
Chapter 16

Min Cut

To acknowledge the corn - This purely American expression means to admit the losing of an argument, especially
in regard to a detail; to retract; to admit defeat. It is over a hundred years old. Andrew Stewart, a member of
Congress, is said to have mentioned it in a speech in 1828. He said that haystacks and cornfields were sent by Indiana,
Ohio and Kentucky to Philadelphia and New York. Charles A. Wickliffe, a member from Kentucky questioned the
statement by commenting that haystacks and cornfields could not walk. Stewart then pointed out that he did not
mean literal haystacks and cornfields, but the horses, mules, and hogs for which the hay and corn were raised.
Wickliffe then rose to his feet, and said, “Mr. Speaker, I acknowledge the corn”.

Funk, Earle, A Hog on Ice and Other Curious Expressions
By Sariel Har-Peled, December 2, 2021¬

16.1. Branching processes – Galton-Watson Process

16.1.1. The problem
In the 19th century, Victorians were worried that aristocratic surnames were disappearing, as family
names passed on only through the male children. As such, a family with no male children had its family
name disappear. So, imagine the number of male children of a person is an independent random variable
𝑋 ∈ {0, 1, 2, . . .}. Starting with a single person, its family (as far as male children are concerned) is a
random tree with the degree of a node being distributed according to 𝑋. We continue recursively in
constructing this tree, again, sampling the number of children for each current leaf according to the
distribution of 𝑋. It is not hard to see that a family disappears if E[𝑋] ≤ 1, and it has a constant
probability of surviving if E[𝑋] > 1.

Francis Galton asked the question of what is the probability of such a blue-blood family name to
survive, and this question was answered by Henry William Watson [WG75]. The Victorians were worried
about strange things, see [Gre69] for a provocatively titled article from the period, and [Ste12] for a
more recent take on this issue.

Of course, since infant mortality is dramatically down (as is the number of aristocrat males dying to
maintain the British empire), the probability of family names to disappear is now much lower than it was
in the 19th century (not to mention that many women keep their original family name). Interestingly,
countries with family names that were introduced long time ago have very few surnames (i.e., Korean
have 250 surnames, and three surnames form 45% of the population). On the other hand, countries
that introduced surnames more recently have dramatically more surnames (for example, the Dutch have
surnames only for the last 200 years, and there are 68, 000 different family names).

Here we are going to look on a very specific variant of this problem. Imagine that starting with a
single male. A male has exactly two children, and each one of them is a male with probability half. As

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

such, the natural question is what is the probability that ℎ generations down, there is a male decedent
that all his ancestors are male.

16.1.2. On coloring trees
Let 𝑇ℎ be a complete binary tree of height ℎ. We randomly color its edges by black and white. Namely,
for each edge we independently choose its color to be either black or white, with equal probability (say,
black indicates the child is male). We are interested in the event that there exists a path from the root
of 𝑇ℎ to one of its leafs, that is all black. Let Eℎ denote this event, and let 𝜌ℎ = P[Eℎ]. Observe that
𝜌0 = 1 and 𝜌1 = 3/4 (see below).

To bound this probability, consider the root 𝑢 of 𝑇ℎ and its two children 𝑢𝑙 and 𝑢𝑟 . The probability
that there is a black path from 𝑢𝑙 to one of its children is 𝜌ℎ−1, and as such, the probability that there is
a black path from 𝑢 through 𝑢𝑙 to a leaf of the subtree of 𝑢𝑙 is P

[
the edge 𝑢𝑢𝑙 is colored black

]
· 𝜌ℎ−1 =

𝜌ℎ−1/2. As such, the probability that there is no black path through 𝑢𝑙 is 1 − 𝜌ℎ−1/2. As such, the
probability of not having a black path from 𝑢 to a leaf (through either children) is (1 − 𝜌ℎ−1/2)2. In
particular, there desired probability, is the complement; that is

𝜌ℎ = 1 −
(
1 − 𝜌ℎ−1

2

)2
=

𝜌ℎ−1
2

(
2 − 𝜌ℎ−1

2

)
= 𝜌ℎ−1 −

𝜌2
ℎ−1
4 = 𝑓

(
𝜌ℎ−1

)
for 𝑓 (𝑥) = 𝑥 − 𝑥2/4.

