
Chapter 15

Hashing
By Sariel Har-Peled, December 2, 2021¬

“I tried to read this book, Huckleberry Finn, to my grandchildren, but I couldn’t get past page six because the book
is fraught with the ‘n-word.’ And although they are the deepest-thinking, combat-ready eight- and ten-year-olds I
know, I knew my babies weren’t ready to comprehend Huckleberry Finn on its own merits. That’s why I took the
liberty to rewrite Mark Twain’s masterpiece. Where the repugnant ‘n-word’ occurs, I replaced it with ‘warrior’ and
the word ‘slave’ with ‘dark-skinned volunteer.”’

Paul Beatty, The Sellout

15.1. Introduction
We are interested here in dictionary data structure. The settings for such a data-structure:
(A) U: universe of keys with total order: numbers, strings, etc.
(B) Data structure to store a subset 𝑆 ⊆ U
(C) Operations:

(i) search/lookup: given 𝑥 ∈ U is 𝑥 ∈ 𝑆?
(ii) insert: given 𝑥 ∉ 𝑆 add 𝑥 to 𝑆.
(iii) delete: given 𝑥 ∈ 𝑆 delete 𝑥 from 𝑆

(D) Static structure: 𝑆 given in advance or changes very infrequently, main operations are lookups.
(E) Dynamic structure: 𝑆 changes rapidly so inserts and deletes as important as lookups.

Common constructions for such data-structures, include using a static sorted array, where the lookup
is a binary search. Alternatively, one might use a balanced search tree (i.e., red-black tree). The time
to perform an operation like lookup, insert, delete take 𝑂 (log |𝑆 |) time (comparisons).

Naturally, the above are potently an “overkill”, in the sense that sorting is unnecessary. In par-
ticular, the universe U may not be (naturally) totally ordered. The keys correspond to large objects
(images, graphs etc) for which comparisons are expensive. Finally, we would like to improve “average”
performance of lookups to 𝑂 (1) time, even at cost of extra space or errors with small probability: many
applications for fast lookups in networking, security, etc.

Hashing and Hash Tables. The hash-table data structure has an associated (hash) table/array 𝑇

of size 𝑚 (the table size). A hash function ℎ : U → {0, . . . , 𝑚 − 1}. An item 𝑥 ∈ U hashes to slot ℎ(𝑥)
in 𝑇 .

Given a set 𝑆 ⊆ U, in a perfect ideal situation, each element 𝑥 ∈ 𝑆 hashes to a distinct slot in 𝑇 ,
and we store 𝑥 in the slot ℎ(𝑥). The Lookup for an item 𝑦 ∈ U, is to check if 𝑇 [ℎ(𝑦)] = 𝑦. This takes
constant time.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

y

s

f

Figure 15.1: Open hashing.

Unfortunately, collisions are unavoidable, and several different techniques to handle them. Formally,
two items 𝑥 ≠ 𝑦 collide if ℎ(𝑥) = ℎ(𝑦).

A standard technique to handle collisions is to use chaining (aka open hashing). Here, we handle
collisions as follows:
(A) For each slot 𝑖 store all items hashed to slot 𝑖 in a linked list. 𝑇 [𝑖] points to the linked list.
(B) Lookup: to find if 𝑦 ∈ U is in 𝑇 , check the linked list at 𝑇 [ℎ(𝑦)]. Time proportion to size of linked

list.
Other techniques for handling collisions include associating a list of locations where an element can be
(in certain order), and check these locations in this order. Another useful technique is cuckoo hashing
which we will discuss later on: Every value has two possible locations. When inserting, insert in one of
the locations, otherwise, kick out the stored value to its other location. Repeat till stable. if no stability
then rebuild table.

The relevant questions when designing a hashing scheme, include:
(I) Does hashing give 𝑂 (1) time per operation for dictionaries?

(II) Complexity of evaluating ℎ on a given element?
(III) Relative sizes of the universe U and the set to be stored 𝑆.
(IV) Size of table relative to size of 𝑆.
(V) Worst-case vs average-case vs randomized (expected) time?

(VI) How do we choose ℎ?
The load factor of the array 𝑇 is the ratio 𝑛/𝑚 where 𝑛 = |𝑆 | is the number of elements being

stored, and 𝑚 = |𝑇 | is the size of the array being used. Typically 𝑛/𝑚 is a small constant smaller than
1.

