## Algorithms

## CS 473, Fall 2021

## Reductions and NP

Lecture 2
Saturday, August 21, 2021

## How much wood would a woodchuck chuck if a woodchuck could chuck wood?

## Clicker question

(A) About as many boards as the bored Mongol hordes would hoard if the bored Mongol hordes did hoard boards in gourds.
(B) Probably none. Woodchucks are not particularly tree-oriented. They got the name "woodchuck" from British trappers who could not quite wrap their tongues around the Cree Indian name "wuhak".
(c) It depends on how good his dentures are.
(D) The answer my friend is blowing in the wind.
(B) IDK - I don't know.

## Total recall...

3

## Polynomial-time reductions


(1) Algorithm is efficient if it runs in polynomial-time.
(2) Interested only in polynomial-time reductions.
(3) $\boldsymbol{X} \leq_{\boldsymbol{P}} \boldsymbol{Y}$ : Have polynomial-time reduction from problem $\boldsymbol{X}$ to problem $\boldsymbol{Y}$.
(4) $\mathcal{A}_{\boldsymbol{Y}}$ : poly-time algorithm for $\boldsymbol{Y}$.
(3) $\Longrightarrow$ Polynomial-time/efficient algorithm for $\boldsymbol{X}$.
2.1: Polynomial time reductions

## Polynomial-time reductions and instance sizes

## Proposition

$\mathcal{R}$ : a polynomial-time reduction from $\boldsymbol{X}$ to $\boldsymbol{Y}$.
Then, for any instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}$, the size of the instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of $\boldsymbol{Y}$ produced from $\boldsymbol{I}_{\boldsymbol{X}}$ by $\boldsymbol{\mathcal { R }}$ is polynomial in the size of $\boldsymbol{I}_{\boldsymbol{X}}$.

## Proof.

$\mathcal{R}$ is a polynomial-time algorithm and hence on input $\boldsymbol{I}_{\boldsymbol{X}}$ of size $\left|\boldsymbol{I}_{\boldsymbol{X}}\right|$ it runs in time $\boldsymbol{p}\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$ for some polynomial $\boldsymbol{p}()$.
$\boldsymbol{I}_{\boldsymbol{Y}}$ is the output of $\mathcal{R}$ on input $\boldsymbol{I}_{\boldsymbol{X}}$.
$\mathcal{R}$ can write at most $\boldsymbol{p}\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$ bits and hence $\left|\boldsymbol{I}_{\boldsymbol{Y}}\right| \leq \boldsymbol{p}\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$.

## Unimportant remove

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

## Polynomial-time Reduction

## Definition

$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ : polynomial time reduction from a decision problem $\boldsymbol{X}$ to a decision problem $\boldsymbol{Y}$ is an algorithm $\mathcal{A}$ such that:
(1) Given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of $\boldsymbol{Y}$.
(2) $\mathcal{A}$ runs in time polynomial in $\left|\boldsymbol{I}_{\boldsymbol{X}}\right| . \quad\left(\left|\boldsymbol{I}_{\boldsymbol{Y}}\right|=\right.$ size of $\left.\boldsymbol{I}_{\boldsymbol{Y}}\right)$.
(0) Answer to $\boldsymbol{I}_{X}$ YES $\Longleftrightarrow$ answer to $\boldsymbol{I}_{Y}$ is YES .

## Polynomial reductions and poly time

## Polynomial reductions and poly time

## Proposition

If $\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ then a polynomial time algorithm for $\boldsymbol{Y}$ implies a polynomial time algorithm for $\boldsymbol{X}$.

## Polynomial reductions and poly time

## Proposition

If $\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ then a polynomial time algorithm for $\boldsymbol{Y}$ implies a polynomial time algorithm for $\boldsymbol{X}$.

This is a Karp reduction.

## Composing polynomials...

## A quick reminder

(1) $\boldsymbol{f}$ and $\boldsymbol{g}$ monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(n^{b}\right)$ )
(2) $g(n) \leq c * n^{d}$
(i.e., $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$ )
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$ : constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$
(3) $\Longrightarrow g(f(n))=\boldsymbol{O}\left(n^{b d}\right)$ is a polynomial.
(4) Conclusion: Composition of two polynomials, is a polynomial.

## Transitivity of Reductions

## Proposition

$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ and $\boldsymbol{Y} \leq_{p} \boldsymbol{Z}$ implies that $\boldsymbol{X} \leq_{p} \boldsymbol{Z}$.
(1) Note: $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ does not imply that $\boldsymbol{Y} \leq_{P} \boldsymbol{X}$ and hence it is very important to know the FROM and TO in a reduction.
(2) To prove $\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ you need to show a reduction FROM $\boldsymbol{X}$ TO $Y$
© ...show that an algorithm for $\boldsymbol{Y}$ implies an algorithm for $\boldsymbol{X}$.
2.2: Independent Set and Vertex Cover

## Vertex Cover

Given a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$, a set of vertices $\boldsymbol{S}$ is:


15

## Vertex Cover

Given a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$, a set of vertices $\boldsymbol{S}$ is:
(1) A vertex cover if every $\boldsymbol{e} \in \boldsymbol{E}$ has at least one endpoint in $\boldsymbol{S}$.


## The Vertex Cover Problem

## Problem (Vertex Cover)

Input: A graph $\mathbf{G}$ and integer $\boldsymbol{k}$.
Goal: Is there a vertex cover of size $\leq \boldsymbol{k}$ in $\mathbf{G}$ ?

Can we relate Independent Set and Vertex Cover?

