greeDY”,
your subconscious is telling you to use DYnamic programming.

Even for problems that can be correctly solved by greedy algorithms, it’s usually
more productive to develop a backtracking or dynamic programming algorithm
first. First make it work, then make it fast. We will see techniques for proving
greedy algorithms correct in the next chapter.

10They hardly ever ever work! Then give three cheers, and one cheer more, for the rigorous
Captain of the Pinafore! Then give three cheers, and one cheer more, for the Captain of the
Pinafore!

11Introducing this policy in my own algorithms courses significantly improved students’ grades,
because it significantly reduced the frequency of incorrect greedy algorithms.

12

3.6. Longest Increasing Subsequence

3.6 Longest Increasing Subsequence

Another problem we considered in the previous chapter was computing the
length of the longest increasing subsequence of a given array A[1 .. n] of numbers.
We developed two different recursive backtracking algorithms for this problem.
Both algorithms run in O(2n) time in the worst case; both algorithms can be
sped up significantly via dynamic programming.

First Recurrence: Is This Next?

Our first backtracking algorithm evaluated the function LISbigger(i, j), which
we defined as the length of the longest increasing subsequence of A[j .. n] in
which every element is larger than A[i]. We derived the following recurrence
for this function:

LISbigger(i, j) =

0 if j > n

LISbigger(i, j + 1) if A[i]≥ A[j]

max

�

LISbigger(i, j + 1)

1+ LISbigger(j, j + 1)

�

otherwise

To solve the original problem, we can add a sentinel value A[0] = −∞ to the
array and compute LISbigger(0, 1).

Each recursive subproblem is identified by two indices i and j, so there are
only O(n2) distinct recursive subproblems to consider. We can memoize the re-
sults of these subproblems into a two-dimensional array LISbigger[0 ..n, 1 .. n].12
Moreover, each subproblem can be solved in O(1) time, not counting recursive
calls, so we should expect the final dynamic programming algorithm to run in
O(n2) time.

The order in which the memoized recursive algorithm fills this array is
not immediately clear; all we can tell from the recurrence is that each entry
LISbigger[i, j] is filled in after the entries LISbigger[i, j+1] and LISbigger[j, j+1]
in the next column, as indicated on the left in Figure ??.

Fortunately, this partial information is enough to give us a valid evaluation
order. If we fill the table one column at a time, from right to left, then whenever
we reach an entry in the table, the entries it depends on are already available.
This may not be the order that the recursive algorithm would use, but it works,
so we’ll go with it. The right figure in Figure ?? illustrates this evaluation order,
with a double arrow indicating the outer loop and single arrows indicating the

12In fact, we only need half of this array, because we always have i < j. But even if we cared
about constant factors in this book (we don’t), this would be the wrong time to worry about
them. First make it work; then make it better.

13

3. DYNAMIC PROGRAMMING

i

j

Figure 3.4. Subproblem dependencies for longest increasing subsequence, and a valid evaluation
order

inner loop. In this case, the single arrows are bidirectional, because the order
that we use to fill each column doesn’t matter.

And we’re done! Pseudocode for our dynamic programming algorithm is
shown below; as expected, our algorithm clearly runs in O(n2) time. If necessary,
we can reduce the space bound from O(n2) to O(n) by maintaining only the
two most recent columns of the table, LISbigger[·, j] and LISbigger[·, j + 1].13

FastLIS(A[1 .. n]):
A[0]←−∞ 〈〈Add a sentinel〉〉
for i← 0 to n 〈〈Base cases〉〉

LISbigger[i, n+ 1]← 0
for j← n down to 1

for i← 0 to j − 1 〈〈. . .or whatever〉〉
keep← 1+ LISbigger[j, j + 1]
skip← LISbigger[i, j + 1]
if A[i]≥ A[j]

LISbigger[i, j]← skip
else

LISbigger[i, j]←max{keep, skip}
return LISbigger[0,1]

Second Recurrence: What’s Next?

Our second backtracking algorithm evaluated the function LISfirst(i), which
we defined as the length of the longest increasing subsequence of A[i .. n] that
begins with A[i]. We derived the following recurrence for this function:

LISfirst(i) = 1+max
�

LISfirst(j)
�

� j > i and A[j]> A[i]
	

Here, we assume that max∅= 0, so that the base cases like LISfirst(n) = 1 fall
out of the recurrence automatically. To solve the original problem, we can add
a sentinel value A[0] = −∞ to the array and compute LISfirst(0)− 1.

13See, I told you not to worry about constant factors yet!

14

3.7. Edit Distance

In this case, recursive subproblems are indicated by a single index i, so we
can memoize the recurrence into a one-dimensional array LISfirst[1 .. n]. Each
entry LISfirst[i] depends only on entries LISfirst[j] with j > i, so we can fill
the array in decreasing index order. To compute each LISfirst[i], we need to
consider LISfirst[j] for all indices j > i, but we don’t need to consider those
indices j in any particular order. The resulting dynamic programming algorithm
runs in O(n2) time and uses O(n) space.

FastLIS2(A[1 .. n]):
A[0] = −∞ 〈〈Add a sentinel〉〉
for i← n downto 0

LISfirst[i]← 1
for j← i + 1 to n 〈〈. . . or whatever〉〉

if A[j]> A[i] and 1+ LISfirst[j]> LISfirst[i]
LISfirst[i]← 1+ LISfirst[j]

return LISfirst[0]− 1 〈〈Don’t count the sentinel〉〉

3.7 Edit Distance

The edit distance between two strings is the minimum number of letter inser-
tions, letter deletions, and letter substitutions required to transform one string
into the other. For example, the edit distance between FOOD and MONEY is at
most four:

FOOD→ MOOD→ MON
∧
D→ MONED→ MONEY

This distance function was independently proposed by Vladimir Levenshtein in
1965 (working on coding theory), Taras Vintsyuk in 1968 (working on speech
recognition), and Stanislaw Ulam in 1972 (working with biological sequences).
For this reason, edit distance is sometimes called Levenshtein distance or Ulam
distance (but strangely, never “Vintsyuk distance”).

We can visualize this editing process by aligning the strings one above the
other, with a gap in the first word for each insertion and a gap in the second
word for each deletion. Columns with two different characters correspond to
substitutions. In this representation, the number of editing steps is just the
number of columns that do not contain the same character twice.

F O O D
M O N E Y

It’s fairly obvious that we can’t transform FOOD into MONEY in three steps, so
the edit distance between FOOD and MONEY is exactly four. Unfortunately, it’s not
so easy in general to tell when a sequence of edits is as short as possible. For

15

3. DYNAMIC PROGRAMMING

example, the following alignment shows that the distance between the strings
ALGORITHM and ALTRUISTIC is at most 6. Is that the best we can do?

A L G O R I T H M
A L T R U I S T I C

Recursive Structure

To develop a dynamic programming algorithm to compute edit distance, we
first need to formulate the problem recursively. Our alignment representation
for edit sequences has a crucial “optimal substructure” property. Suppose we
have the gap representation for the shortest edit sequence for two strings. If
we remove the last column, the remaining columns must represent the
shortest edit sequence for the remaining prefixes. We can easily prove this
observation by contradiction: If the prefixes had a shorter edit sequence, gluing
the last column back on would gives us a shorter edit sequence for the original
strings. So once we figure out what should happen in the last column, the
Recursion Fairy can figure out the rest of the optimal gap representation.

Said differently, the alignment we are looking for represents a sequence of
editing operations, ordered (for no particular reason) from right to left. Solving
the edit distance problem requires making a sequence of decisions, one for each
column in the output alignment. In the middle of this sequence of decisions, we
have already aligned a suffix of one string with a suffix of the other.

ALGOR
ALTRU

I T H M
I S T I C

Because the cost of an alignment is just the number of mismatched columns,
our remaining decisions don’t depend on the editing operations we’ve already
chosen; they only depend on the prefixes we haven’t aligned yet.

ALGOR
ALTRU

Thus, for any two input strings A[1 .. m] and B[1 .. n], we can formulate the edit
distance problem recursively as follows: For any indices i and j, let Edit(i, j)
denote the edit distance between the prefixes A[1 .. i] and B[1 .. j]. We need to
compute Edit(m, n).

Recurrence

When i and j are both positive, there are exactly three possibilities for the last
column in the optimal alignment of A[1 .. i] and B[1 .. j]:

16

3.7. Edit Distance

• Insertion: The last entry in the top row is empty. In this case, the edit
distance is equal to Edit(i, j−1)+1. The +1 is the cost of the final insertion,
and the recursive expression gives the minimum cost for the remaining
alignment.

ALGOR
ALTR U

• Deletion: The last entry in the bottom row is empty. In this case, the edit
distance is equal to Edit(i−1, j)+1. The +1 is the cost of the final deletion,
and the recursive expression gives the minimum cost for the remaining
alignment.

ALGO
ALTRU

R

• Substitution: Both rows have characters in the last column. If these two
characters are different, then the edit distance is equal to Edit(i−1, j−1)+1.
If these two characters are equal, the substitution is free, so the edit distance
is Edit(i − 1, j − 1).

ALGO
ALTR

R
U

ALGO
ALT

R
R

This generic case analysis breaks down if either i = 0 or j = 0, but those
boundary cases are easy to handle directly.
• Transforming the empty string into a string of length j requires j insertions,

so Edit(0, j) = j.
• Transforming a string of length i into the empty string requires i deletions,

so Edit(i, 0) = i.
As a sanity check, both of these base cases correctly indicate that the edit
distance between the empty string and the empty string is zero!

We conclude that the Edit function satisfies the following recurrence:

Edit(i, j) =

i if j = 0

j if i = 0

min

Edit(i, j − 1) + 1

Edit(i − 1, j) + 1

Edit(i − 1, j − 1) + [A[i] ̸= B[j]]

otherwise

Dynamic Programming

Now that we have a recurrence, we can transform it into a dynamic programming
algorithm following our usual mechanical recipe.

17

3. DYNAMIC PROGRAMMING

• Subproblems: Each recursive subproblem is identified by two indices
0≤ i ≤ m and 0≤ j ≤ n.

• Memoization structure: So we can memoize all possible values of Edit(i, j)
in a two-dimensional array Edit[0 .. m, 0 .. n].

• Dependencies: Each entry Edit[i, j] depends only on its three neighboring
entries Edit[i − 1, j], Edit[i, j − 1], and Edit[i − 1, j − 1].

• Evaluation order: If we fill this array in standard row-major order—row by
row from top down, each row from left to right—then whenever we reach an
entry in the array, all the entries it depends on are already available. (This
isn’t the only evaluation order we could use, but it works, so let’s go with it.)

i

j

• Space and time: The memoization structure uses O(mn) space. We can
compute each entry Edit[i, j] in O(1) time once we know its predecessors,
so the overall algorithm runs in O(mn) time.

Here is the resulting dynamic programming algorithm:

EditDistance(A[1 .. m], B[1 .. n]):
for j← 0 to n

Edit[0, j]← j

for i← 1 to m
Edit[i, 0]← i
for j← 1 to n

ins← Edit[i, j − 1] + 1
del← Edit[i − 1, j] + 1
if A[i] = B[j]

rep← Edit[i − 1, j − 1]
else

rep← Edit[i − 1, j − 1] + 1
Edit[i, j]←min {ins,del, rep}

return Edit[m, n]

This algorithm is most commonly attributed to Robert Wagner and Michael
Fischer, who described the algorithm in 1974. However, in full compliance
with Stigler’s Law of Eponymy, either identical or more general algorithms
were independently discovered by Taras Vintsyuk in 1968, V. M. Velichko and

18

3.7. Edit Distance

N. G. Zagoruyko in 1970, David Sankoff in 1972, Peter Sellers in 1974, and
almost certainly several others.14 Interestingly, none of these authors cite either
Levenshtein or Ulam!

The memoization table for the input strings ALGORITHM and ALTRUISTIC is
shown below. Bold numbers indicate places where characters in the two strings
are equal. The edit distance between ALGORITHM and ALTRUISTIC is indeed six!