The starting values are 𝜌0 = 1, and 𝜌1 = 3/4. Formally, we have the sequence:

𝜌0 = 1, 𝜌1 = 3/4, 𝜌ℎ = 𝜌ℎ−1 −
𝜌2
ℎ−1
4 .

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f(x)=x - x2/4

Figure 16.1: A graph of the function 𝑓 (𝑥) = 𝑥 − 𝑥2/4.

Lemma 16.1.1. We have that 𝜌ℎ ≥ 1/(ℎ + 1).

Proof: The proof is by induction. For ℎ = 1, we have 𝜌1 = 3/4 ≥ 1/(1 + 1).
Observe that 𝜌ℎ = 𝑓 (𝜌ℎ−1) for 𝑓 (𝑥) = 𝑥 − 𝑥2/4, and 𝑓 ′(𝑥) = 1 − 𝑥/2. As such, 𝑓 ′(𝑥) > 0 for

𝑥 ∈ [0, 1] and 𝑓 (𝑥) is increasing in the range [0, 1]. As such, by induction, we have that 𝜌ℎ = 𝑓 (𝜌ℎ−1) ≥
𝑓

(
1

(ℎ − 1) + 1

)
=

1
ℎ
− 1

4ℎ2 . We need to prove that 𝜌ℎ ≥ 1/(ℎ + 1), which is implied by the above if

1
ℎ
− 1

4ℎ2 ≥
1

ℎ + 1 ⇔ 4ℎ(ℎ + 1) − (ℎ + 1) ≥ 4ℎ2 ⇔ 4ℎ2 + 4ℎ − ℎ − 1 ≥ 4ℎ2 ⇔ 3ℎ ≥ 1,

which trivially holds.

2

One can also prove an upper bound on this probability, showing that 𝜌ℎ = Θ(1/ℎ). We provide the
proof here for the sake of completeness, but the reader is encouraged to skip reading its proof, as we do
not need this result.

Lemma 16.1.2. We have that 𝜌ℎ = 𝑂 (1/ℎ).

Proof: The claim trivially holds for small values of ℎ. For any 𝑗 > 0, let ℎ 𝑗 be the minimal index such that
𝜌ℎ 𝑗
≤ 1/2 𝑗 . It is easy to verify that 𝜌ℎ 𝑗

≥ 1/2 𝑗+1. We claim (mysteriously) that ℎ 𝑗+1 − ℎ 𝑗 ≤
𝜌ℎ 𝑗
− 𝜌ℎ 𝑗+1

(𝜌ℎ 𝑗+1)2/4
Indeed, 𝜌𝑘+1 is the number resulting from removing 𝜌2

𝑘
/4 from 𝜌𝑘 . Namely, the sequence 𝜌1, 𝜌2, . . . is a

monotonically decreasing sequence of numbers in the interval [0, 1], where the gaps between consecutive
numbers decreases. In particular, to get from 𝜌ℎ 𝑗

to 𝜌ℎ 𝑗+1 , the gaps used were of size at least Δ =
(
𝜌ℎ 𝑗+1

)2,
which means that there are at least (𝜌ℎ 𝑗

− 𝜌ℎ 𝑗+1)/Δ−1 numbers in the series between these two elements.
As such, we have

ℎ 𝑗+1 − ℎ 𝑗 ≤
𝜌ℎ 𝑗
− 𝜌ℎ 𝑗+1

(𝜌ℎ 𝑗+1)2/4
≤ 1/2 𝑗 − 1/2 𝑗+2

1/22(𝑗+2)+2 = 2 𝑗+6 + 2 𝑗+4 = 𝑂

(
2 𝑗
)
.

Arguing similarly, we have

ℎ 𝑗+2 − ℎ 𝑗 ≥
𝜌ℎ 𝑗
− 𝜌ℎ 𝑗+2

(𝜌ℎ 𝑗
)2/4 ≥

1/2 𝑗+1 − 1/2 𝑗+2

1/22 𝑗+2 = 2 𝑗+1 + 2 𝑗 = Ω

(
2 𝑗
)
.

We conclude that ℎ 𝑗 = (ℎ 𝑗 − ℎ 𝑗−2) + (ℎ 𝑗−2 − ℎ 𝑗−4) + · · · = 2 𝑗−1 −𝑂 (1), implying the claim.

16.2. Min Cut

16.2.1. Problem Definition
Let G = (V, E) be an undirected graph with 𝑛 vertices and 𝑚 edges. We are interested in cuts in G.

