
Chapter 34

Matchings
By Sariel Har-Peled, December 2, 2021¬ Version: 0.3

I’ve never touched the hard stuff, only smoked grass a few times with the boys to be polite, and that’s all, though
ten is the age when the big guys come around teaching you all sorts to things. But happiness doesn’t mean much
to me, I still think life is better. Happiness is a mean son of a bitch and needs to be put in his place. Him and me
aren’t on the same team, and I’m cutting him dead. I’ve never gone in for politics, because somebody always stand
to gain by it, but happiness is an even crummier racket, and their ought to be laws to put it out of business.

Momo, Emile Ajar

34.1. Definitions and basic properties

34.1.1. Definitions
Definition 34.1.1. For a graph G = (V, E) a set 𝑀 ⊆ E of edges is a matching if no pair of edges of 𝑀
has a common vertex.

Definition 34.1.2. A matching is perfect if it covers all the vertices of G. For a weight function 𝑤, which
assigns real weight to the edges of G, a matching 𝑀 is a maximum weight matching, if 𝑀 is a
matching and 𝑤(𝑀) = ∑

𝑒∈𝑀 𝑤(𝑒) is maximum.

Definition 34.1.3. A matching 𝑀 is a maximal, if 𝑀 is a matching and it can not be made bigger by
adding any edge.

Thus, a maximal matching is locally optimal, while a maximum matching is the global largest/heaviest
possible matching.
Problem 34.1.4 (Maximum size matching). If there is no weight on the edges, we consider the weight of
every edge to be one, and in this case, we are trying to compute a maximum size matching (aka
maximum cardinality matching).

Problem 34.1.5 (Maximum weight matching). Given a graph G and a weight function on the edges, com-
pute the maximum weight matching in G.

Remark 34.1.6. There is a simple way to compute a maximum size matching in a bipartite graph using
network flow. Here we present an alternative algorithm that does not use network flow.

34.1.2. Matchings and alternating paths
Consider a matching 𝑀. An edge 𝑒 ∈ 𝑀 is a matching edge. Naturally, Any edge 𝑒′ ∈ E(G) \ 𝑀 is
free. In particular, a vertex 𝑣 ∈ V(G) is matched if it is adjacent to an edge in 𝑀. Naturally, a vertex
𝑣′ which is not matched is free.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

e

e′

1

2 3

4

5

6

e

e′

1

2 3

4

5

6

e

e′

1

2 3

4

5

6

(A) (B) (C) (D)

Figure 34.1: (A) The input graph. (B) A maximal matching in G. The edge 𝑒 is free, and vertices 1 and
4 are free. (C) An alternating path. (D) The resulting matching from applying the augmenting path.

An alternating path is a simple path that its edges are alternately matched and free. An alter-
nating cycle is defined similarly. The length of a path/cycle is the number of edges in it.

Definition 34.1.7. A path 𝜋 = 𝑣1𝑣2, . . . , 𝑣2𝑘+2 is an augmenting path for a matching 𝑀 in a graph G if
(i) 𝜋 is simple,
(ii) for all 𝑖, 𝑒𝑖 = 𝑣𝑖𝑣𝑖+1 ∈ E(G),
(iii) 𝑣1 and 𝑣2𝑘+2 are free vertices for 𝑀,
(iv) 𝑒1, 𝑒3, . . . , 𝑒2𝑘+1 ∉ 𝑀, and
(v) 𝑒2, 𝑒4, . . . , 𝑒2𝑘 ∈ 𝑀.

An augmenting path is an alternating path that starts and end with a free edge, and the two
endpoints of the path are also free.

Lemma 34.1.8. If 𝑀 is a matching and 𝜋 is an augmenting path relative to 𝑀, then

𝑀′ = 𝑀 ⊕ 𝜋 =
{
𝑒 ∈ E

�� 𝑒 ∈ (𝑀 \ 𝜋) ∪ (𝜋 \ 𝑀)
}

is a matching of size |𝑀 | + 1.