A L G O R I T H M
0→1→2→3→4→5→6→7→8→9
↓↘↘↘↘↘↘↘↘↘

A 1 0→1→2→3→4→5→6→7→8
↓ ↓↘↘↘↘↘↘↘↘↘

L 2 1 0→1→2→3→4→5→6→7
↓ ↓ ↓↘ ↘ ↘ ↘ ↘↘↘↘↘↘↘↘↘

T 3 2 1 1→2→3→4 4→5→6
↓ ↓ ↓ ↓↘ ↘↘↘↘↘↘↘↘↘ ↘ ↘

R 4 3 2 2 2 2→3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘ ↘ ↘ ↘

U 5 4 3 3 3 3 3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘ ↘ ↘ ↘

I 6 5 4 4 4 4 3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘ ↘ ↘

S 7 6 5 5 5 5 4 4 5 6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘↘↘↘↘↘↘↘↘ ↘ ↘

T 8 7 6 6 6 6 5 4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘↓ ↓↘ ↘

I 9 8 7 7 7 7 6 5 5→6
↓ ↓ ↓↘↓↘↓↘↓ ↓ ↓↘↓↘

C 10 9 8 8 8 8 7 6 6 6

The arrows in this table indicate which predecessor(s) actually define
each entry. Each direction of arrow corresponds to a different edit operation:
horizontal=deletion, vertical=insertion, and diagonal=substitution. Bold red
diagonal arrows indicate “free” substitutions of a letter for itself. Any path of
arrows from the top left corner to the bottom right corner of this table represents
an optimal edit sequence between the two strings. The example memoization
array contains exactly three directed paths from the top left corner to the bottom
right corner, each indicating a different sequence of six edits transforming
ALGORITHM into ALTRUISTIC, as shown on the next page.

14This algorithm is sometimes also incorrectly attributed to Saul Needleman and Christian
Wunsch in 1970. “The Needleman-Wunsch algorithm” more commonly refers to the standard
dynamic programming algorithm for computing the longest common subsequence of two strings
(or equivalently, the edit distance where only insertions and deletions are permitted) in O(mn)
time, but that attribution is also incorrect! In fact, Needleman and Wunsch’s algorithm computes
(weighted) longest common subsequences (possibly with gap costs) in O(m2n2) time, using a
different recurrence. Sankoff explicitly describes his O(mn)-time algorithm as an improvement
of Needleman and Wunsch’s algorithm.

19

3. DYNAMIC PROGRAMMING

A L G O R I T H M
A L T R U I S T I C

A L G O R I T H M
A L T R U I S T I C

A L G O R I T H M
A L T R U I S T I C

Our EditDistance algorithm does not actually compute or store any arrows
in the table, but the arrow(s) leading into any entry in the table can be
reconstructed on the fly in O(1) time from the numerical values. Thus, once
we’ve filled in the table, we can reconstruct the shortest edit sequence in O(n+m)
additional time.

3.8 Subset Sum

Recall that the Subset Sum problem asks whether any subset of a given array
X [1 .. n] of positive integers sums to a given integer T . In the previous chapter,
we developed a recursive Subset Sum algorithm that can be reformulated as
follows. Fix the original input array X [1 .. n] and define the boolean function

SS(i, t) = True if and only if some subset of X [i .. n] sums to t.

We need to compute SS(1, T). This function satisfies the following recurrence:

SS(i, t) =

True if t = 0

False if t < 0 or i > n

SS(i + 1, t) ∨ SS(i + 1, t − X [i]) otherwise

We can transform this recurrence into a dynamic programming algorithm
following the usual boilerplate.
• Subproblems: Each subproblem is described by an integer i such that

1≤ i ≤ n+ 1, and an integer t ≤ T . However, subproblems with t < 0 are
trivial, so it seems rather silly to memoize them.15 Indeed, we can modify
the recurrence so that those subproblems never arise:

SS(i, t) =

True if t = 0

False if i > n

SS(i + 1, t) if t < X [i]
SS(i + 1, t) ∨ SS(i + 1, t − X [i]) otherwise

15Yes, I’m breaking my own rule against premature optimization.

20

3.9. Optimal Binary Search Trees

• Data structure: We can memoize our recurrence into a two-dimensional
array S[1 .. n+ 1, 0 .. T], where S[i, t] stores the value of SS(i, t).

• Evaluation order: Each entry S[i, t] depends on at most two other entries,
both of the form SS[i + 1, ·]. So we can fill the array by considering rows
from bottom to top in the outer loop, and considering the elements in each
row in arbitrary order in the inner loop.

• Space and time: The memoization structure uses O(nT) space. If S[i+1, t]
and S[i+1, t−X [i]] are already known, we can compute S[i, t] in constant
time, so the algorithm runs in O(nT) time.

Here is the resulting dynamic programming algorithm:

FastSubsetSum(X [1 .. n], T):
S[n+ 1, 0]← True
for t ← 1 to T

S[n+ 1, t]← False
for i← n downto 1

S[i, 0] = True
for t ← 1 to X [i]− 1

S[i, t]← S[i + 1, t] 〈〈Avoid the case t < 0〉〉
for t ← X [i] to T

S[i, t]← S[i + 1, t]∨ S[i + 1, t − X [i]]

return S[1, T]

The worst-case running time O(nT) for this algorithm is a significant
improvement over the O(2n)-time recursive backtracking algorithm when T is
small.16 However, if the target sum T is significantly larger than 2n, this iterative
algorithm is actually slower than the naïve recursive algorithm, because it’s
wasting time solving subproblems that the recursive algorithm never considers.
Dynamic programming isn’t always an improvement!17

3.9 Optimal Binary Search Trees

The final problem we considered in the previous chapter was the optimal binary
search tree problem. The input is a sorted array A[1 .. n] of search keys and an
array f [1 .. n] of frequency counts, where f [i] is the number of times we will

16Even though the subset sum problem is NP-hard, this time bound does not imply that P=NP,
because T is not necessarily bounded by a polynomial function of the input size.

17In the 1967 research memorandum(!) where he proposed memo functions, Donald Michie
wrote, “To tabulate values of a function which will not be needed is a waste of space, and to
recompute the same values more than once is a waste of time.” But in fact, tabulating values of a
function that will not be needed is also a waste of time!

21

3. DYNAMIC PROGRAMMING

search for A[i]. Our task is to construct a binary search tree for that set such
that the total cost of all the searches is as small as possible.

Fix the frequency array f , and let OptCost(i, k) denote the total search time
in the optimal search tree for the subarray A[i .. k]. We derived the following
recurrence for the function OptCost:

OptCost(i, k) =

0 if i > k

k
∑

j=i

f [j] + min
i≤r≤k

¨

OptCost(i, r − 1)
+ OptCost(r + 1, k)

«

otherwise

You can probably guess what we’re going to do with this recurrence eventually,
but let’s rid of that ugly summation first.

For any pair of indices i ≤ k, let F(i, k) denote the total frequency count for
all the keys in the interval A[i .. k]:

F(i, k) :=
k
∑

j=i

f [j]

This function satisfies the following simple recurrence:

F(i, k) =

¨

f [i] if i = k

F(i, k− 1) + f [k] otherwise

We can compute all possible values of F(i, k) in O(n2) time using—you guessed
it!—dynamic programming! The usual mechanical steps give us the following
dynamic programming algorithm:

InitF(f [1 .. n]):
for i← 1 to n

F[i, i − 1]← 0
for k← i to n

F[i, k]← F[i, k− 1] + f [k]

Wewill use this short algorithm as an initialization subroutine. This initialization
allows us to simplify the original OptCost recurrence as follows:

OptCost(i, k) =

0 if i > k

F[i, k] + min
i≤r≤k

¨

OptCost(i, r − 1)
+ OptCost(r + 1, k)

«

otherwise

Now let’s turn the crank.

22

3.9. Optimal Binary Search Trees

• Subproblems: Each recursive subproblem is specified by two integers i
and k, such that 1≤ i ≤ n+ 1 and 0≤ k ≤ n.

• Memoization: We can store all possible values of OptCost in a two-
dimensional array OptCost[1 .. n+ 1, 0 .. n]. (Only the entries OptCost[i, j]
with j ≥ i − 1 will actually be used, but whatever.)

• Dependencies: Each entry OptCost[i, k] depends on the entries OptCost[i,
j − 1] and OptCost[j + 1, k], for all j such that i ≤ j ≤ k. In other words,
each table entry depends on all entries either directly to the left or directly
below.

i

k

The following subroutine fills the entry OptCost[i, k], assuming all the
entries it depends on have already been computed.

ComputeOptCost(i, k):
OptCost[i, k]←∞
for r ← i to k

tmp← OptCost[i, r − 1] +OptCost[r + 1, k]
if OptCost[i, k]> tmp

OptCost[i, k]← tmp
OptCost[i, k]← OptCost[i, k] + F[i, k]

• Evaluation order: There are at least three different orders that can be
used to fill the array. The first one that occurs to most students is to scan
through the table one diagonal at a time, starting with the trivial base cases
OptCost[i, i − 1] and working toward the final answer OptCost[1, n], like so:

OptimalBST(f [1 .. n]):
InitF(f [1 .. n])
for i← 1 to n+ 1

OptCost[i, i − 1]← 0
for d ← 0 to n− 1

for i← 1 to n− d 〈〈. . .or whatever〉〉
ComputeOptCost(i, i + d)

return OptCost[1, n]

We could also traverse the array row by row from the bottom up, traversing
each row from left to right, or column by column from left to right, traversing
each columns from the bottom up.

23

3. DYNAMIC PROGRAMMING

OptimalBST2(f [1 .. n]):
InitF(f [1 .. n])
for i← n+ 1 downto 1

OptCost[i, i − 1]← 0
for j← i to n

ComputeOptCost(i, j)
return OptCost[1, n]

OptimalBST3(f [1 .. n]):
InitF(f [1 .. n])
for j← 0 to n+ 1

OptCost[j + 1, j]← 0
for i← j downto 1

ComputeOptCost(i, j)
return OptCost[1, n]

As before, we can illustrate these evaluation orders using a double-lined
arrow to indicate the outer loop and single-lined arrows to indicate the inner
loop. The bidirectional arrows in the first evaluation order indicate that the
order of the inner loops doesn’t matter.

• Time and space: The memoization structure uses O(n2) space. No matter
which evaluation order we choose, we need O(n) time to compute each
entry OptCost[i, k], so our overall algorithm runs in O(n3) time.

As usual, we could have predicted the final space and time bounds directly from
the original recurrence:

OptCost(i, k) =

0 if i > k

F[i, k] + min
i≤r≤k

¨

OptCost(i, r − 1)
+ OptCost(r + 1, k)

«

otherwise

The OptCost function has two arguments, each of which can take on roughly n
different values, so we probably need a data structure of size O(n2). On the
other hand, there are three variables in the body of the recurrence (i, k, and r),
each of which can take roughly n different values, so it should take O(n3) time
to compute everything.

3.10 Dynamic Programming on Trees

So far, all of our dynamic programming examples use multidimensional arrays
to store the results of recursive subproblems. However, as the next example
shows, this is not always the most appropriate data structure to use.

An independent set in a graph is a subset of the vertices with no edges
between them. Finding the largest independent set in an arbitrary graph is
extremely hard; in fact, this is one of the canonical NP-hard problems we will

24

3.10. Dynamic Programming on Trees

study in Chapter ??. But in some special classes of graphs, we can find largest
independent sets quickly. In particular, when the input graph is a tree with n
vertices, we can actually compute the largest independent set in O(n) time.

Suppose we are given a tree T . Without loss of generality, suppose T is a
rooted tree; that is, there is a special node in T called the root, and all edges are
implicitly directed away from this vertex. (If T is an unrooted tree—a connected
acyclic undirected graph—we can choose an arbitrary vertex as the root.) We
call vertex w a descendant of vertex v if the unique path from w to the root
includes v; equivalently, the descendants of v are v itself and the descendants
of the children of v. The subtree rooted at v consists of all the descendants of v
and the edges between them.