17

## Relationship between...

## Vertex Cover and Independent Set

## Proposition

Let $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ be a graph.
$\boldsymbol{S}$ is an independent set $\Longleftrightarrow \boldsymbol{V} \backslash \boldsymbol{S}$ is a vertex cover.

## Proof:

$(\Rightarrow)$ Let $\boldsymbol{S}$ be an independent set
(1) Consider any edge $\boldsymbol{u} \boldsymbol{v} \in E$.
(2) Since $\boldsymbol{S}$ is an independent set, either $\boldsymbol{u} \notin \boldsymbol{S}$ or $\boldsymbol{v} \notin \boldsymbol{S}$.
(3) Thus, either $\boldsymbol{u} \in \boldsymbol{V} \backslash \boldsymbol{S}$ or $\boldsymbol{v} \in \boldsymbol{V} \backslash \boldsymbol{S}$.
(1) $\boldsymbol{V} \backslash \boldsymbol{S}$ is a vertex cover.

## Proof continued...

$(\Leftarrow)$ Let $\boldsymbol{V} \backslash \boldsymbol{S}$ be some vertex cover:
(1) Consider $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{S}$
(2) $\boldsymbol{u v}$ is not an edge of $\mathbf{G}$, as otherwise $\boldsymbol{V} \backslash \boldsymbol{S}$ does not cover $\boldsymbol{u} \boldsymbol{v}$.
(3 $\Longrightarrow S$ is thus an independent set.

## Independent Set $\leq_{\mathrm{p}}$ Vertex Cover

(1) $(\mathbf{G}, \boldsymbol{k})$ : instance of the Independent Set problem.
$\boldsymbol{G}$ : graph with $\boldsymbol{n}$ vertices. $\boldsymbol{k}$ : integer.
(2) G has an independent set of size $\geq \boldsymbol{k}$
$\Longleftrightarrow \mathbf{G}$ has a vertex cover of size $\leq \boldsymbol{n}-\boldsymbol{k}$
(3) $(\boldsymbol{G}, \boldsymbol{k})$ is an instance of Independent Set, and $(\boldsymbol{G}, \boldsymbol{n}-\boldsymbol{k})$ is an instance of Vertex Cover with the same answer.
(4) We conclude:
(1) Independent Set $\leq_{P}$ Vertex Cover.
(2) Vertex Cover $\leq_{p}$ Independent Set. (Because same reduction works in other direction.)
2.3: Vertex Cover and Set Cover

## The Set Cover Problem

## Problem (Set Cover)

Input: Given a set $\boldsymbol{U}$ of $\boldsymbol{n}$ elements, a collection $\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \ldots \boldsymbol{S}_{\boldsymbol{m}}$ of subsets of $\boldsymbol{U}$, and an integer $\boldsymbol{k}$.
Goal: Is there a collection of at most $\boldsymbol{k}$ of these sets $\boldsymbol{S}_{\boldsymbol{i}}$ whose union is equal to $\boldsymbol{U}$ ?

## Set cover example

## Example

Let $\boldsymbol{U}=\{\mathbf{1}, 2,3,4,5,6,7\}, \boldsymbol{k}=2$ with

$$
\begin{array}{ll}
S_{1}=\{3,7\} & S_{2}=\{3,4,5\} \\
S_{3}=\{1\} & S_{4}=\{2,4\} \\
S_{5}=\{5\} & S_{6}=\{1,2,6,7\}
\end{array}
$$

## Set cover example

## Example

Let $\boldsymbol{U}=\{1,2,3,4,5,6,7\}, k=2$ with

$$
\begin{array}{ll}
S_{1}=\{3,7\} & S_{2}=\{3,4,5\} \\
S_{3}=\{1\} & S_{4}=\{2,4\} \\
S_{5}=\{5\} & S_{6}=\{1,2,6,7\}
\end{array}
$$

## Set cover example

## Example

Let $\boldsymbol{U}=\{1,2,3,4,5,6,7\}, \boldsymbol{k}=2$ with

$$
\begin{array}{ll}
S_{1}=\{3,7\} & S_{2}=\{3,4,5\} \\
S_{3}=\{1\} & S_{4}=\{2,4\} \\
S_{5}=\{5\} & S_{6}=\{1,2,6,7\}
\end{array}
$$

Solution: $\left\{S_{2}, S_{6}\right\}$ is a set cover

## Vertex Cover $\leq_{\text {p }}$ Set Cover

(3) Instance of Vertex Cover: $\mathbf{G}=\mathbf{( V , E )}$ and integer $\boldsymbol{k}$.
(2) Construct an instance of Set Cover as follows:
(1) Number $\boldsymbol{k}$ for the Set Cover instance is the same as the number $\boldsymbol{k}$ given for the Vertex Cover instance.
(3) Observe that $\mathbf{G}$ has vertex cover of size $\boldsymbol{k}$ if and only if $\boldsymbol{U},\left\{\boldsymbol{S}_{v}\right\}_{v \in \boldsymbol{v}}$ has a set cover of size $\boldsymbol{k}$. (Exercise: Prove this.)

## Vertex Cover $\leq_{\text {p }}$ Set Cover

(3) Instance of Vertex Cover: $\mathbf{G}=\mathbf{( V , E )}$ and integer $\boldsymbol{k}$.
(2) Construct an instance of Set Cover as follows:
(1) Number $\boldsymbol{k}$ for the Set Cover instance is the same as the number $\boldsymbol{k}$ given for the Vertex Cover instance.
(3) Observe that $\mathbf{G}$ has vertex cover of size $\boldsymbol{k}$ if and only if $\boldsymbol{U},\left\{\boldsymbol{S}_{v}\right\}_{v \in \boldsymbol{v}}$ has a set cover of size $\boldsymbol{k}$. (Exercise: Prove this.)