Definition 16.2.1. A cut in G is a partition of the vertices of V into two sets 𝑆 and
V \ 𝑆, where the edges of the cut are

(𝑆,V \ 𝑆) =
{
𝑢𝑣 ∈ E

�� 𝑢 ∈ 𝑆, 𝑣 ∈ V \ 𝑆
}
,

where 𝑆 ≠ ∅ and V \ 𝑆 ≠ ∅. The number of edges in the cut (𝑆,V \ 𝑆) is the size of
the cut. For an example of a cut, see figure on the right.

V \ SS

We are interested in the problem of computing the minimum cut (i.e., mincut), that is, the cut in
the graph with minimum cardinality. Specifically, we would like to find the set 𝑆 ⊆ V such that (𝑆,V\𝑆)
is as small as possible, and 𝑆 is neither empty nor V \ 𝑆 is empty.

16.2.2. Some Definitions
We remind the reader of the following concepts. The conditional probability of 𝑋 given 𝑌 is
P
[
𝑋 = 𝑥

�� 𝑌 = 𝑦
]
= P[(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)]/P[𝑌 = 𝑦]. An equivalent, useful restatement of this is that

P
[
(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)

]
= P

[
𝑋 = 𝑥

�� 𝑌 = 𝑦
]
· P[𝑌 = 𝑦] . (16.1)

The following is easy to prove by induction using Eq. (16.1).

3

Lemma 16.2.2. Let E1, . . . ,E𝑛 be 𝑛 events which are not necessarily independent. Then,

P
[
∩𝑛𝑖=1E𝑖

]
= P

[
E1

]
∗ P

[
E2

�� E1
]
∗ P

[
E3

�� E1 ∩ E2
]
∗ . . . ∗ P

[
E𝑛

�� E1 ∩ . . . ∩ E𝑛−1
]
.

16.3. The Algorithm
The basic operation used by the algorithm is edge con-
traction, depicted in Figure 16.2. We take an edge
𝑒 = 𝑥𝑦 in G and merge the two vertices into a single
vertex. The new resulting graph is denoted by G/𝑥𝑦.
Note, that we remove self loops created by the contrac-
tion. However, since the resulting graph is no longer
a regular graph, it has parallel edges – namely, it is a
multi-graph. We represent a multi-graph, as a regular
graph with multiplicities on the edges. See Figure 16.3.

x y {x, y}

(a) (b)

Figure 16.2: (a) A contraction of the edge 𝑥𝑦.
(b) The resulting graph.

The edge contraction operation can be implemented
in 𝑂 (𝑛) time for a graph with 𝑛 vertices. This is done
by merging the adjacency lists of the two vertices being
contracted, and then using hashing to do the fix-ups
(i.e., we need to fix the adjacency list of the vertices
that are connected to the two vertices).

Note, that the cut is now computed counting mul-
tiplicities (i.e., if 𝑒 is in the cut and it has weight 𝑤,
then the contribution of 𝑒 to the cut weight is 𝑤).

2

2

2

2

Figure 16.3: On the left a multi-graph, and
on the right a minimum cut in the resulting
multi-graph.

Observation 16.3.1. A set of vertices in G/𝑥𝑦 corresponds to a set of vertices in the graph G. Thus
a cut in G/𝑥𝑦 always corresponds to a valid cut in G. However, there are cuts in G that do not exist in
G/𝑥𝑦. For example, the cut 𝑆 = {𝑥}, does not exist in G/𝑥𝑦. As such, the size of the minimum cut in
G/𝑥𝑦 is at least as large as the minimum cut in G (as long as G/𝑥𝑦 has at least one edge). Since any
cut in G/𝑥𝑦 has a corresponding cut of the same cardinality in G.

Our algorithm works by repeatedly performing edge contractions. This is beneficial as this shrinks
the underlying graph, and we would compute the cut in the resulting (smaller) graph. An “extreme”
example of this, is shown in Figure 16.4, where we contract the graph into a single edge, which (in turn)
corresponds to a cut in the original graph. (It might help the reader to think about each vertex in the
contracted graph, as corresponding to a connected component in the original graph.)

Figure 16.4 also demonstrates the problem with taking this approach. Indeed, the resulting cut is
not the minimum cut in the graph.