For any node v in T , letMIS(v) denote the size of the largest independent set
in the subtree rooted at v. Any independent set in this subtree that excludes v
itself is the union of independent sets in the subtrees rooted at the children of v.
On the other hand, any independent set that includes v necessarily excludes all
of v’s children, and therefore includes independent sets in the subtrees rooted
at v’s grandchildren. Thus, the function MIS obeys the following recurrence,
where the nonstandard notation w ↓ v means “w is a child of v”:

MIS(v) =max

(

∑

w↓v

MIS(w), 1+
∑

w↓v

∑

x↓w

MIS(x)

)

We need to compute MIS(r), where r is the root of T .
? ✓

? ?????

?? ??

— or —

Figure 3.5. Computing the maximum independent set in a tree

What data structure should we use to memoize this recurrence? The most
natural choice is the tree T itself! Specifically, for each vertex v in T , we store
the result of MIS(v) in a new field v.MIS. (In principle, we could use an array
instead, but then we’d need pointers back and forth between each node and its
corresponding array entry, so why bother?)

What’s a good order to consider the subproblems? The subproblem associ-
ated with any node v depends on the subproblems associated with the children
and grandchildren of v. So we can visit the nodes in any order we like, provided
that every vertex is visited before its parent; in particular, we can use a standard
post-order traversal.

What’s the running time of the algorithm? The non-recursive time associated
with each node v is proportional to the number of children and grandchildren

25

3. DYNAMIC PROGRAMMING

of v; this number can be very different from one vertex to the next. But we can
turn the analysis around: Each vertex contributes a constant amount of time to
its parent and its grandparent! Because each vertex has at most one parent and
at most one grandparent, the algorithm runs in O(n) time.

Here is the resulting dynamic programming algorithm. Yes, it’s still recursive,
because that’s the most natural way to implement a post-order tree traversal.

TreeMIS(v):
skipv← 0
for each child w of v

skipv← skipv+ TreeMIS(w)
keepv← 1
for each grandchild x of v

keepv← keepv+ x .MIS
v.MIS←max{keepv, skipv}
return v.MIS

We can derive an even simpler linear-time algorithm by defining two separate
functions over the nodes of T :
• Let MISyes(v) denote the size of the largest independent set of the subtree

rooted at v that includes v.
• Let MISno(v) denote the size of the largest independent set of the subtree

rooted at v that excludes v.
Again, we need to compute max{MISyes(r),MISno(r)}, where r is the root of T .
The first two functions satisfy the following mutual recurrence:

MISyes(v) = 1+
∑

w↓v

MISno(w)

MISno(v) =
∑

w↓v

max {MISyes(w),MISno(w)}

Again, we can memoize these functions into the tree itself, by defining two
new fields for each vertex. A straightforward post-order tree traversal evaluates
both functions at every node in O(n) time. The following algorithm not only
memoizes both function values at v, it also returns the larger of those two
values.

TreeMIS2(v):
v.MISno← 0
v.MISyes← 1
for each child w of v

v.MISno← v.MISno+ TreeMIS2(w)
v.MISyes← v.MISyes+w.MISno

return max{v.MISyes, v.MISno}

26

Exercises

In the second line of the inner loop, we are using the value w.MISno that was
memoized by the recursive call in the previous line.

Exercises

For all of the following exercises—and more generally when developing any
new dynamic programming algorithm—I strongly recommend following the
steps outlined in Section ??. In particular, don’t even start thinking about tables
or for-loops until you have a complete recursive solution, including a clear
English specification of the recursive subproblems you are actually solving.18
First make it work, then make it fast.

Sequences/Arrays

1. In a previous life, you worked as a cashier in the lost Antarctican colony
of Nadiria, spending the better part of your day giving change to your
customers. Because paper is a very rare and valuable resource in Antarctica,
cashiers were required by law to use the fewest bills possible whenever
they gave change. Thanks to the numerological predilections of one of its
founders, the currency of Nadiria, called Dream-Dollars, was available in
the following denominations: $1, $4, $7, $13, $28, $52, $91, and $365.19

♠(a) The greedy change algorithm repeatedly takes the largest bill that does
not exceed the target amount. For example, to make $122 using the
greedy algorithm, we first take a $91 bill, then a $28 bill, and finally
three $1 bills. Give an example where this greedy algorithm uses more
Dream-Dollar bills than the minimum possible. [Hint: It may be easier
to write a small program than to work this out by hand.]

(b) Describe and analyze a recursive algorithm that computes, given an
integer k, the minimum number of bills needed to make k Dream-
Dollars. (Don’t worry about making your algorithm fast; just make sure
it’s correct.)

(c) Describe a dynamic programming algorithm that computes, given an
integer k, the minimum number of bills needed to make k Dream-Dollars.
(This one needs to be fast.)

18In my algorithms classes, any dynamic programming solution that does not include an
English specification of the underlying recursive subproblems automatically gets a score of
zero, even if the solution is otherwise perfect. Introducing this policy significantly improved
students’ grades, because it significantly reduced the number of times they submitted incorrect
(or incoherent) dynamic programming algorithms.

19For more details on the history and culture of Nadiria, including images of the various
denominations of Dream-Dollars, see http://moneyart.biz/dd/.

27

http://moneyart.biz/dd/
http://moneyart.biz/dd/

3. DYNAMIC PROGRAMMING

2. Describe efficient algorithms for the following variants of the text segmen-
tation problem. Assume that you have a subroutine IsWord that takes an
array of characters as input and returns True if and only if that string is
a “word”. Analyze your algorithms by bounding the number of calls to
IsWord.
(a) Given an array A[1 .. n] of characters, compute the number of partitions

of A into words. For example, given the string ARTISTOIL, your algorithm
should return 2, for the partitions ARTIST·OIL and ART·IS·TOIL.

(b) Given two arrays A[1 .. n] and B[1 .. n] of characters, decide whether A
and B can be partitioned into words at the same indices. For example,
the strings BOTHEARTHANDSATURNSPIN and PINSTARTRAPSANDRAGSLAP
can be partitioned into words at the same indices as follows:

BOT·HEART·HAND·SAT·URNS·PIN
PIN·START·RAPS·AND·RAGS·LAP

(c) Given two arrays A[1 .. n] and B[1 .. n] of characters, compute the number
of different ways that A and B can be partitioned into words at the same
indices.

3. Suppose you are given an array A[1 .. n] of numbers, which may be positive,
negative, or zero, and which are not necessarily integers.
(a) Describe and analyze an algorithm that finds the largest sum of elements

in a contiguous subarray A[i .. j].
(b) Describe and analyze an algorithm that finds the largest product of

elements in a contiguous subarray A[i .. j].
For example, given the array [−6,12,−7,0, 14,−7,5] as input, your first
algorithm should return 19, and your second algorithm should return 504.

sum=19
︷ ︸︸ ︷

−6 12 −7 0 14 −7 5
︸ ︷︷ ︸

product=504

Given the one-element array [−374] as input, your first algorithm should
return 0, and your second algorithm should return 1. (The empty interval is
still an interval!) For the sake of analysis, assume that comparing, adding,
or multiplying any pair of numbers takes O(1) time.

[Hint: Part (a) has been a standard computer science interview question
since at least the mid-1980s. You can find many correct solutions on the
web; the problem even has its own Wikipedia page! But at least in 2016, a
significant fraction of the solutions I found on the web for part (b) were
either slower than necessary or actually incorrect.]

28

http://en.wikipedia.org/wiki/Maximum_subarray_problem

Exercises

4. This exercise explores variants of the maximum-subarray problem (Prob-
lem ??). In all cases, your input consists of an array A[1 .. n] of real numbers
(which could be positive, negative, or zero) and possibly an additional
integer X ≥ 0.
(a) Wrapping around: Suppose A is a circular array. In this setting, a

“contiguous subarray” can be either an interval A[i .. j] or a suffix followed
by a prefix A[i .. n] · A[1 .. j]. Describe and analyze an algorithm that
finds a contiguous subarray of A with the largest sum.

(b) Long subarrays only: Describe and analyze an algorithm that finds a
contiguous subarray of A of length at least X that has the largest sum.
(Assume X ≤ n.)

(c) Short subarrays only: Describe and analyze an algorithm that finds a
contiguous subarray of A of length at most X that has the largest sum.

(d) The Price Is Right: Describe and analyze an algorithm that finds a
contiguous subarray of A with the largest sum less than or equal to X .

(e) Describe a faster algorithm for Problem ?? when every number in the
array A is non-negative.

5. This exercise asks you to develop efficient algorithms to find optimal subse-
quences of various kinds. A subsequence is anything obtained from a sequence
by extracting a subset of elements, but keeping them in the same order; the
elements of the subsequence need not be contiguous in the original sequence.
For example, the strings C, DAMN, YAIOAI, and DYNAMICPROGRAMMING are all
subsequences of the string DYNAMICPROGRAMMING.

[Hint: Exactly one of these problems can be solved in O(n) time using a
greedy algorithm.]

(a) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common sub-
sequence of A and B is another sequence that is a subsequence of both
A and B. Describe an efficient algorithm to compute the length of the
longest common subsequence of A and B.

(b) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common super-
sequence of A and B is another sequence that contains both A and B as
subsequences. Describe an efficient algorithm to compute the length of
the shortest common supersequence of A and B.

(c) Call a sequence X [1 .. n] of numbers bitonic if there is an index i with
1 < i < n, such that the prefix X [1 .. i] is increasing and the suffix
X [i .. n] is decreasing. Describe an efficient algorithm to compute the
length of the longest bitonic subsequence of an arbitrary array A of
integers.

29

3. DYNAMIC PROGRAMMING

(d) Call a sequence X [1 .. n] of numbers oscillating if X [i] < X [i + 1] for
all even i, and X [i] > X [i + 1] for all odd i. Describe an efficient
algorithm to compute the length of the longest oscillating subsequence
of an arbitrary array A of integers.

(e) Describe an efficient algorithm to compute the length of the shortest
oscillating supersequence of an arbitrary array A of integers.

(f) Call a sequence X [1 .. n] of numbers convex if 2·X [i]< X [i−1]+X [i+1]
for all i. Describe an efficient algorithm to compute the length of the
longest convex subsequence of an arbitrary array A of integers.

(g) Call a sequence X [1 .. n] of numbers weakly increasing if each element
is larger than the average of the two previous elements; that is, 2 ·X [i]>
X [i − 1] + X [i − 2] for all i > 2. Describe an efficient algorithm to
compute the length of the longest weakly increasing subsequence of an
arbitrary array A of integers.

(h) Call a sequence X [1 .. n] of numbers double-increasing if X [i]> X [i−2]
for all i > 2. (In other words, a double-increasing sequence is a perfect
shuffle of two increasing sequences.) Describe an efficient algorithm to
compute the length of the longest double-increasing subsequence of an
arbitrary array A of integers.

(i) Recall that a sequence X [1 .. n] of numbers is increasing if X [i]< X [i+1]
for all i. Describe an efficient algorithm to compute the length of the
longest common increasing subsequence of two given arrays of integers. For
example, 〈1,4, 5,6, 7,9〉 is the longest common increasing subsequence
of the sequences 〈3,1, 4,1, 5,9, 2,6, 5,3, 5,8, 9,7, 9,3〉 and 〈1, 4,1, 4,2,
1,3, 5,6, 2,3, 7,3, 0,9, 5〉.

6. A shuffle of two strings X and Y is formed by interspersing the characters
into a new string, keeping the characters of X and Y in the same order.
For example, the string BANANAANANAS is a shuffle of the strings BANANA and
ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are
both shuffles of DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

(a) Given three strings A[1 .. m], B[1 .. n], and C[1 .. m+ n], describe and
analyze an algorithm to determine whether C is a shuffle of A and B.

(b) A smooth shuffle of X and Y is a shuffle of X and Y that never uses
more than two consecutive symbols of either string. For example,

30

Exercises

• PRDOYGNARAMMMIICNG is a smooth shuffle of the strings DYNAMIC and
PROGRAMMING.

• DYPRNOGRAAMMMICING is a shuffle of DYNAMIC and PROGRAMMING, but
it is not a smooth shuffle (because of the substrings OGR and ING).

• XXXXXXXXXXXXXXXXXXX is a smooth shuffle of the strings XXXXXXX
and XXXXXXXXXXX.

• There is no smooth shuffle of the strings XXXX and XXXXXXXXXXXX.
Describe and analyze an algorithm to decide, given three strings X , Y ,
and Z , whether Z is a smooth shuffle of X and Y .