## Vertex Cover $\leq_{\text {p }}$ Set Cover

(3) Instance of Vertex Cover: $\mathbf{G}=\mathbf{( V , E )}$ and integer $\boldsymbol{k}$.
(2) Construct an instance of Set Cover as follows:
(1) Number $\boldsymbol{k}$ for the Set Cover instance is the same as the number $\boldsymbol{k}$ given for the Vertex Cover instance.
(2) $\boldsymbol{U}=\mathrm{E}$.
(3) Observe that $\mathbf{G}$ has vertex cover of size $\boldsymbol{k}$ if and only if $\boldsymbol{U},\left\{\boldsymbol{S}_{v}\right\}_{\boldsymbol{v} \in \boldsymbol{v}}$ has a set cover of size $\boldsymbol{k}$. (Exercise: Prove this.)

## Vertex Cover $\leq_{\text {p }}$ Set Cover

(1) Instance of Vertex Cover: $\mathbf{G}=\mathbf{( V , E )}$ and integer $\boldsymbol{k}$.
(2) Construct an instance of Set Cover as follows:
(1) Number $\boldsymbol{k}$ for the Set Cover instance is the same as the number $\boldsymbol{k}$ given for the Vertex Cover instance.
(2) $U=E$.
(3) We will have one set corresponding to each vertex; $\boldsymbol{S}_{\boldsymbol{v}}=\{\boldsymbol{e} \mid \boldsymbol{e}$ is incident on $\boldsymbol{v}\}$.
(3) Observe that $\mathbf{G}$ has vertex cover of size $\boldsymbol{k}$ if and only if $\boldsymbol{U},\left\{\boldsymbol{S}_{v}\right\}_{\boldsymbol{v} \in \boldsymbol{v}}$ has a set cover of size $\boldsymbol{k}$. (Exercise: Prove this.)

## Vertex Cover $\leq_{\text {p }}$ Set Cover: Example



$$
\begin{aligned}
& \text { Let } U=\{a, b, c, d, e, f, g\} \\
& \boldsymbol{k}=2 \text { with } \\
& \begin{array}{ll}
S_{1}=\{c, g\} & S_{2}=\{b, d\} \\
S_{3}=\{c, d, e\} & S_{4}=\{\boldsymbol{e}, \boldsymbol{f}\} \\
S_{5}=\{a\} & S_{6}=\{a, b, f, g\} \\
\left\{S_{3}, S_{6}\right\} & \text { is a set cover }
\end{array}
\end{aligned}
$$

$\{3,6\}$ is a vertex cover

## Vertex Cover $\leq_{\mathrm{p}}$ Set Cover: Example



Let $\boldsymbol{U}=\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}\}$, $k=2$ with

$$
S_{1}=\{c, g\} \quad S_{2}=\{b, d\}
$$

$$
S_{3}=\{c, d, e\} \quad S_{4}=\{e, f\}
$$

$S_{5}=\{a\}$
$S_{6}=\{a, b, f, g\}$
$\left\{S_{3}, S_{6}\right\}$ is a set cover
$\{3,6\}$ is a vertex cover

31

## Vertex Cover $\leq_{\mathrm{p}}$ Set Cover: Example



$$
\text { Let } \boldsymbol{U}=\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}\}
$$ $k=2$ with

$$
\begin{array}{ll}
S_{1}=\{c, g\} & S_{2}=\{\boldsymbol{b}, \boldsymbol{d}\} \\
S_{3}=\{c, d, e\} & S_{4}=\{e, f\} \\
S_{5}=\{a\} & S_{6}=\{a, b, f \\
\left\{S_{3}, S_{6}\right\} \text { is a set cover }
\end{array}
$$

$\{3,6\}$ is a vertex cover

## Proving Reductions

To prove that $\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ you need to give an algorithm $\mathcal{A}$ that:
(1) Transforms an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}$ into an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of $\boldsymbol{Y}$.
(2) Satisfies the property that answer to $I_{X}$ is $\mathrm{YES} \Longleftrightarrow I_{Y}$ is YES.
(1) typical easy direction to prove: answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES if answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES
(2) typical difficult direction to prove: answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES if answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES (equivalently answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is NO if answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is NO).
(3) Runs in polynomial time.

## Summary

(1) polynomial-time reductions.
(1) If $\boldsymbol{X} \leq_{\boldsymbol{P}} \boldsymbol{Y}+$ have efficient algorithm for $\boldsymbol{Y}$
$\Longrightarrow$ efficient algorithm for $\boldsymbol{X}$.
(2) If $\boldsymbol{X} \leq_{P} \boldsymbol{Y}+$ no efficient algorithm for $\boldsymbol{X}$
$\Longrightarrow$ nO efficient algorithm for $\boldsymbol{Y}$.
(2) Examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

# 2.4: The Satisfiability Problem (SAT) 

## Propositional Formulas

## Definition

Consider a set of boolean variables $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots \boldsymbol{x}_{\boldsymbol{n}}$.
(1) literal: boolean var $x_{i}$ or its negation $\neg x_{i}\left(\equiv \overline{x_{i}}\right)$.
(2) clause: disjunction literals: $x_{1} \vee x_{2} \vee \neg x_{4}$.
(3) conjunctive normal form (CNF) $=$ propositional formula which is a conjunction of clauses

$$
\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge x_{5}: \text { CNF formula. }
$$

(4) A formula $\varphi$ is a 3 CNF :

CNF s.t. every clause has exactly 3 literals.