Proof: Think about removing 𝜋 from the graph all together. What is left of 𝑀, is a matching of size
|𝑀 | − |𝑀 ∩ 𝜋 |. Now, add back 𝜋 and alternate the edges of the matching 𝑀 with the free edges of
𝜋. Clearly, the new set of edges is a matching, since 𝜋 is disjoint from the rest of the matching, this
alternation results in a valid matching, and its size is |𝑀′| = |𝑀 | − |𝑀 ∩ 𝜋 | + |𝜋 \ 𝑀 | = |𝑀 | + 1.

Lemma 34.1.9. Let 𝑀 be a matching, and 𝑇 be a maximum matching, and 𝑘 = |𝑇 | − |𝑀 |. Then 𝑀 has
(at least) 𝑘 vertex disjoint augmenting paths. At least one of length ≤ 𝑢/𝑘 − 1, where 𝑢 = 2(|𝑇 | + |𝑀 |).

Proof: Let 𝐸′ = 𝑀 ⊕ 𝑇 , and let 𝐻 = (𝑉, 𝐸′), where 𝑉 is the set of vertices used by the edges of 𝐸′, see
Figure 34.2. Clearly, every vertex in 𝐻 has at most degree 2 because every vertex is adjacent to at most
one edge of 𝑀 and one edge of 𝑇 . Thus, 𝐻 is a collection of disjoint paths and (even length) cycles.
The cycles are of even length since the edges of the cycle are alternating between two matchings (i.e.,
you can think about the cycle edges as being 2-colorable).

Now, there are 𝑘 more edges of 𝑇 in 𝑀 ⊕ 𝑇 than of 𝑀. Every cycle have the same number of edges
of 𝑀 and 𝑇 . Thus, a path in 𝐻 can have at most one more edge of 𝑇 than of 𝑀. In such a case, this
path is an augmenting path for 𝑀. It follows that there are at least 𝑘 augmenting paths for 𝑀 in 𝐻.

2

(A) The graph. (B) A matching. (C) A bigger matching. (D) The union graph 𝐻.

Figure 34.2: The graph formed by the union of matchings.

As for the claim on the length of the shortest augmenting path. Let 𝑢 = |V(𝐻) | ≤ 2(|𝑇 | + |𝑀 |).
Observe that if all these 𝑘 (vertex disjoint) augmenting paths were of length ≥ 𝑢/𝑘 then the total
number of vertices in 𝐻 would be at least (𝑢/𝑘 + 1)𝑘 > 𝑢, since a path of length ℓ has ℓ + 1 vertices. A
contradiction.

The lemma readily implies:

Corollary 34.1.10. A matching 𝑀 is maximum ⇐⇒ there is no augmenting path for 𝑀.

34.2. Unweighted matching in bipartite graph

34.2.1. The slow algorithm; algSlowMatch
The algorithm. Let G = (𝐿 ∪ 𝑅, E) be a bipartite graph. Let 𝑀0 = ∅ be an empty matching. In the
𝑖th iteration of algSlowMatch, let 𝐿𝑖 and 𝑅𝑖 be the free vertices in 𝐿 and 𝑅, relative to the matching
𝑀𝑖−1. If there an edge in G between a vertex of 𝐿𝑖 and 𝑅𝑖, we just add this edge to the matching, and
go on to the next iteration.

Otherwise, we build a new graph H𝑖. We orient all the edges of E \ 𝑀𝑖−1 from left to the right.
Formally, an edge 𝑙𝑟 ∈ E \ 𝑀𝑖−1, with 𝑙 ∈ 𝐿 and 𝑟 ∈ 𝑅, induces the directed edge (𝑙, 𝑟) in H𝑖. Similarly,
the matching edges 𝑙𝑟 ∈ 𝑀𝑖−1 are oriented from the right to left, as the new directed edge (𝑟, 𝑙).

Now, using BFS, compute the shortest path 𝜋𝑖 from a vertex of 𝐿𝑖 to a vertex of 𝑅𝑖. If there is
no such path, the algorithm stops and outputs the current matching (i.e., it is a maximum matching).
Otherwise, the algorithm updates 𝑀𝑖 = 𝑀𝑖−1 ⊕ 𝜋𝑖, and continues to the next iteration.

