
Chapter 38

Streaming

I don’t know why it should be, I am sure; but the sight of another man asleep in bed when I am up, maddens me.
It seems to me so shocking to see the precious hours of a man’s life - the priceless moments that will never come
back to him again - being wasted in mere brutish sleep.

Jerome K. Jerome, Three men in a boat
By Sariel Har-Peled, December 2, 2021¬

38.1. How to sample a stream
Imagine that you are given a stream of elements 𝑠1, 𝑠2, . . ., and you need to sample 𝑘 numbers from this
stream (say, without repetition) – assume that you do not know the length of the stream in advance,
and furthermore, you have only 𝑂 (𝑘) space available for you. How to do that efficiently?

There are two natural schemes:
(A) Whenever an element arrives, generate a random number for it in the range [0, 1]. Maintain a

heap with the 𝑘 elements with the lowest priority. Implemented naively this requires 𝑂 (log 𝑘)
comparisons after each insertion, but it is not difficult to improve this to 𝑂 (1) comparisons in the
amortized sense per insertion. Clearly, the resulting set is the desired random sample

(B) Let 𝑆𝑡 be the random sample maintained in the 𝑡th iteration. When the 𝑖th element arrives, the
algorithm flip a coin that is heads with probability min(1, 𝑘/𝑖). If the coin is heads then it inserts
𝑠𝑖 to 𝑆𝑖−1 to get 𝑆𝑖. If 𝑆𝑖−1 already have 𝑘 elements, then first randomly delete one of the elements.

Theorem 38.1.1. Given a stream of elements, one can uniformly sample 𝑘 elements (without repeti-
tion), from the stream using 𝑂 (𝑘) space, where 𝑂 (1) time is spent for handling each incoming element.

Proof: We implement the scheme (B) above. We only need to argue that this is a uniform random
sample. The claim trivially hold for 𝑖 = 𝑘. So assume the claim holds for 𝑖 < 𝑡, and we need to prove
that the set after getting 𝑡th element is still a uniform random sample.

So, consider a specific set 𝐾 ⊆ {𝑠1, . . . , 𝑠𝑡} of 𝑘 elements. The probability of 𝐾 to be a random
sample of size 𝑘 from a set of 𝑡 elements is 1/

(𝑡
𝑘

)
. We need to argue that this probability remains the

same for this scheme.
So, if 𝑠𝑡 ∉ 𝐾, then we have

P[𝐾 = 𝑆𝑡] = P[𝐾 = 𝑆𝑡−1 and 𝑠𝑡 was not inserted] = 1(𝑡−1
𝑘

) (1 − 𝑘

𝑡

)
=
𝑘!(𝑡 − 1 − 𝑘)!(𝑡 − 𝑘)

(𝑡 − 1)!𝑡 =
1(𝑡
𝑘

) .
¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

If 𝑠𝑡 ∈ 𝐾, then

P
[
𝐾 = 𝑆𝑡

]
= P


𝐾 \ {𝑠𝑡} ⊆ 𝑆𝑡−1,
𝑠𝑡 was inserted

and 𝑆𝑡−1 \ 𝐾 thrown out of 𝑆𝑡−1

 =
𝑡 − 1 − (𝑘 − 1)(𝑡−1

𝑘

) ��𝑘

𝑡

1
��𝑘
=

(𝑡 − 𝑘)𝑘!(𝑡 − 1 − 𝑘)!
(𝑡 − 1)!𝑡 =

1(𝑡
𝑘

) ,
as desired. Indeed, there are 𝑡 − 1 − (𝑘 − 1) subsets of size 𝑘 of {𝑠1, . . . , 𝑠𝑡−1} that contains 𝐾 \ {𝑠𝑡} –
since we fix 𝑘 − 1 of the 𝑡 − 1 elements.

38.2. Sampling and median selection
Let 𝐵[1, . . . , 𝑛] be a set of 𝑛 numbers. We would like to estimate the median, without computing it
outright. A natural idea, would be to pick 𝑘 elements 𝑒1, . . . , 𝑒𝑘 randomly from 𝐵, and return their
median as the guess for the median of 𝐵.

In the following, let 𝑅
𝐵
(𝑡) be the 𝑡th smallest number in the array 𝐵.

Observation 38.2.1. For 𝜀 ∈ (0, 1), we have that 1
1−𝜀 ≥ 1 + 𝜀.

Lemma 38.2.2. Let 𝜀 ∈ (0, 1/2), and let 𝑘 =
⌈12
𝜀2 ln 2

𝛿

⌉
. Let 𝑍 be the median of the random sample of 𝐵

of size 𝑘. We have that

P

[
𝑅
𝐵

(1 − 𝜀
2 𝑛

)
≤ 𝑍 ≤ 𝑅𝐵

(1 + 𝜀
2 𝑛

)]
≥ 1 − 𝛿.