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{1}\right) \text { is a 3CNF formula, but } \\
& \left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5} \text { is not. }
\end{aligned}
$$

## Satisfiability

## Problem: SAT

Instance: A CNF formula $\varphi$.
Question: Is there a truth assignment to the variable of $\varphi$ such that $\varphi$ evaluates to true?

## Problem: 3SAT

Instance: A 3CNF formula $\varphi$.
Question: Is there a truth assignment to the variable of $\varphi$ such that $\varphi$ evaluates to true?

## Satisfiability

## SAT

Given a CNF formula $\varphi$, is there a truth assignment to variables such that $\varphi$ evaluates to true?

## Example

(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is satisfiable; take $x_{1}, x_{2}, \ldots x_{5}$ to be all true
(2) $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is not satisfiable.

## 3SAT

Given a 3 CNF formula $\varphi$, is there a truth assignment to variables such that $\varphi$ evaluates to true?

## Importance of SAT and 3SAT

(1) SAT, 3SAT: basic constraint satisfaction problems.
(2) Many different problems can reduced to them: simple+powerful expressivity of constraints.
(3) Arise in many hardware/software verification/correctness applications.
© ... fundamental problem of NP-COMPLETEness.
2.4.1: Converting a boolean formula with 3 variables to 3SAT

## $z=\bar{x}$

## Clicker question

Given two bits $\boldsymbol{x}, \boldsymbol{z}$ which of the following SAT formulas is equivalent to the formula $z=\bar{x}$ :

© $(\bar{z} \vee x) \wedge(z \vee \bar{x})$.<br>(1) $(z \vee x) \wedge(\bar{z} \vee \bar{x})$.<br>a $(\bar{z} \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(\bar{z} \vee \bar{x})$.<br>cl $z \oplus x$.<br>(1) $(z \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(z \vee \bar{x}) \wedge(\bar{z} \vee x)$.

## $z=x \wedge y$

## Clicker question

Given three bits $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ which of the following SAT formulas is equivalent to the formula $\boldsymbol{z}=\boldsymbol{x} \wedge \boldsymbol{y}$ :
© $(\bar{z} \vee x \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(1) $(\bar{z} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\bar{z} \vee \bar{x} \vee \boldsymbol{y}) \wedge(z \vee \bar{x} \vee \bar{y})$.
(1) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
© $(z \vee x \vee y) \wedge(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge$
$(\bar{z} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\bar{z} \vee \boldsymbol{x} \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee \boldsymbol{y}) \wedge(\bar{z} \vee \bar{x} \vee \bar{y})$.
© $(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee y)$

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $\\|$ |  | - |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 |  |  |  |
| 0 | 0 | 1 |  |  |  |
| 0 | 1 | 0 |  |  |  |
| 0 | 1 | 1 |  |  |  |
| 1 | 0 | 0 |  |  |  |
| 1 | 0 | 1 |  |  |  |
| 1 | 1 | 0 |  |  |  |
| 1 | 1 | 1 |  |  |  |

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

|  | $x$ | $y$ | $z=x$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 1 |  |  |  |
|  | 0 | 1 | 1 |  |  |  |
| 0 | 1 | 0 | 1 |  |  |  |
|  | 1 | 1 | 0 |  |  |  |
|  | 0 | 0 | 0 |  |  |  |
|  | 0 | 1 | 0 |  |  |  |
|  | 1 | 0 | 0 |  |  |  |
|  | 1 | 1 | 1 |  |  |  |

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \wedge y$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|  |  |  |  |  |  |  |  |

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \wedge y$ | $z \vee \bar{x} \vee \bar{y}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 |  |  |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 |$|$

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \wedge y$ | $z \vee \bar{x} \vee \bar{y}$ | $\bar{z} \vee x \vee y$ |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 |  |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \wedge y$ | $z \vee \bar{x} \vee \bar{y}$ | $\bar{z} \vee x \vee y$ | $\bar{z} \vee x \vee \bar{y}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \wedge y$ | $z \vee \bar{x} \vee \bar{y}$ | $\bar{z} \vee x \vee y$ | $\bar{z} \vee x \vee \bar{y}$ | $\bar{z} \vee \bar{x} \vee y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \wedge y$ | $z \vee \bar{x} \vee \bar{y}$ | $\bar{z} \vee x \vee y$ | $\bar{z} \vee x \vee \bar{y}$ | $\bar{z} \vee \bar{x} \vee y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \wedge y$ | $z \vee \bar{x} \vee \bar{y}$ | $\bar{z} \vee x \vee y$ | $\bar{z} \vee x \vee \bar{y}$ | $\bar{z} \vee \bar{x} \vee y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

$(z=x \wedge y)$
$\equiv$
$(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee y)$

51

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $\mid$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 |  |
| 0 | 0 | 1 |  |
| 0 | 1 | 0 |  |
| 0 | 1 | 1 |  |
| 1 | 0 | 0 |  |
| 1 | 0 | 1 |  |
| 1 | 1 | 0 |  |
| 1 | 1 | 1 |  |
|  |  |  |  |

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \wedge y$ | $\\|$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |  |
| 0 | 0 | 1 | 1 |  |
| 0 | 1 | 0 | 1 |  |
| 0 | 1 | 1 | 0 |  |
| 1 | 0 | 0 | 0 |  |
| 1 | 0 | 1 | 0 |  |
| 1 | 1 | 0 | 0 |  |
| 1 | 1 | 1 | 1 |  |
|  |  |  |  |  |