What we want? We would like a hashing function, such that it can be computed in constant time,
and the number of elements that get mapped to the same entry in the hash table is the load factor.

All hashing functions are bad. Sometime. In the following, we assume that U (the universe the
keys are taken from) is large – specifically, 𝑁 = |U| � 𝑚2, where 𝑚 is the size of the table. Consider a
hash function ℎ : U → {0, . . . , 𝑚 − 1}. If hash 𝑁 items to the 𝑚 slots, then by the pigeon hole principle,
there is some 𝑖 ∈ {0, . . . , 𝑚 − 1} such that 𝑁/𝑚 ≥ 𝑚 elements of U get hashed to 𝑖. In particular, this
implies that there is set 𝑆 ⊆ U, where |𝑆 | = 𝑚 such that all of 𝑆 hashes to same slot. Oops.

Namely, for every hash function there is a bad set with many collisions.

Randomization. The more natural approach to remedy the above is to use a random hash function.
Here, we are assuming an oblivious model, where the set of elements being stored is picked without
knowing the randomization.

2

Observation 15.1.1. Let H be the set of all functions from U = {1, . . . ,𝑈} to {1, . . . , 𝑚}. The number
of functions in H is 𝑚𝑈. As such, specifying a function in H would require log2 |H | = 𝑂 (𝑈 log𝑚).

As such, picking a truely random hash function requires many random bits, and furthermore, it is
not even clear how to evaluate it efficiently (which is the whole point of hashing).

Picking a hash function. Picking a good hash function in practice is a dark art involving many
non-trivial considerations and ideas. For parameters 𝑁 = |U|, 𝑚 = |𝑇 |, and 𝑛 = |𝑆 |, we require the
following:
(A) H is a family of hash functions: each function ℎ ∈ H should be efficient to evaluate (that is, to

compute ℎ(𝑥)).
(B) ℎ is chosen randomly from H (typically uniformly at random). Implicitly assumes that H allows

an efficient sampling.
(C) Require that for any fixed set 𝑆 ⊆ U, of size 𝑚, the expected number of collisions for a function

chosen from H should be “small”. Here the expectation is over the randomness in choice of ℎ.

15.2. Universal Hashing
We would like the hash function to have the following property – For any element 𝑥 ∈ U, and a random
ℎ ∈ H , then ℎ(𝑥) should have a uniform distribution. That is Pr[ℎ(𝑥) = 𝑖] = 1/𝑚, for every 0 ≤ 𝑖 < 𝑚.
A somewhat stronger property is that for any two distinct elements 𝑥, 𝑦 ∈ U, for a random ℎ ∈ H , the
probability of a collision between 𝑥 and 𝑦 should be at most 1/𝑚.

Definition 15.2.1. A family H of hash functions is 2-universal if for all distinct 𝑥, 𝑦 ∈ U, we have
P[ℎ(𝑥) = ℎ(𝑦)] ≤ 1/𝑚.

Applying a 2-universal family hash function to a set of distinct numbers, results in a 2-wise inde-
pendent sequence of numbers.

Lemma 15.2.2. Let 𝑆 be a set of 𝑛 elements stored using open hashing in a hash table of size 𝑚, using
open hashing, where the hash function is picked from a 2-universal family. Then, the expected lookup
time, for any element 𝑥 ∈ U is 𝑂 (𝑛/𝑚).

Proof: The number of elements colliding with 𝑥 is ℓ(𝑥) = ∑
𝑦∈𝑆 𝐷𝑦, where 𝐷𝑦 = 1 ⇐⇒ 𝑥 and 𝑦 collide

under the hash function ℎ. As such, we have

E[ℓ(𝑥)] =
∑︁
𝑦∈𝑆
E
[
𝐷𝑦

]
=
∑︁
𝑦∈𝑆
P[ℎ(𝑥) = ℎ(𝑦)] =

∑︁
𝑦∈𝑆

1
𝑚

= |𝑆 |/𝑚 = 𝑛/𝑚.

Remark 15.2.3. The above analysis holds even if we perform a sequence of 𝑂 (𝑛) insertions/deletions
operations. Indeed, just repeat the analysis with the set of elements being all elements encountered
during these operations.

The worst-case bound is of course much worse – it is not hard to show that in the worst case, the
load of a single hash table entry might be Ω(log 𝑛/log log 𝑛) (as can be seen in the occupancy problem)
[under the very unrealistic assumption that the hash function is a truely random function.].

