CS 473 \& Fall 2022

ค Homework 6 ~

Due Tuesday, October 18, 2022 at 9pm
I. Describe and analyze an efficient algorithm to find strings in labeled rooted trees. Your input consists of a pattern string $P[1 . . m]$ and a rooted text tree T with n nodes, each labeled with a single character. Nodes in T can have any number of children. A path in T is called a downward path if every node on the path is a child (in T) of the previous node in the path. Your goal is to determine whether there is a downward path in T whose sequence of labels matches the string P.

For example, the string SEARCH is the label of a downward path in the tree shown below, but the strings HCRAES and SMEAR is not.

2. A fugue (pronounced "fyoog") is a highly structured style of musical composition that was popular in the 17th and 18th centuries. A fugue begins with an initial melody, called the subject, that is repeated several times throughout the piece.

Suppose we want to design an algorithm to detect the subject of a fugue. We will assume a very simple representation as an array $F[1$..n] of integers, each representing a note in the fugue as the number of half-steps above or below middle C. (We are deliberately ignoring all other musical aspects of real-life fugues, like multiple voices, timing, rests, volume, and timbre.)
(a) Describe an algorithm to find the length of the longest prefix of F that reappears later as a substring of F. The prefix and its later repetition must not overlap.
(b) In many fugues, later occurrences of the subject are transposed, meaning they are all shifted up or down by a common value. For example, the subject ($3,1,4,1,5,9,2$) might be transposed transposed down two half-steps to ($1,-1,2,-1,3,7,0$).

Describe an algorithm to find the length of the longest prefix of F that reappears later, possibly transposed, as a substring of F. Again, the prefix and its later repetition must not overlap.

For example, if the input array is

$$
3,1,4,1,5,9,2,6,5,3,1,4,1,-1,2,-1,3,7,0,1,4,2
$$

then your first algorithm should return 4, and your second algorithm should return 7.
3. There is no question 3 !