Analysis. An augmenting path has an odd number of edges. As such, if it starts in a free vertex on
the left side, then it must ends in a free vertex on the right side. As such, such an augmenting path,
corresponds to a path between a vertex of 𝐿𝑖 to a vertex of 𝑅𝑖 in H𝑖. By Corollary 34.1.10, as long as
the algorithm has not computed the maximum matching, there is an augmenting path, and this path
increases the size of the matching by one.

Observe, that any shortest path found in H𝑖 between 𝐿𝑖 and 𝑅𝑖 is an augmenting path. Namely, if
there is an augmenting path for 𝑀𝑖−1, then there is a path from a vertex of 𝐿𝑖 to a vertex of 𝑅𝑖 in H𝑖,
and the algorithm computes the shortest such path.

3

We conclude, that after at most 𝑛 iterations, the algorithm would be done. Clearly, each iteration
of the algorithm can be implemented in linear time. We thus have the following result:

Lemma 34.2.1. Given a bipartite undirected graph G = (𝐿 ∪ 𝑅, E), with 𝑛 vertices and 𝑚 edges, one
can compute the maximum matching in G in 𝑂 (𝑛𝑚) time.

34.2.2. The Hopcroft-Karp algorithm
We next improve the running time – this requires quite a bit of work, but hopefully exposes some
interesting properties of matchings in bipartite graphs.

34.2.2.1. Some more structural observations

We need three basic observations:
(A) If we augmenting along a shortest path, then the next augmenting path must be longer (or at least

not shorter). See Lemma 34.2.2 below.
(B) As such, if we always augment along shortest paths, then the augmenting paths get longer as the

algorithm progress, see Corollary 34.2.3 below.
(C) Furthermore, all the augmenting paths of the same length used by the algorithm are vertex-disjoint

(!). See Lemma 34.2.4 below. (The main idea of the faster algorithm is to compute this block of
vertex-disjoint paths of the same length in one go, thus getting the improved running time.)

Lemma 34.2.2. Let 𝑀 be a matching, and 𝜋 be the shortest augmenting path for 𝑀, and let 𝜋′ be any
augmenting path for 𝑀′ = 𝑀 ⊕ 𝜋. Then |𝜋′| ≥ |𝜋 |. Specifically, we have |𝜋′| ≥ |𝜋 | + 2 |𝜋 ∩ 𝜋′|.

Proof: Consider the matching 𝑁 = 𝑀 ⊕ 𝜋 ⊕ 𝜋′. Observe that |𝑁 | = |𝑀 | + 2. As such, ignoring cycles and
balanced paths, 𝑀 ⊕ 𝑁 contains two augmenting paths, say 𝜎1 and 𝜎2 – importantly, both 𝜎1 and 𝜎2
are augmenting paths of the original matching 𝑀.

Observe that for any sets 𝐵,𝐶, 𝐷, we have 𝐵 ⊕ (𝐶 ⊕ 𝐷) = (𝐵 ⊕ 𝐶) ⊕ 𝐷. This implies that

𝑀 ⊕ 𝑁 = 𝑀 ⊕ (𝑀 ⊕ 𝜋 ⊕ 𝜋′) = 𝜋 ⊕ 𝜋′.

As such, we have
|𝜋 ⊕ 𝜋′| = |𝑀 ⊕ 𝑁 | ≥ |𝜎1 | + |𝜎2 | .

Since 𝜋 was the shortest augmenting path for 𝑀, it follows that |𝜎1 | ≥ |𝜋 | and |𝜎2 | ≥ |𝜋 |. We conclude
that

|𝜋 ⊕ 𝜋′| ≥ |𝜎1 | + |𝜎2 | ≥ |𝜋 | + |𝜋 | = 2 |𝜋 | .
By definition, we have that |𝜋 ⊕ 𝜋′| = |𝜋 | + |𝜋′| − 2 |𝜋 ∩ 𝜋′| . To see why the factor 2 is there, observe

that for 𝑒 ∈ 𝜋 ∩ 𝜋′ we have 𝑒 ∉ 𝜋 ⊕ 𝜋′. Combining with the above, we have

|𝜋 | + |𝜋′| − 2 |𝜋 ∩ 𝜋′| ≥ 2 |𝜋 | =⇒ |𝜋′| ≥ |𝜋 | + 2 |𝜋 ∩ 𝜋′| .