Namely, with probability at least 1 − 𝛿, the returned value 𝑍 is (𝜀/2)𝑛 positions away from the true
median.

Proof: Let 𝐿 = 𝑅
𝐵
((1 − 𝜀)𝑛/2). Let 𝑋𝑖 = 1 if and only if 𝑒𝑖 ≤ 𝐿. We have that

P[𝑋𝑖 = 1] = (1 − 𝜀)𝑛/2
𝑛

=
1 − 𝜀

2 .

As such, setting 𝑌 =
∑𝑘
𝑖=1 𝑋𝑖, we have

𝜇 = E[𝑌] =
1 − 𝜀

2 𝑘 ≥ 𝑘

4 ≥ 3
𝜀2 ln 2

𝛿
.

One case is that the algorithm fails, if 𝑌 ≥ 𝑘/2. We have that

P[𝑌 ≥ 𝑘/2] = P
[
𝑌 ≥ 1/2

(1 − 𝜀)/2 · 1 − 𝜀
2 𝑘

]
= P[𝑌 ≥ (1 + 𝜀)𝜇] ≤ exp

(
−𝜀2𝜇/3

)
≤ exp

(
−𝜀2 · 3

𝜀2 ln 2
𝛿

)
≤ 𝛿

2 .

by Chernoff’s inequality (see Theorem 38.5.1).
This implies that P

[
𝑅
𝐵
((1 − 𝜀)𝑛/2) > 𝑍

]
≤ 𝛿/2.

The claim now follows by realizing that by symmetry (i.e., revering the order), we have that
P
[
𝑍 > 𝑅

𝐵
((1 + 𝜀)𝑛/2)

]
≤ 𝛿/2, and putting these two inequalities together.

The above already implies that we can get a good estimate for the median. We need something some-
what stronger – we state it without proof since it follows by similarly mucking around with Chernoff’s
inequality.

2

Lemma 38.2.3. Let 𝜀 ∈ (0, 1/2), let 𝐵 an array of 𝑛 elements, and let 𝑆 = {𝑒1, . . . , 𝑒𝑘 } be a set of 𝑘
samples picked uniformly and randomly from 𝐵. Then, for some absolute constant 𝑐, and an integer 𝑘,
such that 𝑘 ≥

⌈
𝑐
𝜀2 ln 1

𝛿

⌉
, we have that

P
[
𝑅𝑆 (𝑘−) ≤ 𝑅𝐵 (𝑛/2) ≤ 𝑅𝑆

(
𝑘+
)]

≥ 1 − 𝛿.

for 𝑘− = b(1 − 𝜀)𝑘/2c, and 𝑘+ = b(1 + 𝜀)𝑘/2c.
One can prove even a stronger statement:

P
[
𝑅𝐵 ((1 − 2𝜀)𝑛/2) ≤ 𝑅𝑆 ((1 − 𝜀)𝑘/2) ≤ 𝑅𝐵 (𝑛/2) ≤ 𝑅𝑆 ((1 + 𝜀)𝑘/2) ≤ 𝑅𝐵 ((1 + 2𝜀)𝑛/2)

]
≥ 1 − 𝛿

(the constant 𝑐 would have to be slightly bigger).

38.2.1. A median selection with few comparisons
The above suggests a natural algorithm for computing the median (i.e., the element of rank 𝑛/2 in 𝐵).
Pick a random sample 𝑆 of 𝑘 = 𝑂 (

√
𝑛 log 𝑛) elements. Next, sort 𝑆, and pick the elements 𝐿 and 𝑅 of

ranks (1 − 𝜀)𝑘 and (1 + 𝜀)𝑘 in 𝑆, respectively. Next, scan the elements, and compare them to 𝐿 and 𝑅,
and keep only the elements that are between. In the end of this process, we have computed:
(A) 𝛼: The rank of the number 𝐿 in the set 𝐵.
(B) 𝑇 = {𝑥 ∈ 𝐵 | 𝐿 ≤ 𝑥 ≤ 𝐻}.

Compute, by brute force (i.e., sorting) the element of rank 𝑛/2−𝛼 in 𝑇 . Return it as the desired median.
If 𝑛/2 − 𝛼 is negative, then the algorithm failed, and it tries again.

Lemma 38.2.4. The above algorithm performs 2𝑛 +𝑂 (𝑛3/4 log 𝑛) comparisons, and reports the median.
This holds with high probability.