3

Rehashing, amortization, etc. The above assumed that the set 𝑆 is fixed. If items are inserted
and deleted, then the hash table might become much worse. In particular, |𝑆 | grows to more than 𝑐𝑚,
for some constant 𝑐, then hash table performance start degrading. Furthermore, if many insertions and
deletions happen then the initial random hash function is no longer random enough, and the above
analysis no longer holds.

A standard solution is to rebuild the hash table periodically. We choose a new table size based on
current number of elements in table, and a new random hash function, and rehash the elements. And
then discard the old table and hash function. In particular, if |𝑆 | grows to more than twice current table
size, then rebuild new hash table (choose a new random hash function) with double the current number
of elements. One can do a similar shrinking operation if the set size falls below quarter the current hash
table size.

If the working |𝑆 | stays roughly the same but more than 𝑐 |𝑆 | operations on table for some chosen
constant 𝑐 (say 10), rebuild.

The amortize cost of rebuilding to previously performed operations. Rebuilding ensures 𝑂 (1)
expected analysis holds even when 𝑆 changes. Hence 𝑂 (1) expected look up/insert/delete time dynamic
data dictionary data structure!

15.2.1. How to build a 2-universal family
15.2.1.1. On working modulo prime

Definition 15.2.4. For a number 𝑝, let ZZ𝑛 =
{
0, . . . , 𝑛 − 1

}
.

For two integer numbers 𝑥 and 𝑦, the quotient of 𝑥/𝑦 is 𝑥 div 𝑦 = b𝑥/𝑦c. The remainder of 𝑥/𝑦 is
𝑥 mod 𝑦 = 𝑥 − 𝑦 b𝑥/𝑦c. If the 𝑥 mod 𝑦 = 0, than 𝑦 divides 𝑥, denoted by 𝑦 | 𝑥. We use 𝛼 ≡ 𝛽 (mod 𝑝)
or 𝛼 ≡𝑝 𝛽 to denote that 𝛼 and 𝛽 are congruent modulo 𝑝; that is 𝛼 mod 𝑝 = 𝛽 mod 𝑝 – equivalently,
𝑝 | (𝛼 − 𝛽).

Lemma 15.2.5. Let 𝑝 be a prime number.
(A) For any 𝛼, 𝛽 ∈ {1, . . . , 𝑝 − 1}, we have that 𝛼𝛽 . 0 (mod 𝑝).
(B) For any 𝛼, 𝛽, 𝑖 ∈ {1, . . . , 𝑝 − 1}, such that 𝛼 ≠ 𝛽, we have that 𝛼𝑖 . 𝛽𝑖 (mod 𝑝).
(C) For any 𝑥 ∈ {1, . . . , 𝑝 − 1} there exists a unique 𝑦 such that 𝑥𝑦 ≡ 1 (mod 𝑝). The number 𝑦 is the

inverse of 𝑥, and is denoted by 𝑥−1 or 1/𝑥.

Proof: (A) If 𝛼𝛽 ≡ 0 (mod 𝑝), then 𝑝 must divide 𝛼𝛽, as it divides 0. But 𝛼, 𝛽 are smaller than 𝑝, and
𝑝 is prime. This implies that either 𝑝 | 𝛼 or 𝑝 | 𝛽, which is impossible.

(B) Assume that 𝛼 > 𝛽. Furthermore, for the sake of contradiction, assume that 𝛼𝑖 ≡ 𝛽𝑖 (mod 𝑝).
But then, (𝛼 − 𝛽)𝑖 ≡ 0 (mod 𝑝), which is impossible, by (A).

(C) For any 𝛼 ∈ {1, . . . , 𝑝 − 1}, consider the set 𝐿𝛼 = {𝛼∗1 mod 𝑝, 𝛼∗2 mod 𝑝, . . . , 𝛼∗(𝑝−1) mod 𝑝}.
By (A), zero is not in 𝐿𝛼, and by (B), 𝐿𝛼 must contain 𝑝 − 1 distinct values. It follows that 𝐿𝛼 =

{1, 2, . . . , 𝑝−1}. As such, there exists exactly one number 𝑦 ∈ {1, . . . , 𝑝 − 1}, such that 𝛼𝑦 ≡ 1 (mod 𝑝).