7. For each of the following problems, the input consists of two arrays X [1 .. k]
and Y [1 .. n] where k ≤ n.
(a) Describe and analyze an algorithm to decide whether X is a subsequence

of Y . For example, the string PPAP is a subsequence of the string
PENPINEAPPLEAPPLEPEN.

(b) Describe and analyze an algorithm to find the smallest number of symbols
that can be removed from Y so that X is no longer a subsequence.
Equivalently, your algorithm should find the longest subsequence of Y
that is not a supersequence of X . For example, after removing removing
two symbols from the string PENPINEAPPLEAPPLEPEN, the string PPAP is
no longer a subsequence.

♥(c) Describe and analyze an algorithm to determine whether X occurs as
two disjoint subsequences of Y . For example, the string PPAP appears as
two disjoint subsequences in the string PENPINEAPPLEAPPLEPEN.

(d) Suppose the input also includes a third array C[1 .. n] of numbers, which
may be positive, negative, or zero, where C[i] is the cost of Y [i]. Describe
and analyze an algorithm to compute the minimum-cost occurrence of
X as a subsequence of Y . That is, we want to find an array I[1 .. k] such
that I[j]< I[j + 1] and X [I[j]] = Y [j] for every index j, and the total
cost
∑k

j=1 C[j] is as small as possible.
(e) Describe and analyze an algorithm to compute the total number of

(possibly overlapping) occurrences of X as a subsequence of Y . For
purposes of analysis, assume that we can add two arbitrary integers in
O(1) time. For example, the string PPAP appears exactly 23 times as a
subsequence of the string PENPINEAPPLEAPPLEPEN. If all characters in X
and Y are equal, your algorithm should return

�n
k

�

.
(f) What is the running time of your algorithm for part (d) if adding two
ℓ-bit integers requires O(ℓ) time?

31

3. DYNAMIC PROGRAMMING

8. Describe and analyze an efficient algorithm to find the length of the longest
contiguous substring that appears both forward and backward in an input
string T[1 .. n]. The forward and backward substrings must not overlap.
Here are several examples:
• Given the input string ALGORITHM, your algorithm should return 0.
• Given the input string RECURSION, your algorithm should return 1, for

the substring R.
• Given the input string REDIVIDE, your algorithm should return 3, for the

substring EDI. (The forward and backward substrings must not overlap!)
• Given the input string DYNAMICPROGRAMMINGMANYTIMES, your algorithm

should return 4, for the substring YNAM. (In particular, it should not
return 6, for the subsequence YNAMIR).

9. A palindrome is any string that is exactly the same as its reversal, like I, or
DEED, or RACECAR, or AMANAPLANACATACANALPANAMA.
(a) Describe and analyze an algorithm to find the length of the longest

subsequence of a given string that is also a palindrome.
For example, the longest palindrome subsequence of the string

MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM is MHYMRORMYHM; thus, given
that string as input, your algorithm should return 11.

(b) Describe and analyze an algorithm to find the length of the shortest
supersequence of a given string that is also a palindrome. For example,
the shortest palindrome supersequence of TWENTYONE is TWENTOYOTNEWT,
so given the string TWENTYONE as input, your algorithm should return 13.

(c) Any string can be decomposed into a sequence of palindromes. For
example, the string BUBBASEESABANANA can be broken into palindromes
in the following ways (and 65 others):

BUB • BASEESAB • ANANA
B • U • BB • ASEESA • B • ANANA
BUB • B • A • SEES • ABA • N • ANA

B • U • BB • A • S • EE • S • A • B • A • NAN • A
B • U • B • B • A • S • E • E • S • A • B • A • N • A • N • A

Describe and analyze an efficient algorithm to find the smallest number
of palindromes that make up a given input string. For example, given
the input string BUBBASEESABANANA, your algorithm should return 3.

(d) Describe and analyze an efficient algorithm to find the largest integer k
such that a given string can be split into palindromes of length at least k.
For example:

32

Exercises

• Given the string PALINDROME, your algorithm should return 1.
• Given the string BUBBASEESABANANA, your algorithm should return 3,

for the partition BUB • BASEESAB • ANANA.
• Given a string of n identical symbols, your algorithm should return n.

(e) Describe and analyze an efficient algorithm to find the number of
different ways that a given string can be decomposed into palindromes.
For example:
• Given the string PALINDROME, your algorithm should return 1.
• Given the string BUBBASEESABANANA, your algorithm should return

70.
• Given a string of n identical symbols, your algorithm should return

2n−1.
(f) Describe and analyze an efficient algorithm to find the minimum number

of palindromes that cover a given string. For example, the palindromes
ABCBA, CBAABC, and CAC cover the string ABCBAABCAC.

♥(g) A metapalindrome is a decomposition of a string into a sequence of
palindromes, such that the sequence of palindrome lengths is itself a
palindrome. For example:

BOB • S • MAM • ASEESA • UKU • L • ELE

is a metapalindrome for the string BOBSMAMASEESAUKULELE, whose
length sequence is the palindrome (3, 1,3, 6,3, 1,3). Describe and
analyze an efficient algorithm to find the length of the shortest meta-
palindrome for a given string. For example, given the input string
BOBSMAMASEESAUKULELE, your algorithm should return 11.

10. Suppose you are given an array A[1 .. n] of positive integers. An increas-
ing back-and-forth subsequence is an sequence of indices I[1 ..ℓ] with the
following properties:
• 1≤ I[j]≤ n for all j.
• A[I[j]]< A[I[j + 1]] for all j < ℓ.
• If I[j] is even, then I[j + 1]> I[j].
• If I[j] is odd, then I[j + 1]< I[j].

Less formally, suppose we are given an array of n squares, each containing a
positive integer. Suppose we place a token on one of the squares, and then
repeatedly move the token left (if it’s on an odd-indexed square) or right
(if it’s on an even-indexed square), always moving from a smaller number
to a larger number. Then the sequence of token positions is an increasing
back-and-forth subsequence.

33

3. DYNAMIC PROGRAMMING

Describe an algorithm to compute the length of the longest increasing
back-and-forth subsequence of a given array of n integers. For example,
given the input array

1 1 8 7 5 6 3 6 4 4 8 3 9 1 2 2 3 9 4 0
1< 2> 3< 4> 5< 6> 7< 8> 9< 10> 11< 12> 13< 14> 15< 16> 17< 18> 19< 20>

your algorithm should return the integer 9, which is the length of the
following increasing back-and-forth subsequence:

0 1 2 3 4 6 7 8 9
20> 1< 15< 18> 10> 6> 4> 3< 13<

11. Suppose we want to typeset a paragraph of text onto a piece of paper (or if
you insist, a computer screen). The text consists of a sequence of n words,
where the ith word has length ℓ[i]. We want to break the paragraph into
several lines of total length exactly L. For example, according to TEX, the
program used to typeset these notes, the paragraph you are reading right
now is approximately 11.94794 cm ≈ 4.7055 inches wide.

Depending on how the paragraph is broken into lines of text, we must
insert different amounts of white space between the words. The paragraph
should be fully justified, meaning that the first character on each line starts
at the left margin, and except for the last line, the last character on each line
ends at the right margin. There must be at least one unit of white space
between any two words on the same line. See the paragraph you are reading
right now? Just like that.

Define the slop of a paragraph layout as the sum over all lines, except
the last, of the cube of the amount of extra white-space in each line, not
counting the one unit of required space between each adjacent pair of words.
Specifically, if a line contains words i through j, then the slop of that line is
defined to be
�

L − j + i −
∑ j

k=i ℓ[k]
�3. Describe a dynamic programming

algorithm to print the paragraph with minimum slop.

12. You and your eight-year-old nephew Elmo decide to play a simple card
game. At the beginning of the game, the cards are dealt face up in a long
row. Each card is worth a different number of points. After all the cards are
dealt, you and Elmo take turns removing either the leftmost or rightmost
card from the row, until all the cards are gone. At each turn, you can decide
which of the two cards to take. The winner of the game is the player that
has collected the most points when the game ends.

Having never taken an algorithms class, Elmo follows the obvious greedy
strategy—when it’s his turn, Elmo always takes the card with the higher
point value. Your task is to find a strategy that will beat Elmo whenever
possible. (It might seem mean to beat up on a little kid like this, but Elmo
absolutely hates it when grown-ups let him win.)

34

Exercises

(a) Prove that you should not also use the greedy strategy. That is, show
that there is a game that you can win, but only if you do not follow the
same greedy strategy as Elmo.

(b) Describe and analyze an algorithm to determine, given the initial se-
quence of cards, the maximum number of points that you can collect
playing against Elmo.

♣(c) When Elmo was four, he used an even simpler strategy—on his turn,
he always chose his next card uniformly at random. That is, if there
was more than one card left on his turn, he would take the leftmost
card with probability 1/2, and the rightmost card with probability 1/2.
Describe an algorithm to determine, given the initial sequence of cards,
the maximum expected number of points you can collect playing against
four-year-old-Elmo.

(d) Five years later, thirteen-year-old Elmo has become a much stronger
player. Describe and analyze an algorithm to determine, given the initial
sequence of cards, the maximum number of points that you can collect
playing against a perfect opponent.

13. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is
the big dance contest you’ve been training for your entire life, except for that
summer you spent with your uncle in Alaska hunting wolverines. You’ve
obtained an advance copy of the list of n songs that the judges will play
during the contest, in chronological order. Yessssssssss!

You know all the songs, all the judges, and your own dancing ability
extremely well. For each integer k, you know that if you dance to the kth
song on the schedule, you will be awarded exactly Score[k] points, but then
you will be physically unable to dance for the next Wait[k] songs (that is,
you cannot dance to songs k+ 1 through k+Wait[k]). The dancer with the
highest total score at the end of the night wins the contest, so you want your
total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum
total score you can achieve. The input to your sweet algorithm is the pair of
arrays Score[1 .. n] and Wait[1 .. n].

14. The new swap-puzzle game Candy Swap Saga XIII involves n cute animals
numbered from 1 to n. Each animal holds one of three types of candy:
circus peanuts, Heath bars, and Cioccolateria Gardini chocolate truffles. You
also have a candy in your hand; at the start of the game, you have a circus
peanut.

35

3. DYNAMIC PROGRAMMING

To earn points, you visit each of the animals in order from 1 to n. For
each animal, you can either keep the candy in your hand or exchange it
with the candy the animal is holding.
• If you swap your candy for another candy of the same type, you earn

one point.
• If you swap your candy for a candy of a different type, you lose one point.

(Yes, your score can be negative.)
• If you visit an animal and decide not to swap candy, your score does not

change.
You must visit the animals in order, and once you visit an animal, you can
never visit it again.

Describe and analyze an efficient algorithm to compute your maximum
possible score. Your input is an array C[1 .. n], where C[i] is the type of
candy that the ith animal is holding.

15. Lenny Rutenbar, the founding dean of the new Maksymilian R. Levchin
College of Computer Science, has commissioned a series of snow ramps on
the south slope of the Orchard Downs sledding hill20 and challenged Bill
Kudeki, head of the Department of Electrical and Computer Engineering, to
a sledding contest. Bill and Lenny will both sled down the hill, each trying to
maximize their air time. The winner gets to expand their department/college
into both Siebel Center and the new ECE Building; the loser has to move
their entire department/college in the Boneyard culvert next to Loomis Lab.

Whenever Lenny or Bill reaches a ramp while on the ground, they can
either use that ramp to jump through the air, possibly flying over one or
more ramps, or sled past that ramp and stay on the ground. Obviously, if
someone flies over a ramp, they cannot use that ramp to extend their jump.
(a) Suppose you are given a pair of arrays Ramp[1 .. n] and Length[1 .. n],

where Ramp[i] is the distance from the top of the hill to the ith ramp,
and Length[i] is the distance that any sledder who takes the ith ramp will
travel through the air. Describe and analyze an algorithm to determine
the maximum total distance that Lenny or Bill can spend in the air.