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \wedge y$ | clauses |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |  |
| 0 | 0 | 1 | 1 |  |
| 0 | 1 | 0 | 1 |  |
| 0 | 1 | 1 | 0 |  |
| 1 | 0 | 0 | 0 |  |
| 1 | 0 | 1 | 0 |  |
| 1 | 1 | 0 | 0 |  |
| 1 | 1 | 1 | 1 |  |

54

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \wedge y$ | clauses |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |  |
| 0 | 0 | 1 | 1 |  |
| 0 | 1 | 0 | 1 |  |
| 0 | 1 | 1 | 0 | $z \vee \bar{x} \vee \bar{y}$ |
| 1 | 0 | 0 | 0 | $\bar{z} \vee x \vee y$ |
| 1 | 0 | 1 | 0 | $\bar{z} \vee x \vee y$ |
| 1 | 1 | 0 | 0 | $\bar{z} \vee x \vee y$ |
| 1 | 1 | 1 | 1 |  |

## Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \wedge y$ | clauses |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |  |
| 0 | 0 | 1 | 1 |  |
| 0 | 1 | 0 | 1 |  |
| 0 | 1 | 1 | 0 | $z \vee \bar{x} \vee \bar{y}$ |
| 1 | 0 | 0 | 0 | $\bar{z} \vee x \vee y$ |
| 1 | 0 | 1 | 0 | $\bar{z} \vee x \vee y$ |
| 1 | 1 | 0 | 0 | $\bar{z} \vee x \vee y$ |
| 1 | 1 | 1 | 1 |  |

$$
\begin{aligned}
& (z=x \wedge y) \\
& \equiv
\end{aligned}
$$

$$
(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee y)
$$

56

## Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

## Simplify further if you want to

(1) Using that $(\boldsymbol{x} \vee \boldsymbol{y}) \wedge(\boldsymbol{x} \vee \overline{\boldsymbol{y}})=\boldsymbol{x}$, we have that:

$$
\begin{aligned}
& \text { (1) }(\bar{z} \vee x \vee u) \wedge(\bar{z} \vee x \vee \bar{y})=(\bar{z} \vee x) \\
& \text { (2) }(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y)=(\bar{z} \vee y)
\end{aligned}
$$

(2) Using the above two observation, we have that our formula $\psi \equiv$ $(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \overline{\boldsymbol{x}} \vee \boldsymbol{y})$ is equivalent to $\boldsymbol{\psi} \equiv(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{y})$

## Lemma

$$
(z=x \wedge y) \equiv(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x) \wedge(\bar{z} \vee y)
$$

## $z=x \vee y$

## Clicker question

Given three bits $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ which of the following SAT formulas is equivalent to the formula $\boldsymbol{z}=\boldsymbol{x} \vee \boldsymbol{y}$ :
© $(\bar{z} \vee x \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee \bar{y})$.
a $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(1) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(1) $(z \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
cl $(z \vee x \vee y) \wedge(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge$ $(\bar{z} \vee x \vee \boldsymbol{y}) \wedge(\bar{z} \vee \boldsymbol{x} \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee \boldsymbol{y}) \wedge(\bar{z} \vee \bar{x} \vee \bar{y})$.

## Converting $z=x \vee y$ to 3SAT

| $z$ | $x$ | $y$ | $\mid$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 |  |
| 0 | 0 | 1 |  |
| 0 | 1 | 0 |  |
| 0 | 1 | 1 |  |
| 1 | 0 | 0 |  |
| 1 | 0 | 1 |  |
| 1 | 1 | 0 |  |
| 1 | 1 | 1 |  |
|  |  |  |  |

## Converting $z=x \vee y$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \vee y$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |
|  |  |  |  |

## Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \vee y$ | clauses |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |  |
| 0 | 0 | 1 | 0 |  |
| 0 | 1 | 0 | 0 |  |
| 0 | 1 | 1 | 0 |  |
| 1 | 0 | 0 | 0 |  |
| 1 | 0 | 1 | 1 |  |
| 1 | 1 | 0 | 1 |  |
| 1 | 1 | 1 | 1 |  |

61

## Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \vee y$ | clauses |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |  |
| 0 | 0 | 1 | 0 | $z \vee x \vee \bar{y}$ |
| 0 | 1 | 0 | 0 | $z \vee \bar{x} \vee y$ |
| 0 | 1 | 1 | 0 | $z \vee \bar{x} \vee \bar{y}$ |
| 1 | 0 | 0 | 0 | $\bar{z} \vee x \vee y$ |
| 1 | 0 | 1 | 1 |  |
| 1 | 1 | 0 | 1 |  |
| 1 | 1 | 1 | 1 |  |

## Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

| $z$ | $x$ | $y$ | $z=x \vee y$ | clauses |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |  |
| 0 | 0 | 1 | 0 | $z \vee x \vee \bar{y}$ |
| 0 | 1 | 0 | 0 | $z \vee \bar{x} \vee y$ |
| 0 | 1 | 1 | 0 | $z \vee \bar{x} \vee \bar{y}$ |
| 1 | 0 | 0 | 0 | $\bar{z} \vee x \vee y$ |
| 1 | 0 | 1 | 1 |  |
| 1 | 1 | 0 | 1 |  |
| 1 | 1 | 1 | 1 |  |

$$
\begin{aligned}
& (z=x \vee y) \\
& \equiv
\end{aligned}
$$

$$
(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y)
$$

## Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

## Simplify further if you want to

$(z=x \vee y) \equiv(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y)$
(1) Using that $(x \vee y) \wedge(x \vee \bar{y})=x$, we have that:
(1) $(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{y}$.
(2) $(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{x}$
(2) Using the above two observation, we have the following.