So, why did the algorithm fail to find the minimum cut in this case? The failure occurs because
of the contraction at Figure 16.4 (e), as we had contracted an edge in the minimum cut. In the new
graph, depicted in Figure 16.4 (f), there is no longer a cut of size 3, and all cuts are of size 4 or more.
Specifically, the algorithm succeeds only if it does not contract an edge in the minimum cut.

Observation 16.3.2. Let 𝑒1, . . . , 𝑒𝑛−2 be a sequence of edges in G, such that none of them is in the min-
imum cut, and such that G′ = 𝐺/{𝑒1, . . . , 𝑒𝑛−2} is a single multi-edge. Then, this multi-edge corresponds
to a minimum cut in G.

4

x y
2

2

2

2

22

(a) (b) (c) (d)

2

2

2

2
2 2

2

2

2
3

2
3

44

5

4

5

(e) (f) (g) (h)

9

(i) (j)

Figure 16.4: (a) Original graph. (b)–(j) a sequence of contractions in the graph, and (h) the cut in the
original graph, corresponding to the single edge in (h). Note that the cut of (h) is not a mincut in the
original graph.

Note, that the claim in the above observation is only in one direction. We might be able to still
compute a minimum cut, even if we contract an edge in a minimum cut, the reason being that a minimum
cut is not unique. In particular, another minimum cut might survived the sequence of contractions that
destroyed other minimum cuts.

Using Observation 16.3.2 in an algorithm is problematic, since the argumentation is circular, how
can we find a sequence of edges that are not in the cut without knowing what the cut is? The way to
slice the Gordian knot here, is to randomly select an edge at each stage, and contract this random edge.

See Figure 16.5 for the resulting algorithm MinCut.

16.3.1. Analysis
16.3.1.1. The probability of success

Naturally, if we are extremely lucky, the algorithm would never pick an edge in the mincut, and the
algorithm would succeed. The ultimate question here is what is the probability of success. If it is
relatively “large” then this algorithm is useful since we can run it several times, and return the best
result computed. If on the other hand, this probability is tiny, then we are working in vain since this
approach would not work.

Lemma 16.3.3. If a graph G has a minimum cut of size 𝑘 and G has 𝑛 vertices, then |E(G) | ≥ 𝑘𝑛/2.

Naturally, if the algorithm had succeeded in finding the minimum cut, this would have been our success.

5

Algorithm MinCut(G)
G0 ← 𝐺

𝑖 = 0
while G𝑖 has more than two vertices do

Pick randomly an edge 𝑒𝑖 from the edges of G𝑖

G𝑖+1 ← 𝐺𝑖/𝑒𝑖
𝑖 ← 𝑖 + 1

Let (𝑆,V \ 𝑆) be the cut in the original graph
corresponding to the single edge in G𝑖

return (𝑆,V \ 𝑆).

Figure 16.5: The minimum cut algorithm.

Proof: Each vertex degree is at least 𝑘, otherwise the vertex itself would form a minimum cut of size
smaller than 𝑘. As such, there are at least

∑
𝑣∈V degree(v)/2 ≥ 𝑛𝑘/2 edges in the graph.

Lemma 16.3.4. If we pick in random an edge 𝑒 from a graph G, then with probability at most 2/𝑛 it
belong to the minimum cut.

Proof: There are at least 𝑛𝑘/2 edges in the graph and exactly 𝑘 edges in the minimum cut. Thus, the
probability of picking an edge from the minimum cut is smaller then 𝑘/(𝑛𝑘/2) = 2/𝑛.

The following lemma shows (surprisingly) that MinCut succeeds with reasonable probability.

Lemma 16.3.5. MinCut outputs the mincut with probability ≥ 2
𝑛(𝑛 − 1) .

Proof: Let E𝑖 be the event that 𝑒𝑖 is not in the minimum cut of G𝑖. By Observation 16.3.2, MinCut
outputs the minimum cut if the events E0, . . . ,E𝑛−3 all happen (namely, all edges picked are outside the
minimum cut).

By Lemma 16.3.4, it holds P
[
E𝑖

���E0 ∩ E1 ∩ . . . ∩ E𝑖−1
]
≥ 1 − 2

|V(𝐺𝑖) |
= 1 − 2

𝑛 − 𝑖 . Implying that

Δ = P
[
E0 ∩ . . . ∩ E𝑛−3

]
= P

[
E0

]
· P

[
E1

�� E0
]
· P

[
E2

�� E0 ∩ E1
]
· . . . · P

[
E𝑛−3

�� E0 ∩ . . . ∩ E𝑛−4
]
.