(b) The university lawyers heard about Lenny and Bill’s little bet and
immediately objected. To protect the university from either lawsuits
or sky-rocketing insurance rates, they impose an upper bound on the
number of jumps that either sledder can take. Describe and analyze
an algorithm to determine the maximum total distance that Lenny or
Bill can spend in the air with at most k jumps, given the original arrays
Ramp[1 .. n] and Length[1 .. n] and the integer k as input.

20The north slope is faster, but too short for an interesting contest.

36

Exercises

♥(c) When the lawyers realized that imposing their restriction didn’t immedi-
ately shut down the contest, they added a new restriction: No ramp can
be used more than once! Disgusted by the legal interference, Lenny and
Bill give up on their bet and decide to cooperate to put on a good show
for the spectators. Describe and analyze an algorithm to determine the
maximum total distance that Lenny and Bill can spend in the air, each
taking at most k jumps (so at most 2k jumps total), and with each ramp
used at most once.

16. Farmers Boggis, Bunce, and Bean have set up an obstacle course for Mr. Fox.
The course consists of a long row of booths, each with a number painted on
the front with bright red paint. Formally, Mr. Fox is given an array A[1 .. n],
where A[i] is the number painted on the front of the ith booth. Each number
A[i] could be positive, negative, or zero. Everyone agrees with the following
rules:
• At each booth, Mr. Fox must say either “Ring!” or “Ding!”.
• If Mr. Fox says “Ring!” at the ith booth, he earns a reward of A[i]

chickens. (If A[i]< 0, Mr. Fox pays a penalty of −A[i] chickens.)
• If Mr. Fox says “Ding!” at the ith booth, he pays a penalty of A[i] chickens.

(If A[i]< 0, Mr. Fox earns a reward of −A[i] chickens.)
• Mr. Fox is forbidden to say the same word more than three times in a

row. For example, if he says “Ring!” at booths 6, 7, and 8, then he must
say “Ding!” at booth 9.

• All accounts will be settled at the end, after Mr. Fox visits every booth
and the umpire calls “Hot box!” Mr. Fox does not actually have to carry
chickens through the obstacle course.

• Finally, if Mr. Fox violates any of the rules, or if he ends the obstacle
course owing the farmers chickens, the farmers will shoot him.

Describe and analyze an algorithm to compute, the largest number of
chickens that Mr. Fox can earn by running the obstacle course, given the
array A[1 .. n] of numbers as input. [Hint: Watch out for the burning pine
cone!]

17. Dance Dance Revolution is a dance video game, first introduced in Japan
by Konami in 1998. Players stand on a platform marked with four arrows,
pointing forward, back, left, and right, arranged in a cross pattern. During
play, the game plays a song and scrolls a sequence of n arrows (➜, ➜,

➜

,
or ➜) from the bottom to the top of the screen. At the precise moment
each arrow reaches the top of the screen, the player must step on the
corresponding arrow on the dance platform. (The arrows are timed so that
you’ll step with the beat of the song.)

37

3. DYNAMIC PROGRAMMING

You are playing a variant of this game called “Vogue Vogue Revolution”,
where the goal is to play perfectly but move as little as possible. When an
arrow reaches the top of the screen, if one of your feet is already on the
correct arrow, you are awarded one style point for maintaining your current
pose. If neither foot is on the right arrow, you must move one (and only one)
foot from its current location to the correct arrow on the platform. If you
ever step on the wrong arrow, or fail to step on the correct arrow, or move
more than one foot at a time, or move either foot when you are already
standing on the correct arrow, all your style points are taken away and you
lose the game.

How should you move your feet to maximize your total number of style
points? For purposes of this problem, assume you always start with your left
foot on ➜and your right foot on ➜, and that you’ve memorized the entire
sequence of arrows. For example, if the sequence is ➜ ➜

➜ ➜ ➜

➜

➜

➜, you
can earn 5 style points by moving your feet as shown below:

➜

➜
➜

➜

➜

➜

➜ ➜

➜

➜ ➜

➜➜

➜

➜➜

➜➜

➜ ➜

➜

➜
➜➜

➜ ➜

➜

➜

L R R R R R R L R L

➜L ➜L

➜L ➜L

➜L ➜L ➜R➜RL R R R R R L R L
L L

L L
L L RR

Style point! Style point! Style point! Style point!Style point!

➜ ➜

➜ ➜ ➜ ➜

➜

R

➜

Begin!

(a) Prove that for any sequence of n arrows, it is possible to earn at least
n/4− 1 style points.

(b) Describe an efficient algorithm to find the maximum number of style
points you can earn during a given VVR routine. The input to your
algorithm is an array Arrow[1 .. n] containing the sequence of arrows.

18. Consider the following solitaire form of Scrabble. We begin with a fixed,
finite sequence of tiles; each tile has both a letter and a numerical value. At
the start of the game, we draw the first seven tiles from the sequence and
put them into our hand. In each turn, we form an English word from some
or all of the tiles in our hand, place those tiles on the table, and receive the
total value of those tiles as points. (If no English word can be formed from
the tiles in our hand, the game immediately ends.) Then we repeatedly draw
the next tile from the start of the sequence until either (a) we have seven
tiles in our hand, or (b) the sequence is empty. (Sorry, no double/triple
word/letter scores, bingos, blanks, or passing.) Our goal is to obtain as
many points as possible.

For example, consider the following sequence of 20 tiles:
I2 N2 X8 A1 N2 A1 D3 U5 D3 I2 D3 K8 U5 B4 L2 A1 K8 H5 A1 N2

Given this sequence of tiles at the beginning of the game, we can earn 68
points as follows:

38

Exercises

• We initially draw I2 N2 X8 A1 N2 A1 D3 .
• Play the word N2 A1 I2 A1 D3 for 9 points, leaving N2 X8 in hand.
• Draw the next five tiles U5 D3 I2 D3 K8 .
• Play the word U5 N2 D3 I2 D3 for 15 points, leaving K8 X8 in hand.
• Draw the next five tiles U5 B4 L2 A1 K8 .
• Play the word B4 U5 L2 K8 for 19 points, leaving K8 X8 A1 in hand.
• Draw the last three tiles H5 A1 N2 .
• Play the word A1 N2 K8 H5 for 16 points, leaving X8 A1 in hand.
• Play the word A1 X8 for 9 points, emptying our hand and ending the

game.
(a) Suppose the sequence of tiles is represented by two arrays Letter[1 .. n],

containing a sequence of letters between A and Z, and Value[A ..Z], where
Value[ℓ] is the value of any tile with letter ℓ. Design and analyze an
efficient algorithm to compute the maximum number of points that can
be earned from the given sequence of tiles.

(b) Now suppose two tiles with the same letter might have different values.
Now the tile sequence is represented by two arrays Letter[1 .. n] and
Value[1 .. n], where Value[i] is the value of the ith tile. Design and
analyze an efficient algorithm to compute the maximum number of
points that can be earned from the given sequence of tiles.

In both problems, the output is a single number: the maximum possible
score. Assume (because it’s true) that you can find all English words that
can be made from any set of at most seven tiles, along with the point values
of those words, in O(1) time.

19. Suppose we are given a set L of n line segments in the plane, where each
segment has one endpoint on the line y = 0 and one endpoint on the line
y = 1, and all 2n endpoints are distinct.
(a) Describe and analyze an algorithm to compute the largest subset of L in

which no pair of segments intersects.
(b) Describe and analyze an algorithm to compute the largest subset of L in

which every pair of segments intersects.
Now suppose we are given a set L of n line segments in the plane, where
both endpoints of each segment lie on the unit circle x2 + y2 = 1, and all
2n endpoints are distinct.
(c) Describe and analyze an algorithm to compute the largest subset of L in

which no pair of segments intersects.

39

3. DYNAMIC PROGRAMMING

(d) Describe and analyze an algorithm to compute the largest subset of L in
which every pair of segments intersects.

20. Let P be a set of n points evenly distributed on the unit circle, and let S
be a set of m line segments with endpoints in P. The endpoints of the m
segments are not necessarily distinct; n could be significantly smaller than
2m.
(a) Describe an algorithm to find the size of the largest subset of segments

in S such that every pair is disjoint. Two segments are disjoint if they do
not intersect even at their endpoints.

(b) Describe an algorithm to find the size of the largest subset of segments
in S such that every pair is interior-disjoint. Two segments are interior-
disjoint if their intersection is either empty or an endpoint of both
segments.

(c) Describe an algorithm to find the size of the largest subset of segments
in S such that every pair intersects.

(d) Describe an algorithm to find the size of the largest subset of segments
in S such that every pair crosses. Two segments cross if they intersect
but not at their endpoints.

For full credit, all four algorithms should run in O(mn) time.

21. You are driving a bus along a highway, full of rowdy, hyper, thirsty students
and a soda fountain machine. Each minute that a student is on your bus,
that student drinks one ounce of soda. Your goal is to drop the students
off quickly, so that the total amount of soda consumed by all students is as
small as possible.

You know how many students will get off of the bus at each exit. Your
bus begins somewhere along the highway (probably not at either end)
and moves at a constant speed of 37.4 miles per hour. You must drive the
bus along the highway; however, you may drive forward to one exit then
backward to an exit in the opposite direction, switching as often as you like.
(You can stop the bus, drop off students, and turn around instantaneously.)

Describe an efficient algorithm to drop the students off so that they drink
as little soda as possible. Your input consists of the bus route (a list of the
exits, together with the travel time between successive exits), the number of
students you will drop off at each exit, and the current location of your bus
(which you may assume is an exit).

22. Let’s define a summary of two strings A and B to be a concatenation of
substrings of the following form:

40

Exercises

• ▲SNA indicates a substring SNA of only the first string A.
• �FOO indicates a common substring FOO of both strings.
• ▼BAR indicates a substring BAR of only the second string B.

A summary is valid if we can recover the original strings A and B by
concatenating the appropriate substrings of the summary in order and
discarding the delimiters ▲, �, and ▼. Each regular character has length 1,
and each delimiter ▲, �, or ▼ has some fixed non-negative length ∆. The
length of a summary is the sum of the lengths of its symbols.

For example, each of the following strings is a valid summary of the
strings KITTEN and KNITTING:
• �K▼N�ITT▲E▼I�N▼G has length 9+ 7∆.
• �K▼N�ITT▲EN▼ING has length 10+ 5∆.
• �K▲ITTEN▼NITTING has length 13+ 3∆.
• ▲KITTEN▼KNITTING has length 14+ 2∆.

Describe and analyze an algorithm that computes the length of the
shortest summary of two given strings A[1 .. m] and B[1 .. n]. The delimiter
length ∆ is also part of the input to your algorithm. For example:
• Given strings KITTEN and KNITTING and ∆= 0, your algorithm should

return 9.
• Given strings KITTEN and KNITTING and ∆= 1, your algorithm should

return 15.
• Given strings KITTEN and KNITTING and ∆= 2, your algorithm should

return 18.

23. Vankin’s Mile is an American solitaire game played on an n× n square grid.
The player starts by placing a token on any square of the grid. Then on
each turn, the player moves the token either one square to the right or one
square down. The game ends when player moves the token off the edge of
the board. Each square of the grid has a numerical value, which could be
positive, negative, or zero. The player starts with a score of zero; whenever
the token lands on a square, the player adds its value to his score. The
object of the game is to score as many points as possible.

For example, given the grid below, the player can score 8−6+7−3+4=
10 points by placing the initial token on the 8 in the second row, and then
moving down, down, right, down, down. (This is not the best possible score
for this grid of numbers.)

41

3. DYNAMIC PROGRAMMING

−1 7 −8 10 −5

−4 −9 8
⇓
−6 0

5 −2 −6
⇓
−6 7

−7 4 7⇒−3
⇓
−3

7 1 −6 4
⇓
−9

(a) Describe and analyze an efficient algorithm to compute the maximum
possible score for a game of Vankin’s Mile, given the n×n array of values
as input.