Proof: Set 𝜀 = 1/𝑛1/4, and 𝛿 = 1/𝑛𝑂 (1), and observe that Lemma 38.2.3 implies that with probability
≥ 1− 1/𝛿, we have that the desired median is between 𝐿 and 𝐻. In addition, Lemma 38.2.3 also implies
that |𝑇 | ≤ 4𝜀𝑛 ≤ 4𝑛3/4, which readily implies the correctness of the algorithm.

As for the bound on the number of comparisons, we have, with high probability, that the number of
comparisons is

𝑂 (|𝑆 | log |𝑆 | + |𝑇 | log |𝑇 |) + 2𝑛 = 𝑂
(√
𝑛 log2 𝑛 + 𝑛3/4 log 𝑛

)
+ 2𝑛,

since deciding if an element is between 𝐿 and 𝐻 requires two comparisons.

Lemma 38.2.5. The above algorithm can be modified to perform (3/2)𝑛 + 𝑂 (𝑛3/4 log 𝑛) comparisons,
and reports the median correctly. This holds with high probability.

Proof: The trick is to randomly compare each element either first to 𝐿 or first to 𝐻 with equal probability.
For elements that are either smaller than 𝐿 or bigger than 𝐻, this requires (3/2)𝑛 comparisons in
expectation. Thus improving the bound from 2𝑛 to (3/2)𝑛.

Remark 38.2.6. Note, that if we know, as in this case, that 𝐿 and 𝐻 are in the middle, than it is not
needed to do the random comparisons trick used above – indeed, just regular algorithm would work.
This trick makes sense only if do not know the rank of 𝐿 and 𝐻 in the real array, but only know that
they are close together. Then, the random comparisons trick does work better than the deterministic
approach.

3

Lemma 38.2.7. Consider a stream 𝐵 of 𝑛 numbers, and assume we can make two passes over the data.
Then, one can compute exactly the median of 𝐵 using:

(I) 𝑂 (𝑛3/4) space.
(II) 1.5𝑛 +𝑂 (𝑛3/4 log 𝑛) comparisons.

The algorithm reports the median correctly, and it succeeds with high probability.

Proof: Implement the above algorithm, using the random sampling from Theorem 38.1.1.

38.3. Big data and the streaming model
Here, we are interested in doing some computational tasks when the amount of data we have to handle
is quite large (think terabytes or larger). The main challenge in many of these cases is that even reading
the data once is expensive. Running times of 𝑂 (𝑛 log 𝑛) might not be acceptable. Furthermore, in many
cases, we can not load all the data into memory.

In the streaming model, one reads the data as it comes in, but one can not afford to keep all the
data. A natural example would be a internet router, which has gazillion of packets going through it
every minute. We might still be interested in natural questions about these packets, but we want to do
this without storing all the packets.

38.4. Heavy hitters
Imagine a stream 𝑠1, . . ., where elements might repeat, and we would like to maintain a list of elements
that appear at least 𝜀𝑛 times. We present a simple but clever scheme that maintains such a list.

The algorithm. To this end, let
𝑘 = d1/𝜀e .

At each point in time, we maintain a set 𝑆 of 𝑘 elements, with a counter for each element. Let 𝑆𝑡 be
the version of 𝑆 after 𝑡 were inserted. When 𝑠𝑡+1 arrives, we increase its counter if it is already in 𝑆𝑡 . If
|𝑆𝑡 | < 𝑘, then we just insert 𝑠𝑡+1 to the set, and set its counter to 1. Otherwise, |𝑆𝑡 | = 𝑘 and 𝑠𝑡+1 ∉ 𝑆𝑡 .
We then decrease all the 𝑘 counters of elements in 𝑆𝑡 by 1. If a counter of an element in 𝑆𝑡+1 is zero,
then we delete it from the set.

38.5. Chernoff inequality
Proving the specific form of Chernoff’s inequality we need is outside our scope. The interested reader is
referred to notes here https://sarielhp.org/p/notes/16/chernoff/chernoff.pdf. We next state
what we need:
Theorem 38.5.1. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent Bernoulli trials, where P[𝑋𝑖 = 1] = 𝑝𝑖, and P[𝑋𝑖 = 0] =
1 − 𝑝𝑖, for 𝑖 = 1, . . . , 𝑛. Let 𝑋 =

∑𝑏
𝑖=1 𝑋𝑖, and 𝜇 = E

[
𝑋
]
=
∑
𝑖 𝑝𝑖. For 𝛿, ∈ (0, 1), we have

P
[
𝑋 > (1 + 𝛿)𝜇

]
< exp

(
−𝜇𝛿2/3

)
.

Bibliography

4

https://sarielhp.org/p/notes/16/chernoff/chernoff.pdf

	Streaming
	How to sample a stream
	Sampling and median selection
	A median selection with few comparisons

	Big data and the streaming model
	Heavy hitters
	Chernoff inequality

	Bibliography

