Randomized Algorithms
Library function $R_{\text {fANDOM }}(k)$
Adversary
Quicksort $\rightarrow O\left(n^{2}\right)$

$$
\{1,2,3, \ldots, k\}
$$

niniformb at random
Pivot randenly $\rightarrow O(n \log n)$
Expected time
$O($ logan $)$ time with high prob-
$T(x)=$ running time on input x

$$
\max _{|x|=n} T(x)=T(n)=\text { worstcase running time }
$$

$\max _{|x|=\sim} E[T(x)]=$ worst-case expected time
randomness in the algaritum.
Intolrevien of discrete prob.
sample space $\Omega=$ Finite countable set probability mass function: $\operatorname{Pr}: \Omega \rightarrow \mathbb{R}$

$$
\operatorname{Pr}[\omega] \geqq 0 \quad \sum_{\omega \in \Omega} \operatorname{Pr}[\omega]=1
$$

$E_{\text {vent }}=$ subset of $\Omega=$ condition/proposition
$\operatorname{Pr}[A]=\sum_{\omega \in A} \operatorname{Pr}[\omega] \neq$ Prob of event
$A \vee B \quad A \wedge B \quad \neg A \quad A \Rightarrow B \ldots$
bluedie+red die

$$
\begin{aligned}
\operatorname{Pr}[\text { at most one } 5]=\operatorname{Pr}[\neg \text { two ss }] & =1-\operatorname{Pr}\left[t_{w o} 5 s\right] \\
& =35 / 36
\end{aligned}
$$

Conditional probability: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{P[B}]}$

$$
\begin{aligned}
& \operatorname{Pr}[\text { red } 5 \text {) at least one } 5]=6 / 11 \\
& \operatorname{Pr}[\text { at least ones }] \text { at most one } 5]=2 / 7
\end{aligned}
$$

A and B are disjoint $\longleftrightarrow \operatorname{Pr}[A A B]=0$
A and B are independent $\longleftrightarrow \operatorname{Pr}[A \wedge B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$

HTTHTHTTH(H)TH
$E[\#$ heads $]=n / 2$

$$
\begin{aligned}
& E[\# H-]=\frac{n-1}{2} \\
& E[\# H H]=\frac{n-1}{4} \\
& E\left[\left.\frac{\# H H}{\# H} \right\rvert\, \# H->0\right] \leqslant 1 / 2
\end{aligned}
$$

Randan variable $X: \Omega \rightarrow V$
$X: \Omega \rightarrow \mathbb{Z}$ "random integer"
"int. random variable"

$$
\operatorname{Pr}[X=x] \quad \operatorname{Pr}[X \geqslant x] \quad \operatorname{Pr}[X=Y]
$$

Expectation: $E[x]=\sum_{x} x \cdot \operatorname{Pr}[x=x]$

$$
\{1,2,3,4,5,6\}
$$

Conditional Exp. $E(X \mid A]=\sum_{x} x \cdot \operatorname{Pr}[X=x \mid A]$

$$
E[d 6]=31 / 2
$$

John vo Neumann 1945
Biased coin $\operatorname{Pr}[H$ lads $]=p \quad \operatorname{Pr}[$ Tails $]=1-p=q$
How many flips until first head? $E[\# f l i p s]=\frac{1}{p}$

$$
\begin{aligned}
E[\# \text { Flips }]= & E[\# \text { Flips) first }=H] \cdot \operatorname{Pr}[\text { first }=H] \\
& +E[\# \text { flips first }=T] \cdot \operatorname{Pr}[\text { First }=T] \\
= & 1 \cdot p+(1+E[\# f i p i j) q \\
X= & 1 p+(1+x)(1-p) \Longrightarrow x=1 / p
\end{aligned}
$$

Simulate fair coin - Fliptuice

$\mathrm{HH} \rightarrow$ restart
TT \rightarrow
HT \rightarrow "heads"
$\mathrm{FH} \longrightarrow$ "tails"

$$
E[\# f l i p s]=2 \cdot E[\# \text { triads }]=z \cdot \frac{1}{2 p(1-p)}=\frac{1}{p q}
$$

succeeds with prob $2 p(1-p)$
fails
fails

$$
1-\sum_{p}(1-p)
$$

Pokemon N types of cards
You can buy random P_{c} and for $\$ 1$

$p=1 / 3$| T | T |
| :---: | :---: |
| T | H |

E[cost] to have at least one of each type?
Linearity of expectation

$$
E[x+y]=E[x]+E[y]
$$

$$
\begin{aligned}
& X=\# \text { trials to get all N Pokémen } \\
& X=Y_{1}+Y_{2}+\cdots+Y_{N}
\end{aligned}
$$

$1 \quad Y_{i}=$ \#trials after we have i-1 Pokemon to get i Pokemon

$$
\begin{aligned}
& Y_{1}=1 \quad E\left[Y_{N}\right]=N \\
& E\left[Y_{i}\right]=\frac{N}{N-i+1} \\
& E[X]=\sum_{i=1}^{N} E\left[Y_{i}\right]=\sum_{i=1}^{N} \frac{N}{N-i+1}=\sum_{j=1}^{N} \frac{N}{j}=N \sum_{j=1}^{N} \frac{1}{j} \\
&(j=N-i+1)=N H_{N} \\
& \simeq N \ln N
\end{aligned}
$$

