

Maximum flow: Given G=(V,E) directed
capacity function c: E
$$\rightarrow IR_{\ge 0}$$

two vertices source sb tagett
We want: Flow function f: E $\rightarrow IR$
conservation S.t. $\sum_{V} F(u \Rightarrow v) = \sum_{V} F(v \Rightarrow w)$
for all $v \neq s, t$
feasible St. $0 \leq F(e) \leq c(e)$
maximize $|F| = \sum_{V} F(s \Rightarrow w) - \sum_{V} F(u \Rightarrow s)$
 $= \sum_{V} F(u \Rightarrow t) - \sum_{V} F(t \Rightarrow w)$
 $\int_{V} \frac{10/20}{0/15} \int_{S/15} \frac{10}{5/20} F(w \Rightarrow s) = \frac{10}{5/20} F(w \Rightarrow s)$

10/10

Push cmin mits of the dong path we get new from F' s.t. [F']=|F|+Cmin F' is feasible => F is not a max from!

Lose 2: No path from stot in GF 10/20 5/10 5/10 5/10 0/10 10/20 10/20 10 7 (0) (0) 9 Let S = all vertices reachable from sin GF T=VLS For every vertex UES VET $iF u \rightarrow v \in E \qquad f(u \rightarrow v) = c(u \rightarrow v)$ if ume f(umn)=0 => f is a max flow and (S.I) is 2 min cut! tord Fulkerson '52 Augmenting path algorithm € F ← O G_f ← G while there is a path From s to t in GF push From Dong P rebuild GF returnf