Lemma 15.2.6. Consider a prime 𝑝, and any numbers 𝑥, 𝑦 ∈ ZZ𝑝. If 𝑥 ≠ 𝑦 then, for any 𝑎, 𝑏 ∈ Z𝑝,
such that 𝑎 ≠ 0, we have 𝑎𝑥 + 𝑏 . 𝑎𝑦 + 𝑏 (mod 𝑝).

Proof: Assume 𝑦 > 𝑥 (the other case is handled similarly). If 𝑎𝑥 + 𝑏 ≡ 𝑎𝑦 + 𝑏 (mod 𝑝) then 𝑎(𝑥 − 𝑦)
(mod 𝑝) = 0 and 𝑎 ≠ 0 and (𝑥 − 𝑦) ≠ 0. However, 𝑎 and 𝑥 − 𝑦 cannot divide 𝑝 since 𝑝 is prime and
𝑎 < 𝑝 and 0 < 𝑥 − 𝑦 < 𝑝.

4

Lemma 15.2.7. Consider a prime 𝑝, and any numbers 𝑥, 𝑦 ∈ ZZ𝑝. If 𝑥 ≠ 𝑦 then, for each pair of
numbers 𝑟, 𝑠 ∈ ZZ𝑝 = {0, 1, . . . , 𝑝 − 1}, such that 𝑟 ≠ 𝑠, there is exactly one unique choice of numbers
𝑎, 𝑏 ∈ ZZ𝑝 such that 𝑎𝑥 + 𝑏 (mod 𝑝) = 𝑟 and 𝑎𝑦 + 𝑏 (mod 𝑝) = 𝑠.

Proof: Solve the system of equations

𝑎𝑥 + 𝑏 ≡ 𝑟 (mod 𝑝) and 𝑎𝑦 + 𝑏 ≡ 𝑠 (mod 𝑝).

We get 𝑎 = 𝑟−𝑠
𝑥−𝑦 (mod 𝑝) and 𝑏 = 𝑟 − 𝑎𝑥 (mod 𝑝).

15.2.1.2. Constructing a family of 2-universal hash functions

For parameters 𝑁 = |U|, 𝑚 = |𝑇 |, 𝑛 = |𝑆 |. Choose a prime number 𝑝 ≥ 𝑁. Let

H =
{
ℎ𝑎,𝑏

�� 𝑎, 𝑏 ∈ ZZ𝑝 and 𝑎 ≠ 0
}
,

where ℎ𝑎,𝑏 (𝑥) = ((𝑎𝑥 + 𝑏) (mod 𝑝)) (mod 𝑚). Note that |H | = 𝑝(𝑝 − 1).

15.2.1.3. Analysis

Once we fix 𝑎 and 𝑏, and we are given a value 𝑥, we compute the hash value of 𝑥 in two stages:
(A) Compute: 𝑟 ← (𝑎𝑥 + 𝑏) (mod 𝑝).
(B) Fold: 𝑟′← 𝑟 (mod 𝑚)

Lemma 15.2.8. Assume that 𝑝 is a prime, and 1 < 𝑚 < 𝑝. The number of pairs (𝑟, 𝑠) ∈ ZZ𝑝 × ZZ𝑝,
such that 𝑟 ≠ 𝑠, that are folded to the same number is ≤ 𝑝(𝑝 − 1)/𝑚. Formally, the set of bad pairs

𝐵 =
{
(𝑟, 𝑠) ∈ ZZ𝑝 × ZZ𝑝

�� 𝑟 ≡𝑚 𝑠
}

is of size at most 𝑝(𝑝 − 1)/𝑚.

Proof: Consider a pair (𝑥, 𝑦) ∈ {0, 1, . . . , 𝑝 − 1}2, such that 𝑥 ≠ 𝑦. For a fixed 𝑥, there are at most d𝑝/𝑚e
values of 𝑦 that fold into 𝑥. Indeed, 𝑥 ≡𝑚 𝑦 if and only if

𝑦 ∈ 𝐿 (𝑥) = {𝑥 + 𝑖𝑚 | 𝑖 is an integer} ∩ ZZ𝑝 .