(b) In the European version of this game, appropriately called Vankin’s
Kilometer, the player can move the token either one square down, one
square right, or one square left in each turn. However, to prevent infinite
scores, the token cannot land on the same square more than once.
Describe and analyze an efficient algorithm to compute the maximum
possible score for a game of Vankin’s Kilometer, given the n× n array of
values as input.21

24. Suppose you are given an m× n bitmap as an array M[1 .. n, 1 .. n] of 0s
and 1s. A solid block in M is a subarray of the form M[i .. i′, j .. j′] in which
all bits are equal. A solid block is square if it has the same number of rows
and columns.
(a) Describe an algorithm to find the maximum area of a solid square block

in M in O(n2) time.
(b) Describe an algorithm to find the maximum area of a solid block in M

in O(n3) time.
(c) Describe an algorithm to find the maximum area of a solid block in M

in O(n2 log n) time. [Hint: Divide and conquer.]
♥(d) Describe an algorithm to find the maximum area of a solid block in M

in O(n2) time.

25. Suppose you are given an array M[1 .. n, 1 .. n] of numbers, which may be
positive, negative, or zero, and which are not necessarily integers. Describe
an algorithm to find the largest sum of elements in any rectangular subarray
of the form M[i .. i′, j .. j′]. For full credit, your algorithm should run in
O(n3) time. [Hint: See problem ??.]

21If we also allowed upward movement, the resulting game (Vankin’s Fathom?) would be
NP-hard.

42

Exercises

26. Describe and analyze an algorithm that finds the maximum-area rectangular
pattern that appears more than once in a given bitmap. Specifically, given
a two-dimensional array M[1 .. n, 1 .. n] of bits as input, your algorithm
should output the area of the largest repeated rectangular pattern in M .
For example, given the bitmap shown on the left in the figure below, your
algorithm should return the integer 195, which is the area of the 15× 13
doggo. (Although it doesn’t happen in this example, the two copies of the
repeated pattern might overlap.)

(a) For full credit, describe an algorithm that runs in O(n5) time.
♥(b) For extra credit, describe an algorithm that runs in O(n4) time.

♣♥(c) For extra extra credit, describe an algorithm that runs in O(n3 polylog n)
time.

27. Let P be a set of points in the plane in convex position. Intuitively, if a
rubber band were wrapped around the points, then every point would touch
the rubber band. More formally, for any point p in P, there is a line that
separates p from the other points in P. Moreover, suppose the points are
indexed P[1], P[2], . . . , P[n] in counterclockwise order around the “rubber
band”, starting with the leftmost point P[1].

This problem asks you to solve a special case of the traveling salesman
problem, where the salesman must visit every point in P, and the cost of
moving from one point p ∈ P to another point q ∈ P is the Euclidean distance
|pq|.
(a) Describe a simple algorithm to compute the shortest cyclic tour of P.
(b) A simple tour is one that never crosses itself. Prove that the shortest tour

of P must be simple.
(c) Describe and analyze an efficient algorithm to compute the shortest tour

of P that starts at the leftmost point P[1] and ends at the rightmost
point P[r].

(d) Describe and analyze an efficient algorithm to compute the shortest tour
of P, with no restrictions on the endpoints.

43

3. DYNAMIC PROGRAMMING

♥28. Describe and analyze an algorithm to solve the traveling salesman problem
in O(2n poly(n)) time. Given an undirected n-vertex graph G with weighted
edges, your algorithm should return the weight of the lightest cycle in G
that visits every vertex exactly once, or∞ if G has no such cycles. [Hint:
The obvious recursive backtracking algorithm takes O(n!) time.]

29. Let W = {w1, w2, . . . , wn} be a finite set of strings over some fixed alphabetΣ.
An edit center for W is a string C ∈ Σ∗ such that the maximum edit distance
from C to any string in W is as small as possible. The edit radius of W is the
maximum edit distance from an edit center to a string in W . A set of strings
may have several edit centers, but its edit radius is unique.

EditRadius(W) := min
C∈Σ∗

max
w∈W

Edit(w, C)

EditCenter(W) := arg min
C∈Σ∗

max
w∈W

Edit(w, C)

(a) Describe and analyze an efficient algorithm to compute the edit radius
of three given strings.

♣♥(b) Describe and analyze an efficient algorithm to approximate the edit
radius of an arbitrary set of strings within a factor of 2. (Computing the
exact edit radius is NP-hard unless the number of strings is fixed.)

♥30. Let D[1 .. n] be an array of digits, each an integer between 0 and 9. A digital
subsequence of D is a sequence of positive integers composed in the usual
way from disjoint substrings of D. For example, the sequence 3, 4,5, 6,8,
9, 32,38, 46,64, 83,279 is a digital subsequence of the first several digits
of π:

3,1, 4, 1,5,9, 2,6, 5,3, 5,8, 9, 7,9, 3,2, 3,8,4, 6, 2,6,4,3, 3,8, 3,2, 7,9

The length of a digital subsequence is the number of integers it contains, not
the number of digits; the preceding example has length 12. As usual, a digital
subsequence is increasing if each number is larger than its predecessor.

Describe and analyze an efficient algorithm to compute the longest
increasing digital subsequence of D. [Hint: Be careful about your com-
putational assumptions. How long does it take to compare two k-digit
numbers?]

For full credit, your algorithm should run in O(n4) time; faster algorithms
are worth extra credit. The fastest algorithm I know for this problem runs in
O(n3/2 log n) time; achieving this bound requires several tricks, both in the
design of the algorithm and in its analysis, but nothing outside the scope of
this class.22

22With more advanced techniques, I believe the running time can be reduced to
O(n3/2 log log n), but I haven’t worked through the details.

44

Exercises

♥31. Consider the following variant of the classical Tower of Hanoi problem. As
usual, there are n disks with distinct sizes, placed on three pegs numbered
0, 1, and 2. Initially, all n disks are on peg 0, sorted by size from smallest
on top to largest on bottom. Our goal is to move all the disks to peg 2. In
a single step, we can move the highest disk on any peg to a different peg,
provided we satisfy two constraints. First, we must never place a smaller
disk on top of a larger disk. Second—and this is the non-standard part—we
must never move a disk directly from peg 0 to peg 2.

Describe and analyze an algorithm to compute the exact number of
moves required to move all n disks from peg 0 to peg 2, subject to the
stated restrictions. For full credit, your algorithm should use only O(log n)
arithmetic operations in the worst case. For the sake of analysis, assume
that adding or multiplying two k-digit numbers requires O(k) time. [Hint:
Matrices!]

Splitting Sequences/Arrays

32. A basic arithmetic expression is composed of characters from the set
{1,+,×} and parentheses. Almost every integer can be represented by more
than one basic arithmetic expression. For example, all of the following basic
arithmetic expression represent the integer 14:

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1

((1+ 1)× (1+ 1+ 1+ 1+ 1)) + ((1+ 1)× (1+ 1))

(1+ 1)× (1+ 1+ 1+ 1+ 1+ 1+ 1)

(1+ 1)× (((1+ 1+ 1)× (1+ 1)) + 1)

Describe and analyze an algorithm to compute, given an integer n as input,
the minimum number of 1s in a basic arithmetic expression whose value is
equal to n. The number of parentheses doesn’t matter, just the number of
1s. For example, when n= 14, your algorithm should return 8, for the final
expression above. The running time of your algorithm should be bounded
by a small polynomial function of n.

33. Suppose you are given a sequence of integers separated by + and − signs;
for example:

1+ 3− 2− 5+ 1− 6+ 7

You can change the value of this expression by adding parentheses in
different places. For example:

1+ 3− 2− 5+ 1− 6+ 7= −1

45

3. DYNAMIC PROGRAMMING

(1+ 3− (2− 5)) + (1− 6) + 7= 9

(1+ (3− 2))− (5+ 1)− (6+ 7) = −17

Describe and analyze an algorithm to compute, given a list of integers
separated by + and − signs, the maximum possible value the expression
can take by adding parentheses. Parentheses must be used only to group
additions and subtractions; in particular, do not use them to create implicit
multiplication as in 1+ 3(−2)(−5) + 1− 6+ 7= 33.

34. Suppose you are given a sequence of integers separated by + and × signs;
for example:

1+ 3× 2× 0+ 1× 6+ 7

You can change the value of this expression by adding parentheses in
different places. For example:

(1+ (3× 2))× 0+ (1× 6) + 7= 13

((1+ (3× 2× 0) + 1)× 6) + 7= 19

(1+ 3)× 2× (0+ 1)× (6+ 7) = 104

(a) Describe and analyze an algorithm to compute the maximum possible
value the given expression can take by adding parentheses, assuming all
integers in the input are positive. [Hint: This is easy.]

(b) Describe and analyze an algorithm to compute the maximum possible
value the given expression can take by adding parentheses, assuming all
integers in the input are non-negative.

(c) Describe and analyze an algorithm to compute the maximum possible
value the given expression can take by adding parentheses, with no
restrictions on the input numbers.

Assume any arithmetic operation takes O(1) time.

35. After graduating from Sham-Poobanana University, you decide to interview
for a position at the Wall Street bank Long Live Boole. The managing
director of the bank, Eloob Egroeg, poses a ’solve-or-die’ problems to each
new employee, which they must solve within 24 hours. Those who fail to
solve the problem are fired immediately!

Entering the bank for the first time, you notice that the employee offices
are organized in a straight row, with a large T or F printed on the door of
each office. Furthermore, between each adjacent pair of offices, there is a
board marked by one of the symbols ∧,∨, or ⊕. When you ask about these
arcane symbols, Eloob confirms that T and F represent the boolean values
True and False, and the symbols on the boards represent the standard

46

Exercises

boolean operators And, Or, and Xor. He also explains that these letters
and symbols describe whether certain combinations of employees can work
together successfully. At the start of any new project, Eloob hierarchically
clusters his employees by adding parentheses to the sequence of symbols, to
obtain an unambiguous boolean expression. The project is successful if this
parenthesized boolean expression evaluates to T .

For example, if the bank has three employees, and the sequence of
symbols on and between their doors is T ∧ F ⊕ T , there is exactly one
successful parenthesization scheme: (T ∧ (F ⊕ T)). However, if the list of
door symbols is F ∧ T ⊕ F , there is no way to add parentheses to make the
project successful.

Eloob finally poses your solve-or-die interview question: Describe an
algorithm to decide whether a given sequence of symbols can be parenthe-
sized so that the resulting boolean expression evaluates to T . Your input is
an array S[0 .. 2n], where S[i] ∈ {T, F} when i is even, and S[i] ∈ {∨,∧,⊕}
when i is odd.

36. Every year, as part of its annual meeting, the Antarctican Snail Lovers of
Upper Glacierville hold a Round Table Mating Race. Several high-quality
breeding snails are placed at the edge of a round table. The snails are
numbered in order around the table from 1 to n. During the race, each snail
wanders around the table, leaving a trail of slime behind it. The snails have
been specially trained never to fall off the edge of the table or to cross a
slime trail, even their own. If two snails meet, they are declared a breeding
pair, removed from the table, and whisked away to a romantic hole in the
ground to make little baby snails. Note that some snails may never find a
mate, even if the race goes on forever.

1

2

3

4

5

6

7

8 8

1

5 2

6

3
4

7

Figure 3.6. The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates. The organizers
must pay M[3, 4] +M[2, 5] +M[1,7].

47

3. DYNAMIC PROGRAMMING

For every pair of snails, the Antarctican SLUG race organizers have
posted a monetary reward, to be paid to the owners if that pair of snails
meets during the Mating Race. Specifically, there is a two-dimensional
array M[1 .. n, 1 .. n] posted on the wall behind the Round Table, where
M[i, j] = M[j, i] is the reward to be paid if snails i and j meet.

Describe and analyze an algorithm to compute the maximum total
reward that the organizers could be forced to pay, given the array M as
input.

37. You have mined a large slab of marble from a quarry. For simplicity, suppose
the marble slab is a rectangle measuring n inches in height and m inches
in width. You want to cut the slab into smaller rectangles of various sizes—
some for kitchen counter tops, some for large sculpture projects, others for
memorial headstones. You have a marble saw that canmake either horizontal
or vertical cuts across any rectangular slab. At any time, you can query the
spot price P[x , y] of an x-inch by y-inch marble rectangle, for any positive
integers x and y. These prices depend on customer demand, and people
who buy marble counter tops are weird, so don’t make any assumptions
about them; in particular, larger rectangles may have significantly smaller
spot prices. Given the array of spot prices and the integers m and n as input,
describe an algorithm to compute how to subdivide an n×m marble slab to
maximize your profit.