The above lemma immediately implies the following.

Corollary 34.2.3. Let 𝜋1, 𝜋2, . . . , 𝜋𝑡 be the sequence of augmenting paths used by the algorithm of Sec-
tion 34.2.1 (which always augments the matching along the shortest augmenting path). We have that
|𝜋1 | ≤ |𝜋2 | ≤ . . . ≤ |𝜋𝑡 |.

4

Lemma 34.2.4. For all 𝑖 and 𝑗 , such that |𝜋𝑖 | = · · · = |𝜋 𝑗 |, we have that the paths 𝜋𝑖 and 𝜋 𝑗 are vertex
disjoint.

Proof: Assume for the sake of contradiction, that |𝜋𝑖 | = |𝜋 𝑗 |, 𝑖 < 𝑗 , and 𝜋𝑖 and 𝜋 𝑗 are not vertex disjoint,
and assume that 𝑗 − 𝑖 is minimal. As such, for any 𝑘, such that 𝑖 < 𝑘 < 𝑗 , we have that 𝜋𝑘 is disjoint
from 𝜋𝑖 and 𝜋 𝑗 .

Now, let 𝑀𝑖 be the matching after 𝜋𝑖 was applied. We have that 𝜋 𝑗 is not using any of the edges of
𝜋𝑖+1, . . . , 𝜋 𝑗−1. As such, 𝜋 𝑗 is an augmenting path for 𝑀𝑖. Now, 𝜋 𝑗 and 𝜋𝑖 share vertices. It definitely
can not be that they share the two endpoints of 𝜋 𝑗 (since they are free) - so it must be some interval
vertex of 𝜋 𝑗 . But then, 𝜋𝑖 and 𝜋 𝑗 must share an edge – indeed, assume the shared vertex is 𝑣 – 𝜋 𝑗 uses
a matching edge of 𝑀𝑖 adjacent to 𝑣, but this must belong to 𝜋 𝑗 - since it contains the only matching
edge adjacent to 𝑣 in 𝑀𝑖. Namely,

��𝜋𝑖 ∩ 𝜋 𝑗 �� ≥ 1. Now, by Lemma 34.2.2, we conclude that

|𝜋 𝑗 | ≥ |𝜋𝑖 | + 2|𝜋𝑖 ∩ 𝜋 𝑗 | > |𝜋𝑖 |.

A contradiction.

34.2.2.2. Improved algorithm

The idea is going to extract all possible augmenting shortest paths of a certain length in one iteration.
Indeed, assume for the time being, that given a matching we can extract all the augmenting paths of
length 𝑘 for 𝑀 in G in 𝑂 (𝑚) time, for 𝑘 = 1, 3, 5, Specifically, we apply this extraction algorithm,
till 𝑘 = 1 + 2

⌈√
𝑛
⌉
. This would take 𝑂 (𝑘𝑚) = 𝑂 (

√
𝑛𝑚) time.

The key observation is that the matching 𝑀𝑘 , at the end of this process, is of size |𝑇 | − Ω(
√
𝑛), see

Lemma 34.2.5 below, where 𝑇 is the maximum matching. As such, we resume the regular algorithm
that augments one augmenting path at a time. After 𝑂 (

√
𝑛) regular iterations we would be done.

Lemma 34.2.5. Consider the iterative algorithm that applies shortest path augmenting path to the
current matching, and let 𝑀 be the first matching such that the shortest path augmenting path for it is
of length ≥

√
𝑛, where 𝑛 is the number of vertices in the input graph G. Let 𝑇 be the maximum matching.

Then |𝑇 | ≤ |𝑀 | +𝑂 (
√
𝑛).

