BST - ordered dictionary

rotation
double rotations

splay (x)
while p rent $(x) \neq$ root and $x \neq$ root double rotate (x)
if $x \neq$ root rotate (x)

Time for

$$
\begin{aligned}
& \text { me tor } \\
& \text { find, sue, pred, } \\
& \text { ins, del }
\end{aligned}
$$

$$
=O(\text { splay })=O(\operatorname{depth}(x))
$$

Amortized time: starting with empty/balanced
Theorem: Splay executes an, sequence of N splays in $O(N \log n)$ time
Proof: potential method

$$
\begin{aligned}
& \operatorname{size}(v)=\# \text { descend vents of } v \\
& \operatorname{rank}(v)=\lfloor\lg \operatorname{size}(v)\rfloor \\
& \Phi(T)=\sum_{v} \operatorname{sink}(v)
\end{aligned}
$$

Splay Trees

(5)

Amortized time $(o p):=$ Time $(o p)+\Phi_{\text {new }}-\Phi_{\text {old }}$

$$
\sum_{o p} A T(o p)=\sum_{o p} T(o p)+\Phi_{\text {final }}-\Phi_{\text {init }}
$$

$$
\sum T(o p) \leqslant \sum A T(o p)
$$

Access Lemma: [SleatorTa-jan 85]
Am. time to rotate $v \leq 1+3 \operatorname{rank}(v)-3 \operatorname{rank}(v)$
An time to db rot $v \leq 3 \operatorname{rank}^{\prime}(v)-3 \operatorname{rank}(v)$
\Rightarrow Am. time to splay $v \leq 1+3 \operatorname{rank}_{\text {final }}(v)-3 \operatorname{rankinit}^{(v)}$

$$
\leq 1+3 \operatorname{ran}_{\text {final }}(v)
$$

$$
\leq 1+3 \lg n
$$

Suppose re search for $x \quad t(x)$ times $T=\sum_{x} t(x)$
Access Lemma still works if size $(v)=\sum_{x \neq v} t(x)$

$$
\operatorname{rank}(\omega)=\lg \operatorname{size}
$$

$$
\Phi=\sum \operatorname{rank}
$$

\Rightarrow Am time to splay $x=1+3 \cdot \lg T-3 t(x)$

$$
=1+3 \lg \frac{T}{E(x)}
$$

Static optimality.)
Conjecture: splay trees are dynamically opt $O(I)$-competitive ratio US. best dynamic SST offline

Dynamic BST ?

$R=$ some upward-closed subset of nodes includes x
arbitrarily reconfigure R in $O(|R|)$ time
splay trees
$Z=$ search path splay
weaker Conjecture: There is an $O(1)$-competitive dynamic BST
Geometric View of BSTs: [Domaine Harmon Iacono Kane Patrascn]
Access sequence $x_{1}, x_{2} \ldots x_{N} \Rightarrow\left(x_{i}, i\right)$
Execution sequence $=$ $\{(y, i) \mid$ node y is touched during th access $\}$

Thun: Execution pts are satisfied meaning ever, rect defined by two pts has another pt on it's boundary
Thu: And vice versa.

BADNEWS: Finding min satisfying superset is NP-hard (if we allow multi-accesses)

Natural Greedy heuristic:
Greedy Future:
For $E \ll 1$ to N
add min\#pts on row i to satisfy rectangles with bottom row i
$O(A \log n)$ time
Conj: Greedy Future
 is $\mathrm{O}(1)$-competitive
BST language - optionally recon figure only search path
Greedy Past is an online algaritunx \rightarrow Greedy BST

Greedy \geq OPT $\geq \max \{$ Greed $\not \subset$, greedy $D\}$
Greedy
Greedy
Conj: Greedy \leqslant OpT $+O(1)$