38. This problem asks you to design efficient algorithms to construct optimal
binary search trees that satisfy additional balance constraints. Your input
consists of a sorted array A[1 .. n] of search keys and an array f [1 .. n] of
frequency counts, where f [i] is the number of searches for A[i]. This is
exactly the same cost function as described in Section ??. But now your task
is to compute an optimal tree that satisfies some additional constraints.
(a) AVL trees were the earliest self-balancing balanced binary search trees,

first described in 1962 by Georgy Adelson-Velsky and Evgenii Landis. An
AVL tree is a binary search tree where for every node v, the height of
the left subtree of v and the height of the right subtree of v differ by at
most one.

Describe and analyze an efficient algorithm to construct an optimal
AVL tree for a given set of search keys and frequencies.

(b) Symmetric binary B-trees are another self-balancing binary trees, first
described by Rudolf Bayer in 1972; these are better known by the name
red-black trees, after a somewhat simpler reformulation by Leo Guibas
and Bob Sedgwick in 1978. A red-black tree is a binary search tree with
the following additional constraints:

48

Exercises

• Every node is either red or black.
• Every red node has a black parent.
• Every root-to-leaf path contains the same number of black nodes.
Describe and analyze an efficient algorithm to construct an optimal
red-black tree for a given set of search keys and frequencies.

(c) AA trees were proposed by proposed by Arne Andersson in 1993 and
slightly simplified (and named) byMark AllenWeiss in 2000. AA trees are
also known as left-leaning red-black trees, after a symmetric reformulation
(with different rebalancing algorithms) by Bob Sedgewick in 2006. An
AA tree is a red-black tree with one additional constraint:
• No left child is red.23

Describe and analyze an efficient algorithm to construct an optimal AA
tree for a given set of search keys and frequencies.

39. Suppose you are given an m× n bitmap as an array M[1 .. m, 1 .. n] of 0s
and 1s. A solid block in M is a subarray of the form M[i .. i′, j .. i′] in which
all bits are equal. Suppose you want to decompose M into as few disjoint
blocks as possible.

One natural recursive partitioning strategy is called a guillotine sub-
division. If the entire bitmap M is a solid block, there is nothing to do.
Otherwise, we cut M into two smaller bitmaps along a horizontal or vertical
line, and then recursively decompose the two smaller bitmaps into solid
blocks.

Any guillotine subdivision can be represented as a binary tree, where
each internal node stores the position and orientation of a cut, and each
leaf stores a single but 0 or 1 indicting the contents of the corresponding
block. The size of a guillotine subdivision is the number of leaves in the
corresponding binary tree (that is, the final number of solid blocks), and the
depth of a guillotine subdivision is the depth of the corresponding binary
tree.
(a) Describe and analyze an algorithm to compute a guillotine subdivision

of M of minimum possible size.
(b) Show that a guillotine subdivision does not always yield a partition into

the smallest number of solid blocks.
(c) Describe and analyze an algorithm to compute a guillotine subdivision

for M with the smallest possible depth.
23Sedgwick’s reformulation requires that no right child is red. Whatever. Andersson and

Sedgewick are strangely silent about whether to measure angles clockwise or counterclockwise,
whether Pluto is a planet, whether “lower rank” means “better” or “worse”, and whether it’s
better to fight a hundred duck-sized horses or a single horse-sized duck.

49

3. DYNAMIC PROGRAMMING

Figure 3.7. A guillotine subdivision with size 8 and depth 5.

(d) Describe and analyze an algorithm to determine M[i, j], given the tree
representing a guillotine decomposition for M and two indices i and j.

(e) Define the depth of a pixel M[i, j] in a guillotine subdivision to be the
depth of the leaf that contains that pixel. Describe and analyze an
algorithm to compute a guillotine subdivision for M such that the sum
of the depths of the pixels as small as possible.

(f) Describe and analyze an algorithm to compute a guillotine subdivision
for M such that the sum of the depths of the black pixels as small as
possible.

♠40. Congratulations! You’ve been hired by the giant online bookstore DeNile
(“Not just a river in Egypt!”) to optimize their warehouse robots. Each book
that DeNile sells has a unique ISBN (International Standard Book Number),
which is just a numerical value. Each of DeNile’s warehouses contains a
long row of bins, each containing multiple copies of a single book. These
bins are arranged in sorted order by ISBN; each bin’s ISBN is printed on the
front of the bin in machine-readable form. Books are retrieved from these
bins by robots, which run along rails parallel to the row of bins.

DeNile does not maintain a list of which bins contain which ISBN
numbers; that would be too simple! Instead, to retrieve a desired book,
the robot must first find that book’s bin using a binary search. Because the
search requires physical motion by the robot, we can no longer assume that
each step of the binary search requires O(1) time. Specifically:

50

Exercises

• The robot always starts at the “0th bin” (where the books are loaded
into boxes to ship to customers).

• Moving the robot from the ith bin to the jth bin requires α|i− j| seconds
for some constant α.

• The robot must be directly in front of a bin in order to read that bin’s
ISBN. Reading an ISBN requires β seconds, for some constant β .

• Reversing the robot’s direction of motion (from increasing to decreasing
or vice versa) requires γ additional seconds, for some constant γ.

• When the robot finds the target bin, it extracts one book from that bin
and returns to “the 0th bin”.

Design and analyze an algorithm to compute a binary search tree over the
bins that minimizes the total time the robot spends searching for books.
Your input is an array f [1 .. n] of integers, where f [i] is the number of times
that the robot will be asked to retrieve a book from the ith bin, along with
the time parameters α, β , and γ.

♠41. A standard method to improve the cache performance of search trees is to
pack more search keys and subtrees into each node. A B-tree is a rooted
tree in which each internal node stores up to B keys and pointers to up to
B + 1 children, each the root of a smaller B-tree. Specifically, each node v
stores three fields:

• a positive integer v.d ≤ B,
• a sorted array v.key[1 .. v.d], and
• an array v.child[0 .. v.d] of child pointers.

In particular, the number of child pointers is always exactly one more than
the number of keys.24

Each pointer v.child[i] is either Null or a pointer to the root of a B-
tree whose keys are all larger than v.key[i] and smaller than v.key[i + 1].
In particular, all keys in the leftmost subtree v.child[0] are smaller than
v.key[1], and all keys in the rightmost subtree v.child[v.d] are larger than
v.key[v.d].

24Normally, B-trees are required to satisfy two additional constraints, which guarantee a
worst-case search cost of O(logB n): Every leaf must have exactly the same depth, and every node
except possibly the root must contain at least B/2 keys. However, in this problem, we are not
interested in optimizing the worst-case search cost, but rather the total cost of a sequence of
searches, so we will not impose these additional constraints.

51

3. DYNAMIC PROGRAMMING

Intuitively, you should have the following picture in mind:

[·•

��

< key[1]< ·•

��

< key[2]< ·•

��

· · · ·•

��

< key[d]< ·•

��

]

T0 T1 T2 · · · Td−1 Td

Here Ti is the subtree pointed to by child[i].
The cost of searching for a key x in a B-tree is the number of nodes in

the path from the root to the node containing x as one of its keys. A 1-tree
is just a standard binary search tree.

Fix an arbitrary positive integer B > 0. (I suggest B = 8.) Suppose
your are given a sorted array A[1, . . . , n] of search keys and a corresponding
array F[1, . . . , n] of frequency counts, where F[i] is the number of times
that we will search for A[i]. Your task is to describe and analyze an efficient
algorithm to find a B-tree that minimizes the total cost of searching for the
given keys with the given frequencies.
(a) Describe a polynomial-time algorithm for the special case B = 2.
(b) Describe an algorithm for arbitrary B that runs in O(nB+c) time for some

fixed integer c.
♥(c) Describe an algorithm for arbitrary B that runs in O(nc) time for some

fixed integer c that does not depend on B.

42. A string w of parentheses ((and)) and brackets [[and]] is balanced if it
satisfies one of the following conditions:
• w is the empty string.
• w= ((x)) for some balanced string x

• w= [[x]] for some balanced string x

• w= x y for some balanced strings x and y

For example, the string

w= (([[(())]][[]](())))[[(())(())]](())

is balanced, because w= x y , where

x = (([[(())]] [[]] (()))) and y = [[(()) (())]] (()).

(a) Describe and analyze an algorithm to determine whether a given string
of parentheses and brackets is balanced.

(b) Describe and analyze an algorithm to compute the length of a longest
balanced subsequence of a given string of parentheses and brackets.

52

Exercises

(c) Describe and analyze an algorithm to compute the length of a shortest
balanced supersequence of a given string of parentheses and brackets.

(d) Describe and analyze an algorithm to compute theminimum edit distance
from a given string of parentheses and brackets to a balanced string of
parentheses and brackets.

♥(e) Describe and analyze an algorithm to compute the longest common
balanced subsequence of two given strings of parentheses and brackets.

♥(f) Describe and analyze an algorithm to compute the longest palindromic
balanced subsequence of a given string of parentheses and brackets.

♥(g) Describe and analyze an algorithm to compute the longest common
palindromic balanced subsequence (whew!) of two given strings of
parentheses and brackets.

For each problem, your input is an array w[1 .. n], where w[i] ∈ {((,)),[[,]]}
for every index i. (You may prefer to use different symbols instead of
parentheses and brackets—for example, L,R,l,r or Ã,Â,◀,▶—but please
tell your grader what symbols you’re using!)

♥43. Congratulations! Your research team has just been awarded a $50M multi-
year project, jointly funded by DARPA, Google, and McDonald’s, to produce
DWIM: The first compiler to read programmers’ minds! Your proposal and
your numerous press releases all promise that DWIM will automatically
correct errors in any given piece of code, while modifying that code as little
as possible. Unfortunately, now it’s time to start actually making the damn
thing work.

As a warmup exercise, you decide to tackle the following necessary
subproblem. Recall that the edit distance between two strings is the minimum
number of single-character insertions, deletions, and replacements required
to transform one string into the other. An arithmetic expression is a string w
such that
• w is a string of one or more decimal digits,
• w= (x) for some arithmetic expression x , or
• w = x ⋄ y for some arithmetic expressions x and y and some binary

operator ⋄.
Suppose you are given a string of tokens from the alphabet {#,⋄,(,)},
where # represents a decimal digit and ⋄ represents a binary operator.
Describe and analyze an algorithm to compute the minimum edit distance
from the given string to an arithmetic expression.

44. Ribonucleic acid (RNA) molecules are long chains of millions of nucleotides
or bases of four different types: adenine (A), cytosine (C), guanine (G), and

53

3. DYNAMIC PROGRAMMING

uracil (U). The sequence of an RNA molecule is a string b[1 .. n], where
each character b[i] ∈ {A,C,G,U} corresponds to a base. In addition to the
chemical bonds between adjacent bases in the sequence, hydrogen bonds
can form between certain pairs of bases. The set of bonded base pairs is
called the secondary structure of the RNA molecule.

We say that two base pairs (i, j) and (i′, j′) with i < j and i′ < j′ overlap
if i < i′ < j < j′ or i′ < i < j′ < j. In practice, most base pairs are
non-overlapping. Overlapping base pairs create so-called pseudoknots in the
secondary structure, which are essential for some RNA functions, but are
more difficult to predict.

Suppose we want to predict the best possible secondary structure for
a given RNA sequence. We will adopt a drastically simplified model of
secondary structure:
• Each base can bond with at most one other base.
• Only A–U pairs and C–G pairs can bond.
• Pairs of the form (i, i + 1) and (i, i + 2) cannot bond.
• Bonded base pairs cannot overlap.

The last (and least realistic) restriction allows us to visualize RNA secondary
structure as a sort of fat tree, as shown below.

A U G A G U A

U
A A

G

U

U
A

A
U

G G
U
U

A
A

A

C

U
A

A A U G U

ACAUU

C U
U
C

C
ACC

C
AUG

C

UACUCAU

C
G

A
U

G
C

A
U

G
CU

U

U
U

CG
A

Figure 3.8. Example RNA secondary structure with 21 bonded base pairs, indicated by heavy red lines.
Gaps are indicated by dotted curves. This structure has score 22 +22 +82 +12 +72 +42 +72 = 187.