Proof: At this point, the shortest augmenting path for the current matching 𝑀 is of length at ≥
√
𝑛. By

Lemma 34.1.9, this implies that if 𝑇 is the maximum matching, then we have that there is an augmenting
path of length ≤ 2𝑛/(|𝑇 | − |𝑀 |) + 1. Combining these two inequalities, we have that

√
𝑛 ≤ 2𝑛

|𝑇 | − |𝑀 | + 1,

which implies that |𝑇 | − |𝑀 | ≤ 3
√
𝑛, for 𝑛 ≥ 4.

34.2.2.3. Extracting many augmenting paths: algExtManyPaths

The basic idea is to build a data-structure that is similar to a BFS tree, but enable us to extract many
augmenting paths simultaneously. So, assume we are given a graph G, as above, a matching 𝑀, and a
parameter 𝑘, where 𝑘 is an odd integer. Furthermore, assume that the shortest augmenting path for 𝑀
in relation to G is of length 𝑘. Our purpose is to extract as many augmenting paths as possible that are
vertex disjoint that are of length 𝑘 (𝑘 = 1 is exactly the greedy algorithm for maximal matching!).

5

Figure 34.3: (A) A bipartite graph and its matching. (B) Its layered graph.

To this end, let 𝐹 be the set of free vertices in G. We build a directed graph, having a source vertex
𝑠, and that is connected to all the vertices of 𝐿1 = 𝐿 ∩ 𝐹 (all the free vertices in 𝐿). Now, we direct the
edges of G, as done above, and let H be the resulting graph (i.e., non-matching edges are directed from
left to right, and matching edges are directed from right to left). Now, compute BFS on the graph H
starting at 𝑠, and let T be the resulting tree.

Let 𝐿1, 𝑅1, 𝐿2, 𝑅2, 𝐿3, . . . be the layers of the BFS. By assumption, the first free vertex below 𝐿1
encountered in the tree is of level 𝑅𝜏, where 𝜏 = d𝑘/2e (note, that no free vertex can be encountered on
𝐿𝑖, for 𝑖 > 1, since all the free vertices of 𝐿 are in 𝐿1).

Scan the edges of H. A back edge connects a vertex to a vertex that is in a higher level of the tree
– we ignore such edges. The other possibilities, is an edge that is a forward edge – an edge between
two vertices that belong to two consecutive levels of the BFS tree T. Let J be the resulting graph of
removing all backward and cross edges from H (a cross edge connects two vertices in the same layer of
the BFS, which is impossible for bipartite graphs, so there are no such edges here). All the remaining
edges are either BFS edges or forward edges, and we direct them according to the BFS layers from the
shallower layer to the deeper layer. The resulting graph is a DAG (which is an enrichment of the original
tree T). Compute also the reverse graph Jrev (where, we just reverse the edges).

Now, let 𝐹𝜏 = 𝑅𝜏 ∩ 𝐹 be the free vertices of distance 𝑘 from the free vertices of 𝐿1 (which are all free
vertices). For every vertex 𝑣 ∈ 𝐹𝜏 do a DFS in Jrev till the DFS reaches a vertex of 𝐿1. Mark all the
vertices visited by the DFS as “used” – thus not allowing any future DFS to use these vertices (i.e., the
DFS ignore edges leading to used vertices). If the DFS succeeds, we extract the shortest path found,
and add it to the collection of augmenting paths. Otherwise, we move on to the next vertex in 𝐹𝜏, till
we visit all such vertices.

This algorithm results in a collection of augmenting paths 𝑃𝜏, which are vertex disjoint. We claim
that 𝑃𝜏 is the desired set maximal cardinality disjoint set of augmenting paths of length 𝑘.

Analysis. Building the initial graphs J and Jrev takes 𝑂 (𝑚) time. We charge the running time of the
second stage to the edges and vertices visited. Since any vertex visited by any DFS is never going to be
visited again, this imply that an edge of Jrev is going to be considered only once by the algorithm. As
such, the running time of the algorithm is 𝑂 (𝑛 + 𝑚) as desired.

