
CS 473 = Fall 2022
9 Homework 2 :

Due Tuesday, September 13, 2022 at 9pm

1. (a) Recall that a palindrome is any string that is exactly the same as its reversal, like
I or DEED or RACECAR or AMANAPLANACATACANALPANAMA. Describe and analyze an
algorithm to find the length of the longest subsequence of a given string that is also a
palindrome.

For example, given the string MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM as input,
your algorithm should return 11, which is the length of the longest palindrome
subsequence MHYMRORMYHM.

(b) Similarly, a repeater is any string whose first half and second half are identical, like
MEME or MURMUR or HOTSHOTS or SHABUSHABU. Describe and analyze an algorithm to
find the length of the longest subsequence of a given string that is also a repeater.

For example, given the string AINTNOPARTYLIKEMYNANASTEAPARTYHEYHO as in-
put, your algorithm should return 20, which is the length of the longest repeater
subsequence ANTPARTYEYANTPARTYEY.

2. Describe and analyze an efficient algorithm to solve the following one-dimensional clustering
problem. Given an unsorted array Data[1 .. n] of real numbers, we want to cluster this
data into k clusters, each represented by an interval of indices and a real value, so that the
maximum error between any data point and its cluster value is minimized.

More concretely, your algorithm should return an unsorted array Val[1 .. k] of real
numbers and a sorted array Brk[0 .. k] of integer breakpoints such that Brk[0] = 0 and
Brk[k] = n. For each index i, the ith interval covers items Brk[i − 1] + 1 through Brk[i] in
the input data, and the value of the ith interval is Val[i]. The output values Val[i] are not
necessarily elements of the input array. Your algorithm should compute arrays B and V
that minimize the maximum absolute difference between any data point and the value of
the unique interval that covers it:

Error(Data,Brk,Val) =max
�

|Data[i]− Val[j]|
�

� Brk[j − 1]< i ≤ Brk[j]
	

We can visualize both the input data and the output approximation using bar charts, as
shown in the figure below; the double arrow shows the error for this approximation.

Val[1]

Val[2]

Val[3]

Val[4]

Brk[0] Brk[1] Brk[2] Brk[3] Brk[4]

Approximating 18 data points with four weighted intervals

CS 473 Homework 2 (due September 13, 2022) Fall 2022

3. You’ve been hired to store a sequence of n books on shelves in a library, using as little
vertical space as possible. The horizontal order of the books is fixed by the cataloging
system and cannot be changed; each shelf must store a contiguous interval of the given
sequence of books. You can adjust the height of each shelf to match the tallest book on
that shelf; in particular, you can change the height of any empty shelf to zero.

You are given two arrays H[1 .. n] and W [1 .. n], where H[i] and W [i] are respectively
the height and width of the ith book. Each shelf has the same fixed length L. Each book as
width at most L, so every book fits on a shelf. The total width of all books on each shelf
cannot exceed L. Your task is to shelve the books so that the sum of the heights of the
shelves is as small as possible.

(a) There is a natural greedy algorithm, which actually yields an optimal solution when
all books have the same height: If n > 0, pack as many books as possible onto the
first shelf, and then recursively shelve the remaining books.

Show that this greedy algorithm does not yield an optimal solution if the books
can have different heights. [Hint: There is a small counterexample.]

(b) Describe and analyze an efficient algorithm to assign books to shelves to minimize
the total height of the shelves.

2

CS 473 Homework 2 (due September 13, 2022) Fall 2022

Standard dynamic programming rubric. 10 points =

• 3 points for a clear and correct English description of the recursive function you are trying to
evaluate. (Otherwise, we don’t even know what you’re trying to do.)
− 1 for naming the function “OPT” or “DP” or any single letter.
– No credit if the description is inconsistent with the recurrence.
– No credit if the description does not explicitly describe how the function value depends on

the named input parameters.
– No credit if the description refers to internal states of the eventual dynamic programming

algorithm, like “the current index” or “the best score so far”. The function must have a well-
defined value that depends only on its input parameters (and constant global variables).

– An English explanation of the recurrenceoralgorithmdoes not qualify. We want a description
ofwhat your function returns, not (here) an explanation of how that value is computed.

• 4 points for a correct recurrence, described either using mathematical notation or as pseudocode
for a recursive algorithm.
+ 1 for base case(s). −½ for oneminor bug, like a typo or an off-by-one error.
+ 3 for recursive case(s). −1 for eachminor bug, like a typo or an off-by-one error.
− 2 for greedy optimizations without proof, even if they are correct.
– No credit for the rest of the problem if the recursive case(s) are incorrect.

• 3 points for iterative details
+ 1 for describing (or sketching) an appropriate memoization data structure
+ 1 for describing (or sketching) a correct evaluation order; a clear picture is usually sufficient.

If you use nested for loops, be sure to specify the nesting order.
+ 1 for correct time analysis. (It is not necessary to state a space bound.)

• For problems that ask for an algorithm that computes an optimal structure—such as a subset,
partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal
structure is sufficient for full credit, unless the problem specifically says otherwise.

• Iterativepseudocode is not required for full credit. If your solution includes iterative pseudocode,
you do not need to separately describe the recurrence, memoization structure, or evaluation
order. However, you do still need and English description of the underlying recursive function (or
equivalently, the contents of the memoization structure). Perfectly correct iterative pseudocode,
with no explanation or time analysis, is worth at most 6 points out of 10.

• Partial credit for incomplete solutions depends on the running time of the best possible comple-
tion (up to the target running time). For example, consider a solution that contains only a clear
English description of a function, with no recurrence or iterative details.

– If the described function can be developed into an algorithm with the target running time,
the solution is worth 3 points.

– If the described function leads to an algorithm that is slower than the target time by a factor
of n, the solution could be worth only 2 points (= 70% of 3, rounded).

– If the described function cannot lead to a polynomial-time algorithm, it could be worth 1 or
even 0 points.

3