The size of 𝐿 (𝑥) is maximized when 𝑥 = 0, The number of such elements is at most d𝑝/𝑚e (note, that
since 𝑝 is a prime, 𝑝/𝑚 is fractional). One of the numbers in 𝑂 (𝑥) is 𝑥 itself. As such, we have that

|𝐵 | ≤ 𝑝
(
|𝐿 (𝑥) | − 1

)
≤ 𝑝

(
d𝑝/𝑚e − 1

)
≤ 𝑝

(
𝑝 − 1

)
/𝑚,

since d𝑝/𝑚e − 1 ≤ (𝑝 − 1)/𝑚 ⇐⇒ 𝑚 d𝑝/𝑚e − 𝑚 ≤ 𝑝 − 1 ⇐⇒ 𝑚 b𝑝/𝑚c ≤ 𝑝 − 1 ⇐⇒ 𝑚 b𝑝/𝑚c < 𝑝,
which is true since 𝑝 is a prime, and 1 < 𝑚 < 𝑝.

Claim 15.2.9. For two distinct numbers 𝑥, 𝑦 ∈ U, a pair 𝑎, 𝑏 is bad if ℎ𝑎,𝑏 (𝑥) = ℎ𝑎,𝑏 (𝑦). The number
of bad pairs is ≤ 𝑝(𝑝 − 1)/𝑚.

Proof: Let 𝑎, 𝑏 ∈ Z𝑝 such that 𝑎 ≠ 0 and ℎ𝑎,𝑏 (𝑥) = ℎ𝑎,𝑏 (𝑦). Let

𝑟 = (𝑎𝑥 + 𝑏) mod 𝑝 and 𝑠 = (𝑎𝑦 + 𝑏) mod 𝑝.

By Lemma 15.2.6, we have that 𝑟 ≠ 𝑠. As such, a collision happens if 𝑟 ≡ 𝑠 (mod 𝑚). By Lemma 15.2.8,
the number of such pairs (𝑟, 𝑠) is at most 𝑝(𝑝−1)/𝑚. By Lemma 15.2.7, for each such pair (𝑟, 𝑠), there is
a unique choice of 𝑎, 𝑏 that maps 𝑥 and 𝑦 to 𝑟 and 𝑠, respectively. As such, there are at most 𝑝(𝑝−1)/𝑚
bad pairs.

5

(A) (B) (C)

Figure 15.2: Explanation of the hashing scheme via figures.

Theorem 15.2.10. The hash family H is a 2-universal hash family.

Proof: Fix two distinct numbers 𝑥, 𝑦 ∈ U. We are interested in the probability they collide if ℎ is picked
randomly from H . By Claim 15.2.9 there are 𝑀 ≤ 𝑝(𝑝 − 1)/𝑚 bad pairs that causes such a collision,
and since H contains 𝑁 = 𝑝(𝑝 − 1) functions, it follows the probability for collision is 𝑀/𝑁 ≤ 1/𝑚,
which implies that H is 2-universal.

15.2.1.4. Explanation via pictures

Consider a pair (𝑥, 𝑦) ∈ ZZ2
𝑝, such that 𝑥 ≠ 𝑦. This pair (𝑥, 𝑦) corresponds to a cell in the natural “grid”

ZZ2
𝑝 that is off the main diagonal. See Figure 15.2

The mapping 𝑓𝑎,𝑏 (𝑥) = (𝑎𝑥 + 𝑏) mod 𝑝, takes the pair (𝑥, 𝑦), and maps it randomly and uniformly,
to some other pair 𝑥′ = 𝑓𝑎,𝑏 (𝑥) and 𝑦′ = 𝑓𝑎,𝑏 (𝑦) (where 𝑥′, 𝑦′ are again off the main diagonal).

Now consider the smaller grid ZZ𝑚 × ZZ𝑚. The main diagonal of this subgrid is bad – it corresponds
to a collision. One can think about the last step, of computing ℎ𝑎,𝑏 (𝑥) = 𝑓𝑎,𝑏 (𝑥) mod 𝑚, as tiling the
larger grid, by the smaller grid. in the natural way. Any diagonal that is in distance 𝑚𝑖 from the main
diagonal get marked as bad. At most 1/𝑚 fraction of the off diagonal cells get marked as bad. See
Figure 15.2.

As such, the random mapping of (𝑥, 𝑦) to (𝑥′, 𝑦′) causes a collision only if we map the pair to a badly
marked pair, and the probability for that ≤ 1/𝑚.

15.3. Perfect hashing
An interesting special case of hashing is the static case – given a set 𝑆 of elements, we want to hash 𝑆 so
that we can answer membership queries efficiently (i.e., dictionary data-structures with no insertions).
it is easy to come up with a hashing scheme that is optimal as far as space.

