
CS 473 Fake Midterm 2 Questions Fall 2022

These are review questions for the actual Midterm 2.

1. Recall that a family H of hash functions is universal if Prh∈H[h(x) = h(y)]≤ 1/m for all
distinct items x ̸= y , where m is the size of the hash table. For any fixed hash function h,
a collision is an unordered pair of distinct items x ̸= y such that h(x) = h(y).

Suppose we hash a set of n items into a table of size m= 2n, using a hash function h
chosen uniformly at random from some universal family. Assume pn is an integer.

(a) Prove that the expected number of collisions is at most n/4.
(b) Prove that the probability that there are at least n/2 collisions is at most 1/2.
(c) Prove that the probability that any subset of more than pn items all hash to the same

address is at most 1/2. [Hint: Use part (b).]

(d) Now suppose we choose h at random from a 4-uniform family of hash functions,
which means for all distinct items w, x , y, z and all addresses i, j, k, l, we have

Pr
h∈H

�

h(w) = i ∧ h(x) = j ∧ h(y) = k ∧ h(z) = ℓ
�

=
1

m4
.

Prove that the probability that any subset of more than pn items all hash to the same
address is at most O(1/n).

[Hint: All four statements have short elementary proofs via tail inequalities.]

2. The Island of Sodor is home to an extensive rail network. Recently, several cases of a deadly
contagious disease have been reported in the village of Ffarquhar. The controller of the
Sodor railway plans to close certain railway stations to prevent the disease from spreading
to Tidmouth, his home town. No trains can pass through a closed station. To minimize
expense (and public notice), he wants to close as few stations as possible. However, he
doesn’t want to close the Ffarquhar station, because that would expose him to the disease,
and he really doesn’t want to close the Tidmouth station, because then he couldn’t visit his
favorite pub in Tidmouth.

The Sodor rail network is represented by an undirected graph, with a vertex for each
station and an edge for each rail connection between two stations. Two special vertices f
and t represent the stations in Ffarquhar and Tidmouth. Describe and analyze an algorithm
to find the minimum number of stations other than f and t that must be closed to block all
rail travel from Ffarquhar to Tidmouth.

For example, given the following input graph, your algorithm should return the integer 2.
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3. Let T be a treap with n vertices.

(a) What is the exact expected number of leaves in T?
(b) What is the exact expected number of nodes in T that have two children?
(c) What is the exact expected number of nodes in T that have exactly one child?

You do not need to prove that your answers are correct. [Hint: What is the probability that
the node with the kth smallest search key has no children, one child, or two children?]

4. A cyclic shift of a string A[1 .. n] is any string formed from A by moving a prefix of A to
the end, or equivalently, moving a suffix of A to the beginning. For example, For example,
the strings RA!ABRACADAB and DABRA!ABRACA and ABRACADABRA! are all cyclic shifts of the
string ABRACADABRA!.

(a) Describe and analyze an algorithm to determine, given two strings A[1 .. n] and
B[1 .. n], whether A is a cyclic shift of B.

(b) Describe a fast algorithm to determine, given two strings A[1 .. m] and B[1 .. n] with
m≤ n, whether A is a substring of some cyclic shift of B.
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Some Useful Inequalities
Suppose X is the sum of random indicator variables X1, X2, . . . , Xn.

For each index i, let pi = Pr[X i = 1] = E[X i], and let µ=
∑

i pi = E[X ].

• Markov’s Inequality:

Pr[X ≥ x]≤
µ

x
for all x > 0, and therefore. . .

Pr[X ≥ (1+δ)µ]≤
1

1+δ
for all δ > 0

• Chebyshev’s Inequality: If the variables X i are pairwise independent, then. . .

Pr[(X −µ)2 ≥ z]<
µ

z
for all z > 0, and therefore. . .

Pr[X ≥ (1+δ)µ]<
1
δ2µ

for all δ > 0

Pr[X ≤ (1−δ)µ]<
1
δ2µ

for all δ > 0

• Higher Moment Inequalities: If the variables X i are 2k-wise independent, then. . .

Pr[(X −µ)2k ≥ z] = O

�

µk

z

�

for all z > 0, and therefore. . .

Pr[X ≥ (1+δ)µ] = O
�

1
δ2kµk

�

for all δ > 0

Pr[X ≤ (1−δ)µ] = O
�

1
δ2kµk

�

for all δ > 0

• Chernoff’s Inequality: If the variables X i are fully independent, then. . .

Pr[X ≥ x]≤ ex−µ
�µ

x

�x
for all x ≥ µ, and therefore. . .

Pr[X ≥ (1+δ)µ]≤ e−δ
2µ/3 for all 0< δ < 1

Pr[X ≤ (1−δ)µ]≤ e−δ
2µ/2 for all 0< δ < 1

• The World’s Most Useful Inequality: 1+ x ≤ ex for all x

• The World’s Most Useful Limit: limn→∞
�

1+ 1
n

�n
= e

Hashing Properties
H is a set of functions from some universe U to [m] = {0,1, 2, . . . , m− 1}.

• Universal: Pr
h∈H
[h(x) = h(y)]≤

1
m

for all distinct items x ̸= y

• Near-universal: Pr
h∈H
[h(x) = h(y)]≤ O

�

1
m

�

for all distinct items x ̸= y

• Strongly universal: Pr
h∈H
[h(x) = i and h(y) = j] =

1
m2

for all distinct x ̸= y and all i and j

• 2-uniform: Same as strongly universal.
• Ideal Random: Fiction.


