Quicksort runs in $O(n \operatorname{logn})$ expected time wituhigh prob. Treap search runs in $O(\log n)$ expected time with high prob.

Markov's Inequality: If z is any non-negative integer riv.

$$
\operatorname{Pr}[Z>z] \leq \frac{E[z]}{z}=\frac{\mu}{z}
$$

$$
\begin{aligned}
& \sum_{z} \operatorname{Pr}[z>z]=\sum_{z} z \cdot \operatorname{Pr}[z=z] \geqslant z \cdot \operatorname{Pr}\left[z^{>} z\right] \\
\geqslant & \sum_{i=1}^{z-1} \operatorname{Pr}[z>i] \geqslant \sum_{i=1}^{z} \operatorname{Pr}[z>z]=
\end{aligned}
$$

$$
\operatorname{Pr}[X>\alpha E[X]] \leq \frac{1}{\alpha}
$$

$\operatorname{Pr}\left[\right.$ Quicksort runs $>n^{3}$ time] $\leq \frac{n \log n}{n^{3}} \sim \frac{1}{n^{2}}$
X and Y are independent iff

$$
\begin{aligned}
& \operatorname{Pr}[X=x \text { and } Y=y]=\operatorname{Pr}[X=x] \cdot \operatorname{Pr}[Y=y] \\
& \operatorname{Pr}[X=x \mid Y=y]=\operatorname{Pr}[X=x] \\
\Rightarrow & E[X \cdot Y]=E[X] \cdot E[Y]
\end{aligned}
$$

$\Rightarrow F(X)$ and $F(Y)$ are independent
$x_{1}, x_{2} \ldots x_{n}$ are fully independent

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{n} x_{i}=x_{i}\right]=\prod_{i=1}^{n} \operatorname{Pr}\left[x_{i}=x_{i}\right]
$$

$x_{1} x_{2} \ldots x_{n}$ are k-wise independent if every subset of size l is fully indep.

Example x_{1}, x_{2} indep fair coins

$$
x_{3}=x_{1} \oplus x_{2}
$$

x_{1}, x_{2}, x_{3} are pairwise indep (but not fully)

$$
\begin{aligned}
& X=\sum_{i=1}^{n} x_{i} \quad x_{i} \in\{0,1\} \\
& p_{i}=\operatorname{Pr}\left[x_{i}=1\right]=E\left[x_{i}\right] \\
& \mu=E[x]=\sum_{i=1}^{n} p_{i}
\end{aligned}
$$

Chebysheu's inequality:
If $X_{1} \ldots X_{n}$ are pairwise indup, $\operatorname{Pr}\left[(X-\mu)^{2} \geq z\right] \leq \frac{\mu}{z}$
Proof:

$$
\begin{aligned}
& \text { Let } Y_{i}=X_{i}-p_{i} \quad Y=\sum Y_{i}=X-\mu \\
& E\left[Y_{2}\right]=E\left[\sum_{i, j} Y_{i} Y_{j}\right]=\sum_{i, j} E\left[Y_{i} Y_{j}\right] \\
& =\sum_{i} E\left[Y_{i}^{2}\right]+\sum_{i \neq j} E\left[Y_{i} Y_{j}\right] \\
& =\sum_{i} E\left[Y_{i}^{2}\right]+\sum_{i \neq j} E\left[Y_{i}\right] \cdot E\left[Y_{j}\right] \\
& =\sum_{i}\left(p_{i}\left(1-p_{i}\right)^{2}+\left(1-p_{i}\right)\left(-p_{i}\right)^{2}\right) \sim \leq \mu
\end{aligned}
$$

Markov: $\operatorname{Pr}\left[Y^{2} \geq z\right] \leq \frac{E\left[Y^{2}\right]}{z} \leq \frac{\mu}{z}$

$$
\begin{aligned}
& \operatorname{Pr}[x \geq(1+\delta) \mu] \leq \frac{1}{\delta^{2} \mu} \\
& \operatorname{Pr}[x \leq(1-\delta) \mu] \leqslant 1 / \delta^{2} \mu
\end{aligned}
$$

Exponential Moment Inequality:
If $X_{1} \ldots X_{n}$ are Inly independent then $E\left[\alpha^{x}\right] \leq e^{(\alpha-1) \mu}$ for onus $\alpha>1$.

$$
\operatorname{Pr}[x \geq x] \leqslant e^{x-\mu}\left(\frac{\mu}{x}\right)^{x} \quad \text { Proof: } \operatorname{Set} \alpha=\frac{x}{\mu} .
$$

$$
\operatorname{Pr}[x \geqslant(1+\delta) \mu] \leqslant\left(\frac{e^{\delta}}{(1+\delta)^{1+8}}\right)^{\mu} \leqslant e^{-\delta^{2} \mu / 3}
$$

Treaps: $E[\operatorname{depth}(k)]=\sum_{i=1}^{n} \operatorname{Pr}[i \Uparrow k]$

$$
X=\operatorname{deptan}(k) \quad X_{i}=[i \Uparrow k]
$$

Claim: $[1 \uparrow k][2 \uparrow k] \cdots[k \cdot 1 \uparrow k]$ are fully independent

$$
\begin{gathered}
\operatorname{Pr}[\operatorname{depth}(k) \stackrel{\gamma}{>}>8 \ln n] \leq \frac{2}{n^{2.5 i s h}} \\
\operatorname{Pr}[\max \operatorname{deptan}(k)>8 \ln n] \\
\quad<\sum_{k-1}^{n} \operatorname{Pr}[\operatorname{deptan}(k)>8 \ln n] \leq \frac{z}{n^{1.5 i n n}} \\
\downarrow \\
E[\text { max depth }]=O(\log n)
\end{gathered}
$$

Problem 3:
$001\left[\begin{array}{lllll}0 & 101110\end{array}\right] 00011$

$$
\begin{gathered}
0101001 \\
1 \\
2
\end{gathered}
$$

For any shift value s :

$$
\begin{aligned}
& H D(s)=\sum_{i=1}^{m}[P[i] \neq T[i+s]]<(P[i]-T(i+s]) \\
& =\sum_{i=1}^{n} \underbrace{P[i]}_{a_{i}}(\underbrace{[1-T[i+s]}_{b_{i}+s})+\sum_{i=1}^{m}(1-P(i]) T[i+s]
\end{aligned}
$$

$$
a=a_{p} a_{7} \ldots a_{m}
$$

$$
b=b_{0} b_{1} \ldots b_{n}
$$

$$
(2 * b)=c=c_{0} \ldots c_{n+m}
$$

$$
c_{j}=\sum_{i} a_{i} \cdot b_{j-i}
$$

$$
\begin{gathered}
a_{i}=P[m-i] \\
b_{j}=1-T[j] \\
\sum_{i=1}^{m} P[i] \cdot(1-T[i+s])=\sum_{i} a_{m-i} \cdot b_{s+i}=(a * b)_{s+m}
\end{gathered}
$$