As such, we have

Δ ≥
𝑛−3∏
𝑖=0

(
1 − 2

𝑛 − 𝑖

)
=

𝑛−3∏
𝑖=0

𝑛 − 𝑖 − 2
𝑛 − 𝑖 =

𝑛 − 2
𝑛
· 𝑛 − 3
𝑛 − 1 ·

𝑛 − 4
𝑛 − 2 · . . . ·

2
4 ·

1
3 =

2
𝑛(𝑛 − 1) .

16.3.1.2. Running time analysis.

Observation 16.3.6. MinCut runs in 𝑂 (𝑛2) time.

Observation 16.3.7. The algorithm always outputs a cut, and the cut is not smaller than the minimum
cut.

6

Informally, amplification is the process of running an experiment again and again till the things
we want to happen, with good probability, do happen.

Let MinCutRep be the algorithm that runs MinCut 𝑛(𝑛 − 1) times and return the minimum cut
computed in all those independent executions of MinCut.

Lemma 16.3.8. The probability that MinCutRep fails to return the minimum cut is < 0.14.

Proof: The probability of failure of MinCut to output the mincut in each execution is at most 1− 2
𝑛(𝑛−1) ,

by Lemma 16.3.5. Now, MinCutRep fails, only if all the 𝑛(𝑛 − 1) executions of MinCut fail. But these
executions are independent, as such, the probability to this happen is at most(

1 − 2
𝑛(𝑛 − 1)

)𝑛(𝑛−1)
≤ exp

(
− 2
𝑛(𝑛 − 1) · 𝑛(𝑛 − 1)

)
= exp(−2) < 0.14,

since 1 − 𝑥 ≤ 𝑒−𝑥 for 0 ≤ 𝑥 ≤ 1.

Theorem 16.3.9. One can compute the minimum cut in 𝑂 (𝑛4) time with constant probability to get a
correct result. In 𝑂

(
𝑛4 log 𝑛

)
time the minimum cut is returned with high probability.

16.4. A faster algorithm
The algorithm presented in the previous section is extremely simple. Which raises the question of
whether we can get a faster algorithm®?

So, why MinCutRep needs so many executions? Well, the probability of success in the first a

iterations is

P
[
E0 ∩ . . . ∩ Ea−1

]
≥

a−1∏
𝑖=0

(
1 − 2

𝑛 − 𝑖

)
=

a−1∏
𝑖=0

𝑛 − 𝑖 − 2
𝑛 − 𝑖 =

𝑛 − 2
𝑛
· 𝑛 − 3
𝑛 − 1 ·

𝑛 − 4
𝑛 − 2 . . . =

(𝑛 − a) (𝑛 − a − 1)
𝑛 · (𝑛 − 1) . (16.2)

Namely, this probability deteriorates very quickly toward the end of the execution, when the graph
becomes small enough. (To see this, observe that for a = 𝑛/2, the probability of success is roughly 1/4,
but for a = 𝑛 −

√
𝑛 the probability of success is roughly 1/𝑛.)

So, the key observation is that as the graph get smaller the probability to make a bad choice increases.
So, instead of doing the amplification from the outside of the algorithm, we will run the new algorithm
more times when the graph is smaller. Namely, we put the amplification directly into the algorithm.

The basic new operation we use is Contract, depicted in Figure 16.6, which also depict the new
algorithm FastCut.

Lemma 16.4.1. The running time of FastCut(G) is 𝑂
(
𝑛2 log 𝑛

)
, where 𝑛 = |𝑉 (G) |.

Proof: Well, we perform two calls to Contract(𝐺, 𝑡) which takes 𝑂 (𝑛2) time. And then we perform two
recursive calls on the resulting graphs. We have

𝑇 (𝑛) = 𝑂 (𝑛2) + 2𝑇
(
𝑛/
√

2
)
.

The solution to this recurrence is 𝑂
(
𝑛2 log 𝑛

)
as one can easily (and should) verify.

®This would require a more involved algorithm, thats life.