15.3.1. Some easy calculations
The first observation is that if the hash table is quadraticly large, then there is a good (constant)
probability to have no collisions (this is also the threshold for the birthday paradox).

6

Lemma 15.3.1. Let 𝑆 ⊆ U be a set of 𝑛 elements, and let H be a 2-universal family of hash functions,
into a table of size 𝑚 ≥ 𝑛2. Then with probability ≤ 1/2, there is a pair of elements of 𝑆 that collide
under a random hash function ℎ ∈ H .

Proof: For a pair 𝑥, 𝑦 ∈ 𝑆, the probability they collide is at most ≤ 1/𝑚, by Definition 15.2.1. As such,
by the union bound, the probability of any collusion is

(𝑛
2
)
/𝑚 = 𝑛(𝑛 − 1)/2𝑚 ≤ 1/2.

We now need a second moment bound on the sizes of the buckets.

Lemma 15.3.2. Let 𝑆 ⊆ U be a set of 𝑛 elements, and let H be a 2-universal family of hash functions,
into a table of size 𝑚 ≥ 𝑐𝑛, where 𝑐 is an arbitrary constant. Let ℎ ∈ H be a random hash function, and
let 𝑋𝑖 be the number of elements of 𝑆 mapped to the 𝑖th bucket by ℎ, for 𝑖 = 0, . . . , 𝑚 − 1. Then, we have
E
[∑𝑚−1

𝑗=0 𝑋2
𝑗

]
≤ (1 + 2/𝑐)𝑛.

Proof: Let 𝑠1, . . . , 𝑠𝑛 be the 𝑛 items in 𝑆, and let 𝑍𝑖, 𝑗 = 1 if ℎ(𝑠𝑖) = ℎ(𝑠 𝑗), for 𝑖 < 𝑗 . Observe that
E
[
𝑍𝑖, 𝑗

]
= P

[
ℎ(𝑠𝑖) = ℎ(𝑠 𝑗)

]
≤ 1/𝑚 (this is the only place we use the property that H is 2-universal). In

particular, let Z(𝛼) be all the variables 𝑍𝑖, 𝑗 , for 𝑖 < 𝑗 , such that 𝑍𝑖, 𝑗 = 1 and ℎ(𝑠𝑖) = ℎ(𝑠 𝑗) = 𝛼. Using
this notation, we have that

𝑋𝛼 =

���{𝑠 ∈ 𝑆 �� ℎ(𝑠) = 𝛼
}��� .

If for some 𝛼 we have that 𝑋𝛼 = 𝑘, then there are 𝑘 indices ℓ1 < ℓ2 < . . . < ℓ𝑘 , such that ℎ(𝑠ℓ1) =
· · · = ℎ(𝑠ℓ𝑘) = 𝑖. Let

𝑧(𝛼) = |Z(𝛼) | =
(
𝑘

2

)
.

In particular, we have
𝑋2
𝛼 = 𝑘2 = 2

(
𝑘

2

)
+ 𝑘 = 2𝑧(𝛼) + 𝑋𝛼

This implies that

𝑚−1∑︁
𝛼=0

𝑋2
𝛼 =

𝑚−1∑︁
𝛼=0

(
2𝑧(𝛼) + 𝑋𝛼

)
= 2

𝑚−1∑︁
𝛼=0

𝑧(𝛼) +
𝑚−1∑︁
𝛼=0

𝑋𝛼 = 2
𝑚−1∑︁
𝑖𝛼=0

𝑧(𝛼) +
𝑚−1∑︁
𝛼=0

𝑋𝛼 = 𝑛 + 2
𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑍𝑖 𝑗

Now, by linearity of expectations, we have

E
[𝑚−1∑︁
𝛼=0

𝑋2
𝛼

]
= E

[
𝑛 + 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑍𝑖 𝑗

]
= 𝑛 + 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1
E
[
𝑍𝑖 𝑗

]
≤ 𝑛 + 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

1
𝑚
≤ 𝑛

(
1 + 2 𝑛

𝑚

)
≤ 𝑛

(
1 + 2

𝑐

)
since 𝑚 ≥ 𝑐𝑛.