Repeated application of Lemma 34.2.2 implies the following.

Observation 34.2.6. Assume 𝑀 is a matching, such that the shortest augmenting path for it is of
length 𝑘. Then, augmenting it with a sequence of paths of length 𝑘, results in matching 𝑀′, with its
shortest augmenting path being of length at least 𝑘.

6

The reverse graph.

The free vertices at layer 𝐿2.

Doing DFS from a free vertex re-
veals an augmenting path.

We remove the path and all the
vertices it uses (except the last
one, naturally).

A DFS from a free vertex that
fails to arrive to the source.

We delete (i.e., mark as visited)
all the edges/vertices visited by
the failed DFS.

Another augmenting path from a
free vertex resulting in a new aug-
menting path.

The layered graph is empty of
free vertices in the layer of inter-
est. Time to move on to the next
iteration.

Figure 34.4: Extracting augmenting paths from the reverse layered graph.

7

(A) (B) (C)

Figure 34.5: (A) A bipartite graph and its current matching. (B) Augmenting paths computed using
the layered graph (see Figure 34.3. (C) The new matching after we apply the augmenting paths.

Lemma 34.2.7. The set 𝑃𝑘 is a maximal set of vertex-disjoint augmenting paths of length 𝑘 for 𝑀.

Proof: Let 𝑀′ be the result of augmenting 𝑀 with the paths of 𝑃𝑘 . And, assume for the sake of
contradiction, that 𝑃𝑘 is not maximal. Namely, there is an augmenting path 𝜎 of that is disjoint from
the vertices of the paths of 𝑃𝑘 . By the above observation, the path 𝜎 is of length at least 𝑘.

The interesting case here is if 𝜎 is of length exactly 𝑘. Then, we could traverse 𝜎 in J, and this
would go through unused vertices. Indeed, if any of the vertices of 𝜎 were used by any of the DFS, then
it would have resulted in a path that goes to a free vertex in 𝐿1. But that is a contradiction, as 𝜎 is
supposedly disjoint from the paths of 𝑃𝑘 .

34.2.2.4. The result

Theorem 34.2.8. Given a bipartite unweighted graph G with 𝑛 vertices and 𝑚 edges, one can compute
maximum matching in G in 𝑂 (

√
𝑛𝑚) time.

Proof: The algMatching
𝐻𝐾

algorithm is described in Section 34.2.2.2, and the running time analysis is
done above.

The main challenge is the correctness. The idea is to interpret the execution of this algorithm as
simulating the slower the simpler algorithm of Section 34.2.1. Indeed, the algMatching

𝐻𝐾
algorithm

computes a sequence of sets of augmenting paths 𝑃1, 𝑃3, 𝑃5, We order these augmenting paths in an
arbitrary order inside each such set. This results in a sequence of augmenting paths that are shortest
augmenting paths for the current matching, and furthermore by Lemma 34.2.7 each set 𝑃𝑘 contains a
maximal set of such vertex-disjoint augmenting paths of length 𝑘. By Lemma 34.2.4, all augmenting
paths of length 𝑘 computed are vertex disjoint.

As such, now by induction, we can argue that if algMatching
𝐻𝐾

simulates correctly algSlowMatch,
for the augmenting paths in 𝑃1 ∪ 𝑃3 ∪ . . . 𝑃𝑖, then it simulates it correctly for 𝑃1 ∪ 𝑃3 ∪ . . . 𝑃𝑖 ∪ 𝑃𝑖+1, and
we are done.

34.3. Bibliographical notes
The description here follows the original paper of Hopcroft and Karp [HK73].

8

Bibliography

[HK73] J. E. Hopcroft and R. M. Karp. An 𝑛5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput., 2:225—-231, 1973.

9

	Matchings
	Definitions and basic properties
	Definitions
	Matchings and alternating paths

	Unweighted matching in bipartite graph
	The slow algorithm; RedVioletalgSlowMatch
	The Hopcroft-Karp algorithm

	Bibliographical notes

	Bibliography