## Lemma

The formula $\boldsymbol{z}=\boldsymbol{x} \vee \boldsymbol{y}$ is equivalent to the CNF formula

$$
(z=x \vee y) \equiv(z \vee \bar{y}) \wedge(z \vee \bar{x}) \wedge(\bar{z} \vee x \vee y)
$$

## Converting $z=\bar{x}$ to

## Lemma

$$
z=\bar{x} \quad \equiv \quad(z \vee x) \wedge(\bar{z} \vee \bar{x}) .
$$

## Converting into CNF: summary

## Lemma

$$
\begin{array}{rll}
z=\bar{x} & \equiv & (z \vee x) \wedge(\bar{z} \vee \bar{x}) . \\
z=x \vee y & \equiv & (z \vee \bar{y}) \wedge(z \vee \bar{x}) \wedge(\bar{z} \vee x \vee y) \\
z=x \wedge y & \equiv & (z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x) \wedge(\bar{z} \vee y)
\end{array}
$$

## Exercise...

## - Given:

(1) $f\left(x_{1}, \ldots, x_{d}\right)$ a boolean function
(2) Formally: $f:\{0,1\}^{d} \rightarrow\{0,1\}$.
(2) Prove that there is CNF formula that computes $\boldsymbol{f}$.
(3) Prove that there is 3 CNF formula that computes $\boldsymbol{f}$.

### 2.4.2: SAT and 3SAT

68

## SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$

## How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:

$$
(x \vee y \vee z \vee w \vee u) \wedge(\neg x \vee \neg y \vee \neg z \vee w \vee u) \wedge(\neg x)
$$

In 3SAT every clause must have exactly 3 different literals.
Reduce from of SAT to 3SAT: make all clauses to have $\mathbf{3}$ variables...

## Basic idea

(1) Pad short clauses so they have 3 literals.
(2) Break long clauses into shorter clauses.
(3) Repeat the above till we have a 3 CNF .

## 3 SAT $\leq \mathrm{p}$ SAT

- 3 SAT $\leq{ }_{p}$ SAT.
(2) Because...

A 3SAT instance is also an instance of SAT.

## SAT $\leq \mathrm{p} 3 \mathrm{SAT}$

## Claim

## $S A T \leq_{p} 3 S A T$.

Given $\varphi$ a SAT formula we create a 3SAT formula $\varphi^{\prime}$ such that (1) $\varphi$ is satisfiable iff $\varphi^{\prime}$ is satisfiable.
(2) $\varphi^{\prime}$ can be constructed from $\varphi$ in time polynomial in $|\varphi|$.

Idea: if a clause of $\varphi$ is not of length $\mathbf{3}$, replace it with several clauses of length exactly 3.

## SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$

A clause with a single literal

## Reduction Ideas

Challenge: Some clauses in $\varphi$ \# liters $\neq 3$.
$\forall$ clauses with $\neq 3$ literals: construct set logically equivalent clauses.
(1) Clause with one literal: $\boldsymbol{c}=\boldsymbol{\ell}$ clause with a single literal. $\boldsymbol{u}, \boldsymbol{v}$ be new variables. Consider

$$
\begin{aligned}
c^{\prime}= & (\ell \vee u \vee v) \wedge(\ell \vee u \vee \neg v) \\
& \wedge(\ell \vee \neg u \vee v) \wedge(\ell \vee \neg u \vee \neg v) .
\end{aligned}
$$

Observe: $c^{\prime}$ satisfiable $\Longleftrightarrow c$ is satisfiable

## SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$

A clause with two literals

## Reduction Ideas: 2 and more literals

(1) Case clause with 2 literals: Let $\boldsymbol{c}=\boldsymbol{\ell}_{1} \vee \boldsymbol{\ell}_{2}$. Let $\boldsymbol{u}$ be a new variable. Consider

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \vee u\right) \wedge\left(\ell_{1} \vee \ell_{2} \vee \neg u\right)
$$

$\boldsymbol{c}$ is satisfiable $\Longleftrightarrow \boldsymbol{c}^{\prime}$ is satisfiable

## Breaking a clause

## Lemma

For any boolean formulas $\boldsymbol{X}$ and $\boldsymbol{Y}$ and $\boldsymbol{z}$ a new boolean variable. Then

## $\boldsymbol{X} \vee \boldsymbol{Y}$ is satisfiable

if and only if, $\mathbf{z}$ can be assigned a value such that

$$
(X \vee z) \wedge(Y \vee \neg z) \text { is satisfiable }
$$

(with the same assignment to the variables appearing in $\boldsymbol{X}$ and $\boldsymbol{Y}$ ).

## SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$ (contd)

## Clauses with more than 3 literals

Let $\boldsymbol{c}=\ell_{1} \vee \cdots \vee \boldsymbol{\ell}_{\boldsymbol{k}}$. Let $\boldsymbol{u}_{\boldsymbol{1}}, \ldots \boldsymbol{u}_{\boldsymbol{k}-3}$ be new variables. Consider

$$
\begin{aligned}
c^{\prime}= & \left(\ell_{1} \vee \ell_{2} \vee u_{1}\right) \wedge\left(\ell_{3} \vee \neg u_{1} \vee u_{2}\right) \\
& \wedge\left(\ell_{4} \vee \neg u_{2} \vee u_{3}\right) \wedge \\
& \cdots \wedge\left(\ell_{k-2} \vee \neg u_{k-4} \vee u_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u_{k-3}\right)
\end{aligned}
$$

## Claim

$\boldsymbol{c}$ is satisfiable $\Longleftrightarrow \boldsymbol{c}^{\prime}$ is satisfiable.
Another way to see it - reduce size clause by one \& repeat:

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \ldots \vee \ell_{k-2} \vee u_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u_{k-3}\right)
$$

## An Example

## Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right) .
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\boldsymbol{\psi}= & \left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \boldsymbol{z}\right) \wedge\left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \neg \boldsymbol{z}\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg y_{1}\right) \\
& \wedge\left(x_{1} \vee u \vee \vee\right) \wedge\left(x_{1} \vee u \vee \neg \vee\right) \\
& \wedge\left(x_{1} \vee \neg u \vee \vee\right) \wedge\left(x_{1} \vee \neg u \vee \neg v\right) .
\end{aligned}
$$

## An Example

## Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right) .
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\psi= & \left(\neg x_{1} \vee \neg x_{4} \vee z\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg z\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
\end{aligned}
$$

$$
\wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg y_{1}\right)
$$

$$
\wedge\left(x_{1} \vee u \vee v\right) \wedge\left(x_{1} \vee u \vee \neg v\right)
$$

$$
\wedge\left(x_{1} \vee \neg u \vee v\right) \wedge\left(x_{1} \vee \neg u \vee \neg v\right)
$$

## An Example

## Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right) .
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\psi= & \left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \mathbf{z}\right) \wedge\left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \neg \mathbf{z}\right) \\
& \wedge\left(\boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{2}} \vee \neg \boldsymbol{x}_{\mathbf{3}}\right) \\
& \wedge\left(\neg \boldsymbol{x}_{\mathbf{2}} \vee \neg \boldsymbol{x}_{\mathbf{3}} \vee \boldsymbol{y}_{\mathbf{1}}\right) \wedge\left(\boldsymbol{x}_{\mathbf{4}} \vee \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{y}_{\mathbf{1}}\right) \\
& \wedge\left(x_{1} \vee u \vee \vee\right) \wedge\left(x_{1} \vee u \vee \neg v\right) \\
& \wedge\left(x_{1} \vee \neg u \vee \vee\right) \wedge\left(x_{1} \vee \neg u \vee \neg v\right) .
\end{aligned}
$$

## An Example

## Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right) .
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\psi= & \left(\neg x_{1} \vee \neg x_{4} \vee z\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg z\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg y_{1}\right) \\
& \wedge\left(x_{1} \vee u \vee v\right) \wedge\left(x_{1} \vee u \vee \neg v\right) \\
& \wedge\left(x_{1} \vee \neg u \vee v\right) \wedge\left(x_{1} \vee \neg u \vee \neg v\right)
\end{aligned}
$$

## Overall Reduction Algorithm

## Reduction from SAT to 3SAT

```
ReduceSATTo3SAT(\varphi):
    // \varphi: CNF formula.
    for each clause c of }\varphi\mathrm{ do
    if c does not have exactly 3 literals then
                construct c' as before
        else
        c
    \psi is conjunction of all c' constructed in loop
return Solver3SAT(\psi)
```


## Correctness (informal)

$\varphi$ is satisfiable $\Longleftrightarrow \psi$ satisfiable
$\ldots \forall \boldsymbol{c} \in \boldsymbol{\varphi}$ : new 3 CNF formula $\boldsymbol{c}^{\prime}$ is equivalent to $\boldsymbol{c}$.

## Running time of converting SAT to 3SAT?

## Clicker question

Let $\boldsymbol{\psi}$ be a SAT formula with $\boldsymbol{n}$ variables and $\boldsymbol{m}$ clauses, of total length $\boldsymbol{t}$. Converting it to 3SAT can be done in
(A) $\boldsymbol{O}(n+m+t)$ time.
(B) $\boldsymbol{O}\left((n+m+t)^{2}\right)$ time.
(0) $O\left((n+m+t)^{3}\right)$ time.
(D) $O\left((n+m+t)^{4}\right)$ time.
(©) $\mathrm{O}(1)$ time.
(A) $\boldsymbol{O}\left(\boldsymbol{t}^{\mathbf{2}}\right)$ time.
(Faster is better, naturally.)

## What about 2SAT?

(1) 2SAT can be solved in poly time! (specifically, linear time!)
(2) No poly time reduction from SAT (or 3SAT) to 2SAT.
(0) If $\exists$ reduction $\Longrightarrow$ SAT, 3SAT solvable in polynomial time.

## Why the reduction from 3SAT to 2SAT fails?

( $x \vee y \vee z$ ): clause.
convert to collection of 2 CNF clauses. Introduce a fake variable $\alpha$, and rewrite this as

$$
\begin{array}{lll} 
& (x \vee y \vee \alpha) \wedge(\neg \alpha \vee z) & \text { (bad! clause with } 3 \text { vars) } \\
\text { or } \quad(x \vee \alpha) \wedge(\neg \alpha \vee y \vee z) & \text { (bad! clause with 3 vars). }
\end{array}
$$

(In animal farm language: 2SAT good, 3SAT bad.) 82
2.4.3: Reducing 3SAT to Independent Set

## Independent Set

## Problem: Independent Set

Instance: A graph G, integer $\boldsymbol{k}$.
Question: Is there an independent set in $\mathbf{G}$ of size $\boldsymbol{k}$ ?