(a) Describe and analyze an algorithm that computes the maximum possible
number of bonded base pairs in a secondary structure for a given RNA
sequence.

(b) A gap in a secondary structure is a maximal substring of unpaired bases.
Large gaps lead to chemical instabilities, so secondary structures with

54

Exercises

smaller gaps are more likely. To account for this preference, let’s define
the score of a secondary structure to be the sum of the squares of the gap
lengths; see Figure ??. (This score function is utterly fictional; real RNA
structure prediction requires much more complicated scoring functions.)

Describe and analyze an algorithm that computes the minimum
possible score of a secondary structure for a given RNA sequence.

♣45. (a) Describe and analyze an efficient algorithm to determine, given a string
w and a regular expression R, whether w ∈ L(R).

(b) Generalized regular expressions allow the binary operator∩ (intersection)
and the unary operator ¬ (complement), in addition to the usual • (con-
catenation), + (or), and ∗ (Kleene closure) operators. NFA constructions
and Kleene’s theorem imply that any generalized regular expression E
represents a regular language L(E).

Describe and analyze an efficient algorithm to determine, given a
string w and a generalized regular expression E, whether w ∈ L(E).

In both problems, assume that you are actually given a parse tree for the
(generalized) regular expression, not just a string.

Trees and Subtrees

46. You’ve just been appointed as the new organizer of the first annual mandatory
holiday party at Giggle (a subsidiary of Abugida). Giggle employees are
organized into a strict hierarchy—a tree with the company president at the
root. The all-knowing oracles in Human Resources have assigned a real
number to each employee measuring how “fun” the employee is. To keep
things social, there is one restriction on the guest list: an employee cannot
attend the party if their immediate supervisor is also present. On the other
hand, the president of the company must attend the party, even though she
has a negative fun rating; it’s her company, after all. Give an algorithm that
makes a guest list for the party that maximizes the sum of the “fun” ratings
of the guests.

47. Since so few people came to last year’s holiday party, the president of Giggle
decides to give each employee a present instead this year. Specifically, each
employee must receive on the three gifts: (1) an all-expenses-paid six-
week vacation anywhere in the world, (2) an all-the-pancakes-you-can-sort
breakfast for two at Jumping Jack Flash’s Flapjack Stack Shack, or (3) a
burning paper bag full of dog poop. Corporate regulations prohibit any
employee from receiving exactly the same gift as his/her direct supervisor.
Any employee who receives a better gift than his/her direct supervisor will
almost certainly be fired in a fit of jealousy.

55

3. DYNAMIC PROGRAMMING

As Giggle’s official party czar, it’s your job to decide which gift each
employee receives. Describe an algorithm to distribute gifts so that the
minimum number of people are fired. Yes, you may send the president a
flaming bag of dog poop.

More formally, you are given a rooted tree T , representing the company
hierarchy, and you want to label the nodes of T with integers 1, 2, or 3,
so that every node has a different label from its parent. The cost of an
labeling is the number of nodes with smaller labels than their parents. See
Figure ?? for an example. Describe and analyze an algorithm to compute
the minimum-cost labeling of T .

1

23 32

3 3221

31

22

1 1

3

2 1

3

1

3

Figure 3.9. A tree labeling with cost 9. The nine bold nodes have smaller labels than their parents.
This is not the optimal labeling for this tree.

48. After the Flaming Dog Poop Holiday Debacle, you were strongly encouraged
to seek other employment, and so you left Giggle for rival company Twitbook.
Unfortunately, the new president of Twitbook just decided to imitate Giggle
by throwing her own holiday party, and in light of your past experience,
appointed you as the official party organizer. The president demands that
you invite exactly k employees, including the president herself, and everyone
who is invited is required to attend. Yeah, that’ll be fun.

Just like at Giggle, employees at Twitbook are organized into a strict
hierarchy: a tree with the company president at the root. The all-knowing
oracles in Human Resources have assigned a real number to each employee
indicating the awkwardness of inviting both that employee and their imme-
diate supervisor; a negative value indicates that the employee and their
supervisor actually like each other. Your goal is to choose a subset of
exactly k employees to invite, so that the total awkwardness of the resulting
party is as small as possible. For example, if the guest list does not include
both an employee and their immediate supervisor, the total awkwardness
is zero. The input to your algorithm is the tree T , the integer k, and the
awkwardness of each node in T .

56

Exercises

(a) Describe an algorithm that computes the total awkwardness of the least
awkward subset of k employees, assuming the company hierarchy is
described by a binary tree. That is, assume that each employee directly
supervises at most two others.

♥(b) Describe an algorithm that computes the total awkwardness of the least
awkward subset of k employees, with no restrictions on the company
hierarchy.

49. Suppose we need to broadcast a message to all the nodes in a rooted tree.
Initially, only the root node knows the message. In a single round, any node
that knows the message can forward it to at most one of its children. See
Figure ?? for an example.
(a) Design an algorithm to compute theminimum number of rounds required

to broadcast the message to all nodes in a binary tree.
♦(b) Design an algorithm to compute theminimum number of rounds required

to broadcast the message to all nodes in an arbitrary rooted tree. [Hint:
You may find techniques in the next chapter useful to prove your
algorithm is correct, even though it’s not a greedy algorithm.]

Figure 3.10. A message being distributed through a tree in five rounds.

50. One day, Alex got tired of climbing in a gym and decided to take a very large
group of climber friends outside to climb. The climbing area where they
went, had a huge wide boulder, not very tall, with various marked hand
and foot holds. Alex quickly determined an “allowed” set of moves that her
group of friends can perform to get from one hold to another.

The overall system of holds can be described by a rooted tree T with n
vertices, where each vertex corresponds to a hold and each edge corresponds
to an allowed move between holds. The climbing paths converge as they go
up the boulder, leading to a unique hold at the summit, represented by the
root of T .25

Alex and her friends (who are all excellent climbers) decided to play a
game, where as many climbers as possible are simultaneously on the boulder
and each climber needs to perform a sequence of exactly k moves. Each

25Q: Why do computer science professors think trees have their roots at the top?
A: Because they’ve never been outside!

57

3. DYNAMIC PROGRAMMING

climber can choose an arbitrary hold to start from, and all moves must move
away from the ground. Thus, each climber traces out a path of k edges
in the tree T , all directed toward the root. However, no two climbers are
allowed to touch the same hold; the paths followed by different climbers
cannot intersect at all.

Describe and analyze an efficient algorithm to compute the maximum
number of climbers that can play this game. More formally, you are given a
rooted tree T and an integer k, and you want to find the largest possible
number of disjoint paths in T , where each path has length k. Do not assume
that T is a binary tree. For example, given the tree T below and k = 3 as
input, your algorithm should return the integer 8.

Figure 3.11. Seven disjoint paths of length k = 3. This is not the largest such set of paths in this tree.

51. Let T be a rooted binary tree with n vertices, and let k ≤ n be a positive
integer. We would like to mark k vertices in T so that every vertex has a
nearby marked ancestor. More formally, we define the clustering cost of any
subset K of vertices as

cost(K) =max
v

cost(v, K),

where the maximum is taken over all vertices v in the tree, and cost(v, K) is
the distance from v to its nearest ancestor in K:

cost(v, K) =

0 if v ∈ K

∞ if v is the root of T and v ̸∈ K

1+ cost(parent(v)) otherwise

In particular, cost(K) =∞ if K excludes the root of T .
♥(a) Describe a dynamic programming algorithm to compute, given the tree

T and an integer k, the minimum clustering cost of any subset of k
vertices in T . For full credit, your algorithm should run in O(n2k2) time.

58

Exercises

11

2

31

2 2

2 2

1

1

2

331 1

22

33

1

11

22

2

3

1

2 2

1

2 2

2 2

3 3

Figure 3.12. A subset of five vertices in a binary tree, with clustering cost 3.

(b) Describe a dynamic programming algorithm to compute, given the tree
T and an integer r, the size of the smallest subset of vertices whose
clustering cost is at most r. For full credit, your algorithm should run in
O(nr) time.

(c) Show that your solution for part (b) implies an algorithm for part (a)
that runs in O(n2 log n) time.

52. This question asks you to find efficient algorithms to compute the largest
common rooted subtree of two given rooted trees. Recall that a rooted
tree is a connected acyclic graph with a designated node called the root.
A rooted subtree of a rooted tree consists of an arbitrary node and all its
descendants. The precise definition of “common” depends on which pairs of
rooted trees we consider isomorphic.
(a) Recall that a binary tree is a rooted tree in which every node has a

(possibly empty) left subtree and a (possibly empty) right subtree. Two
binary trees are isomorphic if and only if they are both empty, or their
left subtrees are isomorphic and their right subtrees are isomorphic.
Describe an algorithm to find the largest common binary subtree of two
given binary trees.

Figure 3.13. Two binary trees, with their largest common (rooted) subtree emphasized.

(b) In an ordered rooted tree, each node has a sequence of children, which
are the roots of ordered rooted subtrees. Two ordered rooted trees are
isomorphic if they are both empty, or if their ith subtrees are isomorphic

59

3. DYNAMIC PROGRAMMING

for every index i. Describe an algorithm to find the largest common
ordered subtree of two ordered trees T1 and T2.

♦♥(c) In an unordered rooted tree, each node has an unordered set of children,
which are the roots of unordered rooted subtrees. Two unordered rooted
trees are isomorphic if they are both empty, or the subtrees of each root
can be ordered so that their ith subtrees are isomorphic for every index i.
Describe an algorithm to find the largest common unordered subtree of
two unordered trees T1 and T2.

53. This question asks you to find efficient algorithms to compute optimal
subtrees in unrooted trees—connected acyclic undirected graphs. A subtree
of an unrooted tree is any connected subgraph.

(a) Suppose you are given an unrooted tree T with weights on its edges,
which may be positive, negative, or zero. Describe an algorithm to find
a path in T with maximum total weight.

(b) Suppose you are given an unrooted tree T with weights on its vertices,
which may be positive, negative, or zero. Describe an algorithm to find
a subtree of T with maximum total weight. [This was a 2016 Google
interview question.]

(c) Let T1 and T2 be arbitrary ordered unrooted trees, meaning that the
neighbors of every node have a well-defined cyclic order. Describe an
algorithm to find the largest common ordered subtree of T1 and T2.

♦♥(d) Let T1 and T2 be arbitrary unordered unrooted trees. Describe an
algorithm to find the largest common unordered subtree of T1 and T2.

54. Rooted minors of rooted trees are a natural generalization of subsequences.
A rooted minor of a rooted tree T is any tree obtained by contracting one or
more edges. When we contract an edge u�v, where u is the parent of v, the
children of v become new children of u and then v is deleted. In particular,
the root of T is also the root of every rooted minor of T .

Figure 3.14. A rooted tree and one of its rooted minors.

60

Exercises

(a) Let T be a rooted tree with labeled nodes. We say that T is boring
if, for each node x , all children of x have the same label; children of
different nodes may have different labels. Describe an algorithm to find
the largest boring rooted minor of a given labeled rooted tree.

(b) Suppose we are given a rooted tree T whose nodes are labeled with
numbers. Describe an algorithm to find the largest heap-ordered rooted
minor of T . That is, your algorithm should return the largest rooted
minor M such that every node in M has a smaller label than its children
in M .

(c) Suppose we are given a binary tree T whose nodes are labeled with
numbers. Describe an algorithm to find the largest binary-search-ordered
rooted minor of T . That is, your algorithm should return a rooted
minor M such that every node in M has at most two children, and
an inorder traversal of M is an increasing subsequence of an inorder
traversal of T .

(d) Recall that a rooted tree is ordered if the children of each node have a
well-defined left-to-right order. Describe an algorithm to find the largest
binary-search-ordered minor of an arbitrary ordered tree T whose nodes
are labeled with numbers. Again, the left-to-right order of nodes in M
should be consistent with their order in T .

♥(e) Describe an algorithm to find the largest common ordered rooted minor
of two ordered labeled rooted trees.

(f) [broken problem removed]

Last revised 3:16pm 12/15/24

61