7

Contract (G, 𝑡)
begin

while |V(G) | > 𝑡 do
Pick a random edge 𝑒 in G.
G← 𝐺/𝑒

return G
end

FastCut(G = (𝑉, 𝐸))
G – multi-graph

begin
𝑛← |𝑉 (G) |
if 𝑛 ≤ 6 then

Compute (via brute force) minimum cut
of G and return cut.

𝑡 ←
⌈
1 + 𝑛/

√
2
⌉

𝐻1 ← 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (𝐺, 𝑡)
𝐻2 ← 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (𝐺, 𝑡)
/* Contract is randomized!!! */
𝑋1 ← 𝐹𝑎𝑠𝑡𝐶𝑢𝑡 (𝐻1),
𝑋2 ← 𝐹𝑎𝑠𝑡𝐶𝑢𝑡 (𝐻2)
return minimum cut out of 𝑋1 and 𝑋2.

end

Figure 16.6: Contract(𝐺, 𝑡) shrinks G till it has only 𝑡 vertices. FastCut computes the minimum cut
using Contract.

Exercise 16.4.2. Show that one can modify FastCut so that it uses only 𝑂 (𝑛2) space.

Lemma 16.4.3. The probability that Contract
(
G, 𝑛/

√
2
)

had not contracted the minimum cut is at least
1/2.

Namely, the probability that the minimum cut in the contracted graph is still a minimum cut in the
original graph is at least 1/2.

Proof: Just plug in a = 𝑛 − 𝑡 = 𝑛 −
⌈
1 + 𝑛/

√
2
⌉

into Eq. (16.2). We have

P
[
E0 ∩ . . . ∩ E𝑛−𝑡

]
≥ 𝑡 (𝑡 − 1)

𝑛 · (𝑛 − 1) =

⌈
1 + 𝑛/

√
2
⌉ (⌈

1 + 𝑛/
√

2
⌉
− 1

)
𝑛(𝑛 − 1) ≥ 1

2 .

The following lemma bounds the probability of success.

Lemma 16.4.4. FastCut finds the minimum cut with probability larger than Ω(1/log 𝑛).

Proof: Let 𝑇ℎ be the recursion tree of the algorithm of depth ℎ = Θ(log 𝑛). Color an edge of recursion
tree by black if the contraction succeeded. Clearly, the algorithm succeeds if there is a path from the
root to a leaf that is all black. This is exactly the settings of Lemma 16.1.1, and we conclude that the
probability of success is at least 1/(ℎ + 1) = Θ(1/log 𝑛), as desired.

Exercise 16.4.5. Prove, that running FastCut repeatedly 𝑐 · log2 𝑛 times, guarantee that the algorithm
outputs the minimum cut with probability ≥ 1 − 1/𝑛2, say, for 𝑐 a constant large enough.

Theorem 16.4.6. One can compute the minimum cut in a graph G with 𝑛 vertices in 𝑂 (𝑛2 log3 𝑛) time.
The algorithm succeeds with probability ≥ 1 − 1/𝑛2.

Proof: We do amplification on FastCut by running it 𝑂 (log2 𝑛) times. The running time bound fol-
lows from Lemma 16.4.1. The bound on the probability follows from Lemma 16.4.4, and using the
amplification analysis as done in Lemma 16.3.8 for MinCutRep.

8

16.5. Bibliographical Notes
The MinCut algorithm was developed by David Karger during his PhD thesis in Stanford. The fast
algorithm is a joint work with Clifford Stein. The basic algorithm of the mincut is described in [MR95,
pages 7–9], the faster algorithm is described in [MR95, pages 289–295].

Galton-Watson process. The idea of using coloring of the edges of a tree to analyze FastCut might
be new (i.e., Section 16.1.2).

Bibliography
[Gre69] W.R. Greg. Why are Women Redundant? Trübner, 1869.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cam-
bridge, UK, 1995.

[Ste12] E. Steinlight. Why novels are redundant: Sensation fiction and the overpopulation of literature.
ELH, 79(2):501–535, 2012.

[WG75] H. W. Watson and F. Galton. On the probability of the extinction of families. J. Anthrop.
Inst. Great Britain, 4:138–144, 1875.

9

http://books.google.com/books?id=R0aQ36xR1sAC
http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655

	Min Cut
	Branching processes – Galton-Watson Process
	The problem
	On coloring trees

	Min Cut
	Problem Definition
	Some Definitions

	The Algorithm
	Analysis

	A faster algorithm
	Bibliographical Notes

	Bibliography