## 3 SAT $\leq_{p}$ Independent Set

## The reduction 3 SAT $\leq_{\mathrm{p}}$ Independent Set

Input: Given a 3CNF formula $\varphi$
Goal: Construct a graph $\boldsymbol{G}_{\varphi}$ and number $\boldsymbol{k}$ such that $\boldsymbol{G}_{\varphi}$ has an independent set of size $\boldsymbol{k}$ if and only if $\varphi$ is satisfiable.
$\boldsymbol{G}_{\varphi}$ should be constructable in time polynomial in size of $\varphi$
(1) Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
(2) Notice: Handle only 3CNF formulas (fails for other kinds of boolean formulas).

## Interpreting 3SAT

There are two ways to think about 3SAT
(1) Assign 0/1 (false/true) to vars $\Longrightarrow$ formula evaluates to true. Each clause evaluates to true.
(2) Pick literal from each clause \& find assignment s.t. all true. Use second view of 3SAT for reduction.

## Interpreting 3SAT

There are two ways to think about 3SAT
(1) Assign $0 / 1$ (false/true) to vars $\Longrightarrow$ formula evaluates to true. Each clause evaluates to true.
(2) Pick literal from each clause \& find assignment s.t. all true. Use second view of 3SAT for reduction.

## Interpreting 3SAT

There are two ways to think about 3SAT
(1) Assign $0 / 1$ (false/true) to vars $\Longrightarrow$ formula evaluates to true. Each clause evaluates to true.
(2) Pick literal from each clause \& find assignment s.t. all true. Use second view of 3SAT for reduction.

## Interpreting 3SAT

There are two ways to think about 3SAT
(1) Assign $0 / 1$ (false/true) to vars $\Longrightarrow$ formula evaluates to true. Each clause evaluates to true.
(2) Pick literal from each clause \& find assignment s.t. all true.
... Fail if two literals picked are in conflict,
Use second view of 3SAT for reduction.

## Interpreting 3SAT

There are two ways to think about 3SAT
(1) Assign $0 / 1$ (false/true) to vars $\Longrightarrow$ formula evaluates to true. Each clause evaluates to true.
(2) Pick literal from each clause \& find assignment s.t. all true.
... Fail if two literals picked are in conflict,
e.g. you pick $\boldsymbol{x}_{\boldsymbol{i}}$ and $\neg \boldsymbol{x}_{\boldsymbol{i}}$

Use second view of 3SAT for reduction.

## Interpreting 3SAT

There are two ways to think about 3SAT
(1) Assign $0 / 1$ (false/true) to vars $\Longrightarrow$ formula evaluates to true. Each clause evaluates to true.
(2) Pick literal from each clause \& find assignment s.t. all true.
... Fail if two literals picked are in conflict,
e.g. you pick $\boldsymbol{x}_{\boldsymbol{i}}$ and $\neg \boldsymbol{x}_{\boldsymbol{i}}$

Use second view of 3SAT for reduction.

## The Reduction

(1) $\boldsymbol{G}_{\varphi}$ will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(3) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
( Take $k$ to be the number of clauses


Figure: $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$ 92

## The Reduction

(1) $\boldsymbol{G}_{\varphi}$ will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

## - Connect 2 vertices if they label complementary literals; this

ensures that the literals corresponding to the independent set do not have a conflict


Figure: $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## The Reduction

(1) $G_{\varphi}$ will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(3) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict


Figure: $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## The Reduction

(1) $G_{\varphi}$ will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(3) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict


Figure: $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## The Reduction

(1) $\boldsymbol{G}_{\varphi}$ will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(3) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
(9) Take $\boldsymbol{k}$ to be the number of clauses


Figure: $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## Correctness

## Proposition

$\varphi$ is satisfiable $\Longleftrightarrow \boldsymbol{G}_{\varphi}$ has an independent set of size $\boldsymbol{k}$ $\boldsymbol{k}$ : number of clauses in $\varphi$.

## Proof.

$\Rightarrow$ a: truth assignment satisfying $\varphi$
(1) Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size

## Correctness

## Proposition

$\varphi$ is satisfiable $\Longleftrightarrow \boldsymbol{G}_{\varphi}$ has an independent set of size $\boldsymbol{k}$ $\boldsymbol{k}$ : number of clauses in $\varphi$.

## Proof.

$\Rightarrow$ a: truth assignment satisfying $\varphi$
(1) Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size

## Correctness (contd)

## Proposition

$\varphi$ is satisfiable $\Longleftrightarrow \boldsymbol{G}_{\varphi}$ has an independent set of size $\boldsymbol{k}$ (= number of clauses in $\varphi$ ).

## Proof.

$\Leftarrow \boldsymbol{S}$ : independent set in $\boldsymbol{G}_{\varphi}$ of size $\boldsymbol{k}$
(1) $S$ must contain exactly one vertex from each clause
(2) $S$ cannot contain vertices labeled by conflicting clauses
(3) Thus, it is possible to obtain a truth assignment that makes in the literals in $\boldsymbol{S}$ true; such an assignment satisfies one literal in every clause

## 3 SAT $\leq_{\mathrm{p}}$ Independent Set reduction time?

## Clicker question

Given an instance of 3SAT formula with $\boldsymbol{n}$ variables, $\boldsymbol{m}$ clauses, converting it to an equivalent instance of 3SAT takes:
(a) $O(n+m)$.
(8) $O\left(n^{2}+m\right)$
(c) $O\left(n+m^{2}\right)$
(©) $O\left((n+m)^{2}\right)$
(©) $O\left((n+m)^{3}\right)$