15.3.2. Construction of perfect hashing
Given a set 𝑆 of 𝑛 elements, we build a open hash table 𝑇 of size, say, 2𝑛. We use a random hash function
ℎ that is 2-universal for this hash table, see Theorem 15.2.10. Next, we map the elements of 𝑆 into the
hash table. Let 𝑆 𝑗 be the list of all the elements of 𝑆 mapped to the 𝑗th bucket, and let 𝑋 𝑗 =

��𝐿 𝑗

��, for
𝑗 = 0, . . . , 𝑛 − 1.

We compute 𝑌 =
∑

𝑖=1 𝑋
2
𝑗
. If 𝑌 > 6𝑛, then we reject ℎ, and resample a hash function ℎ. We repeat

this process till success.

7

In the second stage, we build secondary hash tables for each bucket. Specifically, for 𝑗 = 0, . . . , 2𝑛−1,
if the 𝑗th bucket contains 𝑋 𝑗 > 0 elements, then we construct a secondary hash table 𝐻 𝑗 to store the
elements of 𝑆 𝑗 , and this secondary hash table has size 𝑋2

𝑗
, and again we use a random 2-universal hash

function ℎ 𝑗 for the hashing of 𝑆 𝑗 into 𝐻 𝑗 . If any pair of elements of 𝑆 𝑗 collide under ℎ 𝑗 , then we resample
the hash function ℎ 𝑗 , and try again till success.

15.3.2.1. Analysis

Theorem 15.3.3. Given a (static) set 𝑆 ⊆ U of 𝑛 elements, the above scheme, constructs, in expected
linear time, a two level hash-table that can perform search queries in 𝑂 (1) time. The resulting data-
structure uses 𝑂 (𝑛) space.

Proof: Given an element 𝑥 ∈ U, we first compute 𝑗 = ℎ(𝑥), and then 𝑘 = ℎ 𝑗 (𝑥), and we can check
whether the element stored in the secondary hash table 𝐻 𝑗 at the entry 𝑘 is indeed 𝑥. As such, the
search time is 𝑂 (1).

The more interesting issue is the construction time. Let 𝑋 𝑗 be the number of elements mapped to
the 𝑗th bucket, and let 𝑌 =

∑𝑛
𝑖=1 𝑋

2
𝑖
. Observe, that E[𝑌] = (1 + 2/2)𝑛 = 2𝑛, by Lemma 15.3.2 (here,

𝑚 = 2𝑛 and 𝑐 = 2). As such, by Markov’s inequality, P[𝑋 > 6𝑛] ≤ 1/2. In particular, picking a good top
level hash function requires in expectation 1/(1/2) = 2 iterations. Thus the first stage takes 𝑂 (𝑛) time,
in expectation.

For the 𝑗th bucket, with 𝑋 𝑗 entries, by Lemma 15.3.1, the construction succeeds with probability
≥ 1/2. As before, the expected number of iterations till success is at most 2. As such, the expected
construction time of the secondary hash table for the 𝑗th bucket is 𝑂 (𝑋2

𝑗
).

We conclude that the overall expected construction time is 𝑂 (𝑛 +∑ 𝑗 𝑋
2
𝑗
) = 𝑂 (𝑛).

As for the space used, observe that it is 𝑂 (𝑛 +∑ 𝑗 𝑋
2
𝑗
) = 𝑂 (𝑛).

15.4. Bloom filters
Consider an application where we have a set 𝑆 ⊆ U of 𝑛 elements, and we want to be able to decide for
a query 𝑥 ∈ U, whether or not 𝑥 ∈ 𝑆. Naturally, we can use hashing. However, here we are interested in
more efficient data-structure as far as space. We allow the data-structure to make a mistake (i.e., say
that an element is in, when it is not in).

First try. So, let start silly. Let 𝐵[0 . . . , 𝑚] be an array of bits, and pick a random hash function
ℎ : U → ZZ𝑚. Initialize 𝐵 to 0. Next, for every element 𝑠 ∈ 𝑆, set 𝐵[ℎ(𝑠)] to 1. Now, given a query,
return 𝐵[ℎ(𝑥)] as an answer whether or not 𝑥 ∈ 𝑆. Note, that 𝐵 is an array of bits, and as such it can
be bit-packed and stored efficiently.

For the sake of simplicity of exposition, assume that the hash functions picked is truly random. As
such, we have that the probability for a false positive (i.e., a mistake) for a fixed 𝑥 ∈ U is 𝑛/𝑚. Since
we want the size of the table 𝑚 to be close to 𝑛, this is not satisfying.

Using 𝑘 hash functions. Instead of using a single hash function, let us use 𝑘 independent hash
functions ℎ1, . . . ℎ𝑘 . For an element 𝑠 ∈ 𝑆, we set 𝐵[ℎ𝑖 (𝑠)] to 1, for 𝑖 = 1, . . . , 𝑘. Given an query 𝑥 ∈ U, if
𝐵[ℎ𝑖 (𝑥)] is zero, for any 𝑖 = 1, . . . , 𝑘, then 𝑥 ∉ 𝑆. Otherwise, if all these 𝑘 bits are on, the data-structure
returns that 𝑥 is in 𝑆.

8

Clearly, if the data-structure returns that 𝑥 is not in 𝑆, then it is correct. The data-structure might
make a mistake (i.e., a false positive), if it returns that 𝑥 is in 𝑆 (when is not in 𝑆).

We interpret the storing of the elements of 𝑆 in 𝐵, as an experiment of throwing 𝑘𝑛 balls into 𝑚

bins. The probability of a bin to be empty is

𝑝 = 𝑝(𝑚, 𝑛) = (1 − 1/𝑚)𝑘𝑛 ≈ exp(−𝑘 (𝑛/𝑚)).

Since the number of empty bins is a martingale, we know the number of empty bins is strongly concen-
trated around the expectation 𝑝𝑚, and we can treat 𝑝 as the true probability of a bin to be empty.

The probability of a mistake is
𝑓 (𝑘, 𝑚, 𝑛) = (1 − 𝑝)𝑘 .

In particular, for 𝑘 = (𝑚/𝑛) ln 𝑛, we have that 𝑝 = 𝑝(𝑚, 𝑛) ≈ 1/2, and 𝑓 (𝑘, 𝑚, 𝑛) ≈ 1/2(𝑚/𝑛) ln 2 ≈ 0.618𝑚/𝑛.

Example 15.4.1. Of course, the above is fictional, as 𝑘 has to be an integer. But motivated by these
calculations, let 𝑚 = 3𝑛, and 𝑘 = 4. We get that 𝑝(𝑚, 𝑛) = exp(−4/3) ≈ 0.26359, and 𝑓 (4, 3𝑛, 𝑛) ≈
(1 − 0.265)4 ≈ 0.294078. This is better than the naive 𝑘 = 1 scheme, where the probability of false
positive is 1/3.

Note, that this scheme gets exponentially better over the naive scheme as 𝑚/𝑛 grows.

Example 15.4.2. Consider the setting 𝑚 = 8𝑛 – this is when we allocate a byte for each element stored (the
element of course might be significantly bigger). The above implies we should take 𝑘 = d(𝑚/𝑛) ln 2e = 6.
We then get 𝑝(8𝑛, 𝑛) = exp(−6/8) ≈ 0.5352, and 𝑓 (6, 8𝑛, 𝑛) ≈ 0.0215. Here, the naive scheme with 𝑘 = 1,
would give probability of false positive of 1/8 = 0.125. So this is a significant improvement.

Remark 15.4.3. It is important to remember that Bloom filters are competing with direct hashing of the
whole elements. Even if one allocates 8 bits per item, as in the example above, the space it uses is
significantly smaller than regular hashing. A situation when such a Bloom filter makes sense is for a
cache – we might want to decide if an element is in a slow external cache (say SSD drive). Retrieving
item from the cache is slow, but not so slow we are not willing to have a small overhead because of false
positives.

15.5. Bibliographical notes
Practical Issues Hashing used typically for integers, vectors, strings etc.

• Universal hashing is defined for integers. To implement it for other objects, one needs to map
objects in some fashion to integers.

• Practical methods for various important cases such as vectors, strings are studied extensively. See
http://en.wikipedia.org/wiki/Universal_hashing for some pointers.

• Recent important paper bridging theory and practice of hashing. “The power of simple tabulation
hashing” by Mikkel Thorup and Mihai Patrascu, 2011. See http://en.wikipedia.org/wiki/
Tabulation_hashing

Bibliography

9

http://en.wikipedia.org/wiki/Universal_hashing
http://en.wikipedia.org/wiki/Tabulation_hashing
http://en.wikipedia.org/wiki/Tabulation_hashing

	Hashing
	Introduction
	Universal Hashing
	How to build a 2-universal family

	Perfect hashing
	Some easy calculations
	Construction of perfect hashing

	Bloom filters
	Bibliographical notes

	Bibliography

