CS 473 <4 Fall 2024
s Homework 1 &u

Due Tuesday, September 10, 2024 at gpm Central Time

For this and all future homeworks, groups of up to three students can submit
joint solutions. All students in the group must collaborate on each problem. Please
review the homework policies on the course webpage for more details.

. The social media site FRIENDER represents its social network as an undirected graph G,
where each vertex represents a user, and each edge connects two users who are friends.
The FRIENDER API only allows you to access this graph through a subroutine whose input
and output behavior is described below:

ANYFRIENDSBETWEEN(S, T):
Input: distinct subsets S and T of vertices of G
Output: TRUE if G has at least one edge st where s € S and t € T; FALSE otherwise.

Design an algorithm that returns the number of edges between two given subsets of vertices,
using only calls to ANYFRIENDSBETWEEN. Specifically, given two subsets S and T of
vertices, your algorithm should return the number of edges with one endpoint in S and one
endpoint in T. Your algorithm does not have direct access to the underlying graph.

To avoid delving into irrelevant details of how G is represented, how sets of users
are represented, or how ANYFRIENDSBETWEEN is implemented, analyze the worst-case
number of times your algorithm calls ANYFRIENDSBETWEEN, as a proxy for running time.

Suppose S and T each have at most n vertices. For full credit, your algorithm should
run in subquadratic “time” when the number of edges between S and T is significantly less
than n?.

. Suppose you are given an array A[1..n] of positive integers. An interval in A is a contiguous
subarray A[i .. j] for some pair of indices 1 <i < j < n. Suppose we compute the sum of
elements in each of the ©(n?) intervals in A; some of these sums might coincide. This
question asks you to design and analyze efficient algorithms to compute the number of
distinct interval sums in A.

(a) Describe an algorithm that runs in O(n?logn) time.

(b) Describe an algorithm that runs in O(M log M) time, where M = > . A[i].
[Hint: Use FFTs.]

For example, given the input array A = [8, 2, 3, 5], your algorithms should return 7, because
A has seven distinct interval sums: 2, 3, 5, 8, 10, 13, and 18. For example, A contains two
intervals [8,2] and [2, 3, 5] that both sum to 10.



CS 473 Homework 1 (due September 10) Fall 2023

3. The Hamming distance between two bit strings is the number of positions where the strings
have different bits. For example, the Hamming distance between the strings 01101001 and
11010001 is 4.

Suppose we are given two bit strings P[1..m] (the “pattern”) and T[1..n] (the “text”),
where m < n. Describe and analyze an algorithm to find the minimum Hamming distance
between P and a substring of T of length m. For full credit, your algorithm should run in
O(nlogn) time.

For example, given input strings P =11011011 and T =1111111010101000000, your
algorithm should return 2, which is the Hamming distance between P and the substring
11111010 of T:

1111111010101000000
11011011

[Hint: Consider @s and 1s separately.]



