
Chapter 13

Randomized Algorithms
By Sariel Har-Peled, December 2, 2021¬ Version: 0.26

13.1. Example: Estimating the median is sublinear time
You are given am array 𝑋 [1 . . . 𝑛] of real numbers. Think about 𝑛 as being huge (say, 𝑛 is in the billions).
You would like to estimate the median element of 𝑋. Cam one estimate the median number of 𝑋. The
median of 𝑋 is the number in 𝑋 that half the elements of 𝑋 are smaller than it, and half of them are
bigger than it. Formally, an element 𝑥 ∈ 𝑋 (interpret 𝑋 as a set) has rank 𝑘 if | {𝑦 ∈ 𝑋 | 𝑦 ≤ 𝑥} | = 𝑘

(we assume here that all the elements of 𝑋 are distinct).
A natural algorithm is to pick, say, 𝑘 random numbers from 𝑋, say with replacement. Let 𝑌 be the

resulting random sample. Compute the median of 𝑌 (say by sorting). Output the computed median as
an estimate of the true median. How close is this to the true median?

13.2. Some Probability
Definition 13.2.1. (Informal.) A random variable is a measurable function from a probability space to
(usually) real numbers. It associates a value with each possible atomic event in the probability space.

Definition 13.2.2. The conditional probability of 𝑋 given 𝑌 is

P[𝑋 = 𝑥 |𝑌 = 𝑦] =
P
[
(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)

]
P
[
𝑌 = 𝑦

] .

An equivalent and useful restatement of this is that

P
[
(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)

]
= P

[
𝑋 = 𝑥

�� 𝑌 = 𝑦
]
∗ P

[
𝑌 = 𝑦

]
.

Definition 13.2.3. Two events 𝑋 and 𝑌 are independent, if P[𝑋 = 𝑥 ∩ 𝑌 = 𝑦] = P[𝑋 = 𝑥] · P[𝑌 = 𝑦]. In
particular, if 𝑋 and 𝑌 are independent, then

P
[
𝑋 = 𝑥

�� 𝑌 = 𝑦
]
= P[𝑋 = 𝑥] .

Definition 13.2.4. The expectation of a random variable 𝑋 is the average value of this random variable.
Formally, if 𝑋 has a finite (or countable) set of values, it is

E[𝑋] =
∑︁
𝑥

𝑥 · P[𝑋 = 𝑥],

where the summation goes over all the possible values of 𝑋.
¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

One of the most powerful properties of expectations is that an expectation of a sum is the sum of
expectations.

Lemma 13.2.5 (Linearity of expectation). For any two random variables 𝑋 and 𝑌 , we have E
[
𝑋 + 𝑌

]
=

E
[
𝑋
]
+ E

[
𝑌
]
.

Proof: For the simplicity of exposition, assume that 𝑋 and 𝑌 receive only integer values. We have that

E[𝑋 + 𝑌] =
∑︁
𝑥

∑︁
𝑦

(𝑥 + 𝑦) P[(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)]

=
∑︁
𝑥

∑︁
𝑦

𝑥 ∗ P[(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)] +
∑︁
𝑥

∑︁
𝑦

𝑦 ∗ P[(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)]

=
∑︁
𝑥

𝑥 ∗
∑︁
𝑦

P[(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)] +
∑︁
𝑦

𝑦 ∗
∑︁
𝑥

P[(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)]

=
∑︁
𝑥

𝑥 ∗ P[𝑋 = 𝑥] +
∑︁
𝑦

𝑦 ∗ P[𝑌 = 𝑦]

= E[𝑋] + E[𝑌] .

Another interesting function is the conditional expectation – that is, it is the expectation of a random
variable given some additional information.

Definition 13.2.6. Given random variables 𝑋 and 𝑌 , the conditional expectation of 𝑋 given 𝑌 , is the
quantity E

[
𝑋

�� 𝑌]
. Specifically, you are given the value 𝑦 of the random variable 𝑌 , and the condition

expectation of 𝑋 given 𝑌 is

E
[
𝑋

�� 𝑌]
= E

[
𝑋

�� 𝑌 = 𝑦
]
=

∑︁
𝑥

𝑥 ∗ P[𝑋 = 𝑥 | 𝑌 = 𝑦] .

Note, that for a random variable 𝑋, the expectation E[𝑋] is a number. On the other hand, the condi-
tional probability 𝑓 (𝑦) = E[𝑋 | 𝑌 = 𝑦] is a function. The key insight why conditional probability is the
following.

Lemma 13.2.7. For any two random variables 𝑋 and 𝑌 (not necessarily independent), we have that
E[𝑋] = E

[
E[𝑋 | 𝑌]

]
.

Proof: We use the definitions carefully:

E
[
E[𝑋 | 𝑌]

]
= E

𝑦

[
E[𝑋 | 𝑌 = 𝑦]

]
= E

𝑦

[∑︁
𝑥

𝑥 ∗ P[𝑋 = 𝑥 | 𝑌 = 𝑦]
]

=
∑︁
𝑦

P[𝑌 = 𝑦] ∗
(∑︁

𝑥

𝑥 ∗ P[𝑋 = 𝑥 | 𝑌 = 𝑦]
)

=
∑︁
𝑦

P[𝑌 = 𝑦] ∗
(∑︁

𝑥

𝑥 ∗ P[(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)]
P[𝑌 = 𝑦]

)
=

∑︁
𝑦

∑︁
𝑥

𝑥 ∗ P[(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)] =
∑︁
𝑥

∑︁
𝑦

𝑥 ∗ P[(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)]

=
∑︁
𝑥

𝑥 ∗
(∑︁

𝑦

P[(𝑋 = 𝑥) ∩ (𝑌 = 𝑦)]
)
=

∑︁
𝑥

𝑥 ∗ P[𝑋 = 𝑥] = E[𝑋] .

2

13.3. Preliminaries
Definition 13.3.1 (Variance and Standard Deviation). For a random variable 𝑋, let

V[𝑋] = E
[
(𝑋 − 𝜇𝑋)2

]
= E

[
𝑋2] − 𝜇2

𝑋

denote the variance of 𝑋, where 𝜇𝑋 = E[𝑋]. Intuitively, this tells us how concentrated is the distribu-
tion of 𝑋. The standard deviation of 𝑋, denoted by 𝜎𝑋 is the quantity

√︁
V[𝑋].

Observation 13.3.2. (i) For any constant 𝑐 ≥ 0, we have V
[
𝑐𝑋

]
= 𝑐2V

[
𝑋
]
.

(ii) For 𝑋 and 𝑌 independent variables, we have V
[
𝑋 + 𝑌

]
= V

[
𝑋
]
+ V

[
𝑌
]
.

Definition 13.3.3 (Bernoulli distribution). Assume, that one flips a coin and get 1 (heads) with probability
𝑝, and 0 (i.e., tail) with probability 𝑞 = 1 − 𝑝. Let 𝑋 be this random variable. The variable 𝑋 is has
Bernoulli distribution with parameter 𝑝.

We have that E[𝑋] = 1 · 𝑝 + 0 · (1 − 𝑝) = 𝑝, and

V
[
𝑋
]
= E

[
𝑋2] − 𝜇2

𝑋 = E
[
𝑋2] − 𝑝2 = 𝑝 − 𝑝2 = 𝑝 (1 − 𝑝) = 𝑝𝑞.

Definition 13.3.4 (Binomial distribution). Assume that we repeat a Bernoulli experiment 𝑛 times (inde-
pendently!). Let 𝑋1, . . . , 𝑋𝑛 be the resulting random variables, and let 𝑋 = 𝑋1 + · · · + 𝑋𝑛. The variable 𝑋

has the binomial distribution with parameters 𝑛 and 𝑝. We denote this fact by 𝑋 ∼ Bin(𝑛, 𝑝). We
have

𝑏(𝑘; 𝑛, 𝑝) = P
[
𝑋 = 𝑘

]
=

(
𝑛

𝑘

)
𝑝𝑘𝑞𝑛−𝑘 .

Also, E[𝑋] = 𝑛𝑝, and V[𝑋] = V
[∑𝑛

𝑖=1 𝑋𝑖

]
=

∑𝑛
𝑖=1V[𝑋𝑖] = 𝑛𝑝𝑞.

Observation 13.3.5. Let 𝐶1, . . . , 𝐶𝑛 be random events (not necessarily independent). Than

P
[
∪𝑛𝑖=1𝐶𝑖

]
≤

𝑛∑︁
𝑖=1
P[𝐶𝑖] .

(This is usually referred to as the union bound.) If 𝐶1, . . . , 𝐶𝑛 are disjoint events then

P
[
∪𝑛𝑖=1𝐶𝑖

]
=

𝑛∑︁
𝑖=1
P[𝐶𝑖] .

13.3.1. Geometric distribution
Definition 13.3.6. Consider a sequence 𝑋1, 𝑋2, . . . of independent Bernoulli trials with probability 𝑝 for
success. Let 𝑋 be the number of trials one has to perform till encountering the first success. The
distribution of 𝑋 is geometric distribution with parameter 𝑝. We denote this by 𝑋 ∼ Geom(𝑝).

Lemma 13.3.7. For a variable 𝑋 ∼ Geom(𝑝), we have, for all 𝑖, that P[𝑋 = 𝑖] = (1 − 𝑝)𝑖−1𝑝. Further-
more, E[𝑋] = 1/𝑝 and V[𝑋] = (1 − 𝑝)/𝑝2.

3

Proof: The proof of the expectation and variance is included for the sake of completeness, and the
reader is of course encouraged to skip (reading) this proof. So, let 𝑓 (𝑥) = ∑∞

𝑖=0 𝑥
𝑖 = 1

1−𝑥 , and observe
that 𝑓 ′(𝑥) = ∑∞

𝑖=1 𝑖𝑥
𝑖−1 = (1 − 𝑥)−2. As such, we have

E[𝑋] =
∞∑︁
𝑖=1

𝑖 (1 − 𝑝)𝑖−1𝑝 = 𝑝 𝑓 ′(1 − 𝑝) = 𝑝

(1 − (1 − 𝑝))2
=

1
𝑝
,

and V[𝑋] = E
[
𝑋2] − 1

𝑝2 =

∞∑︁
𝑖=1

𝑖2 (1 − 𝑝)𝑖−1𝑝 − 1
𝑝2 . = 𝑝 + 𝑝(1 − 𝑝)

∞∑︁
𝑖=2

𝑖2 (1 − 𝑝)𝑖−2 − 1
𝑝2 .

Observe that

𝑓 ′′(𝑥) =
∞∑︁
𝑖=2

𝑖(𝑖 − 1)𝑥𝑖−2 =
(
(1 − 𝑥)−1)′′ = 2

(1 − 𝑥)3 .

As such, we have that

Δ(𝑥) =
∞∑︁
𝑖=2

𝑖2𝑥𝑖−2 =

∞∑︁
𝑖=2

𝑖(𝑖 − 1)𝑥𝑖−2 +
∞∑︁
𝑖=2

𝑖𝑥𝑖−2 = 𝑓 ′′(𝑥) + 1
𝑥

∞∑︁
𝑖=2

𝑖𝑥𝑖−1 = 𝑓 ′′(𝑥) + 1
𝑥
(𝑓 ′(𝑥) − 1)

=
2

(1 − 𝑥)3 +
1
𝑥

(
1

(1 − 𝑥)2 − 1
)
=

2
(1 − 𝑥)3 +

1
𝑥

(
1 − (1 − 𝑥)2
(1 − 𝑥)2

)
=

2
(1 − 𝑥)3 +

1
𝑥
· 𝑥(2 − 𝑥)(1 − 𝑥)2

=
2

(1 − 𝑥)3 +
2 − 𝑥
(1 − 𝑥)2 .

As such, we have that

V[𝑋] = 𝑝 + 𝑝(1 − 𝑝)Δ(1 − 𝑝) − 1
𝑝2 = 𝑝 + 𝑝(1 − 𝑝)

(
2
𝑝3 +

1 + 𝑝
𝑝2

)
− 1

𝑝2 = 𝑝 + 2(1 − 𝑝)
𝑝2 + 1 − 𝑝2

𝑝
− 1

𝑝2

=
𝑝3 + 2(1 − 𝑝) + 𝑝 − 𝑝3 − 1

𝑝2 =
1 − 𝑝

𝑝2 .

13.3.2. Some needed math
Lemma 13.3.8. For any positive integer 𝑛, we have:

(i) 1 + 𝑥 ≤ 𝑒𝑥, for all 𝑥.
(ii) (1 + 1/𝑛)𝑛 ≤ 𝑒 ≤

(
1 + 1/𝑛

)𝑛+1.
(iii) (1 − 1/𝑛)𝑛 ≤ 1

𝑒
≤ (1 − 1/𝑛)𝑛−1.

(iv) 𝑛! ≥ (𝑛/𝑒)𝑛.

(v) For any 𝑘 ≤ 𝑛, we have:
(𝑛
𝑘

) 𝑘
≤

(
𝑛

𝑘

)
≤

(𝑛𝑒
𝑘

) 𝑘
.

Proof: (i) Let ℎ(𝑥) = 𝑒𝑥 − 1 − 𝑥. Observe that ℎ′(𝑥) = 𝑒𝑥 − 1, and ℎ′′(𝑥) = 𝑒𝑥 > 0, for all 𝑥. That is ℎ(𝑥)
is a convex function. It achieves its minimum at ℎ′(𝑥) = 0 =⇒ 𝑒𝑥 = 1, which is true for 𝑥 = 0. For
𝑥 = 0, we have that ℎ(0) = 𝑒0 − 1 − 0 = 0. That is, ℎ(𝑥) ≥ 0 for all 𝑥, which implies that 𝑒𝑥 ≥ 1 + 𝑥, see
Figure 13.1.

(ii, iii) Indeed, 1 + 1/𝑛 ≤ exp(1/𝑛) and (1 − 1/𝑛)𝑛 ≤ exp(−1/𝑛), by (i). As such

(1 + 1/𝑛)𝑛 ≤ exp(𝑛(1/𝑛)) = 𝑒 and (1 − 1/𝑛)𝑛 ≤ exp(𝑛(−1/𝑛)) = 1
𝑒
,

4

−1

0

1

2

3

4

5

6

7

8

9

10

y

−10 −8 −6 −4 −2 0 2 4
x

ex 1 + x

Figure 13.1

which implies the left sides of (ii) and (iii). These are equivalent to

1
𝑒
≤

(𝑛

𝑛 + 1

)𝑛
=

(
1 − 1

𝑛 + 1

)𝑛
and 𝑒 ≤

(
1 + 1

𝑛 − 1

)𝑛
,

which are the right side of (iii) [by replacing 𝑛 + 1 by 𝑛], and the right side of (ii) [by replacing 𝑛 by
𝑛 + 1].

(iv) Indeed,

𝑛𝑛

𝑛! ≤
∞∑︁
𝑖=0

𝑛𝑖

𝑖! = 𝑒𝑛,

by the Taylor expansion of 𝑒𝑥 =
∑∞

𝑖=0
𝑥𝑖

𝑖! . This implies that (𝑛/𝑒)𝑛 ≤ 𝑛!, as required.
(v) For any 𝑘 ≤ 𝑛, we have 𝑛

𝑘
≤ 𝑛−1

𝑘−1 since 𝑘𝑛 − 𝑛 = 𝑛(𝑘 − 1) ≤ 𝑘 (𝑛 − 1) = 𝑘𝑛 − 𝑘. As such, 𝑛
𝑘
≤ 𝑛−𝑖

𝑘−𝑖 ,
for 1 ≤ 𝑖 ≤ 𝑘 − 1. As such,(𝑛

𝑘

) 𝑘
≤ 𝑛

𝑘
· 𝑛 − 1
𝑘 − 1 · · ·

𝑛 − 𝑖
𝑘 − 𝑖 · · ·

𝑛 − 𝑘 + 1
1 =

𝑛!
(𝑛 − 𝑘)!𝑘! =

(
𝑛

𝑘

)
.

As for the other direction, we have (
𝑛

𝑘

)
≤ 𝑛𝑘

𝑘! ≤
𝑛𝑘

(𝑘/𝑒)𝑘
=

(𝑛𝑒
𝑘

) 𝑘
,

by (iii).

5

13.4. Sorting Nuts and Bolts
Problem 13.4.1 (Sorting Nuts and Bolts). You are given a set of 𝑛 nuts and 𝑛 bolts. Every nut have a
matching bolt, and all the 𝑛 pairs of nuts and bolts have different sizes. Unfortunately, you get the nuts
and bolts separated from each other and you have to match the nuts to the bolts. Furthermore, given
a nut and a bolt, all you can do is to try and match one bolt against a nut (i.e., you can not compare
two nuts to each other, or two bolts to each other).

When comparing a nut to a bolt, either they match, or one is smaller than other (and you known
the relationship after the comparison).

How to match the 𝑛 nuts to the 𝑛 bolts quickly? Namely, while performing a small number of
comparisons.

MatchNutsAndBolts(𝑁: nuts, 𝐵: bolts)
Pick a random nut 𝑛𝑝𝑖𝑣𝑜𝑡 from 𝑁

Find its matching bolt 𝑏𝑝𝑖𝑣𝑜𝑡 in 𝐵

𝐵𝐿 ← All bolts in 𝐵 smaller than 𝑛𝑝𝑖𝑣𝑜𝑡
𝑁𝐿 ← All nuts in 𝑁 smaller than 𝑏𝑝𝑖𝑣𝑜𝑡

𝐵𝑅 ← All bolts in 𝐵 larger than 𝑛𝑝𝑖𝑣𝑜𝑡
𝑁𝑅 ← All nuts in 𝑁 larger than 𝑏𝑝𝑖𝑣𝑜𝑡

MatchNutsAndBolts(𝑁𝑅,𝐵𝑅)
MatchNutsAndBolts(𝑁𝐿,𝐵𝐿)

The naive algorithm is of course to compare each nut to
each bolt, and match them together. This would require
a quadratic number of comparisons. Another option is
to sort the nuts by size, and the bolts by size and then
“merge” the two ordered sets, matching them by size. The
only problem is that we can not sorts only the nuts, or
only the bolts, since we can not compare them to each
other. Indeed, we sort the two sets simultaneously, by
simulating QuickSort. The resulting algorithm is depicted
on the right.

13.4.1. Running time analysis
Definition 13.4.2. Let RT denote the random variable which is the running time of the algorithm. Note,
that the running time is a random variable as it might be different between different executions on the
same input.

Definition 13.4.3. For a randomized algorithm, we can speak about the expected running time. Namely,
we are interested in bounding the quantity E[RT] for the worst input.

Definition 13.4.4. The expected running-time of a randomized algorithm for input of size 𝑛 is

𝑇 (𝑛) = max
𝑈 is an input of size 𝑛

E
[
RT(𝑈)

]
,

where RT(𝑈) is the running time of the algorithm for the input 𝑈.

Definition 13.4.5. The rank of an element 𝑥 in a set 𝑆, denoted by rank(𝑥), is the number of elements
in 𝑆 of size smaller or equal to 𝑥. Namely, it is the location of 𝑥 in the sorted list of the elements of 𝑆.

Theorem 13.4.6. The expected running time of MatchNutsAndBolts (and thus also of QuickSort) is
𝑇 (𝑛) = 𝑂 (𝑛 log 𝑛), where 𝑛 is the number of nuts and bolts. The worst case running time of this algorithm
is 𝑂 (𝑛2).

6

Proof: Clearly, we have that P
[
rank(𝑛𝑝𝑖𝑣𝑜𝑡) = 𝑘

]
= 1

𝑛
. Furthermore, if the rank of the pivot is 𝑘 then

𝑇 (𝑛) = E
𝑘=rank(𝑛𝑝𝑖𝑣𝑜𝑡)

[𝑂 (𝑛) + 𝑇 (𝑘 − 1) + 𝑇 (𝑛 − 𝑘)] = 𝑂 (𝑛) + E
𝑘
[𝑇 (𝑘 − 1) + 𝑇 (𝑛 − 𝑘)]

= 𝑇 (𝑛) = 𝑂 (𝑛) +
𝑛∑︁

𝑘=1
P[𝑅𝑎𝑛𝑘 (𝑃𝑖𝑣𝑜𝑡) = 𝑘] ∗ (𝑇 (𝑘 − 1) + 𝑇 (𝑛 − 𝑘))

= 𝑂 (𝑛) +
𝑛∑︁

𝑘=1

1
𝑛
· (𝑇 (𝑘 − 1) + 𝑇 (𝑛 − 𝑘)),

by the definition of expectation. It is not easy to verify that the solution to the recurrence 𝑇 (𝑛) =
𝑂 (𝑛) +∑𝑛

𝑘=1
1
𝑛
· (𝑇 (𝑘 − 1) + 𝑇 (𝑛 − 𝑘)) is 𝑂 (𝑛 log 𝑛).

13.4.1.1. Alternative incorrect solution

The algorithm MatchNutsAndBolts is lucky if 𝑛
4 ≤ rank(𝑛𝑝𝑖𝑣𝑜𝑡) ≤ 3

4𝑛. Thus, P[“lucky”] = 1/2. In-
tuitively, for the algorithm to be fast, we want the split to be as balanced as possible. The less bal-
anced the cut is, the worst the expected running time. As such, the “Worst” lucky position is when
rank(𝑛𝑝𝑖𝑣𝑜𝑡) = 𝑛/4 and we have that

𝑇 (𝑛) ≤ 𝑂 (𝑛) + P[“lucky”] ∗ (𝑇 (𝑛/4) + 𝑇 (3𝑛/4)) + P[“unlucky”] ∗ 𝑇 (𝑛).

Namely, 𝑇 (𝑛) = 𝑂 (𝑛) + 1
2 ∗

(
𝑇 (𝑛4) + 𝑇 (

3
4𝑛)

)
+ 1

2𝑇 (𝑛). Rewriting, we get the recurrence 𝑇 (𝑛) = 𝑂 (𝑛) +
𝑇 (𝑛/4) + 𝑇 ((3/4)𝑛), and its solution is 𝑂 (𝑛 log 𝑛).

While this is a very intuitive and elegant solution that bounds the running time of QuickSort, it is
also incomplete. The interested reader should try and make this argument complete. After completion
the argument is as involved as the previous argument. Nevertheless, this argumentation gives a good
back of the envelope analysis for randomized algorithms which can be applied in a lot of cases.

13.4.2. What are randomized algorithms?
Randomized algorithms are algorithms that use random numbers (retrieved usually from some unbiased
source of randomness [say a library function that returns the result of a random coin flip]) to make deci-
sions during the executions of the algorithm. The running time becomes a random variable. Analyzing
the algorithm would now boil down to analyzing the behavior of the random variable RT(𝑛), where 𝑛

denotes the size of the input.In particular, the expected running time E[RT(𝑛)] is a quantity that we
would be interested in.

It is useful to compare the expected running time of a randomized algorithm, which is

𝑇 (𝑛) = max
𝑈 is an input of size 𝑛

E[RT(𝑈)] ,

to the worst case running time of a deterministic (i.e., not randomized) algorithm, which is

𝑇 (𝑛) = max
𝑈 is an input of size 𝑛

RT(𝑈),

7

FlipCoins
while RandBit= 1 do

nothing;

Caveat Emptor:­Note, that a randomized algorithm might have
exponential running time in the worst case (or even unbounded)
while having good expected running time. For example, consider
the algorithm FlipCoins depicted on the right. The expected run-
ning time of FlipCoins is a geometric random variable with probability 1/2, as such we have that
E[RT(𝐹𝑙𝑖𝑝𝐶𝑜𝑖𝑛𝑠)] = 𝑂 (2). However, FlipCoins can run forever if it always gets 1 from the RandBit
function.

This is of course a ludicrous argument. Indeed, the probability that FlipCoins runs for long decreases
very quickly as the number of steps increases. It can happen that it runs for long, but it is extremely
unlikely.

Definition 13.4.7. The running time of a randomized algorithm Alg is 𝑂 (𝑓 (𝑛)) with high probability
if

P[RT(𝐴𝑙𝑔(𝑛)) ≥ 𝑐 · 𝑓 (𝑛)] = 𝑜(1).

Namely, the probability of the algorithm to take more than 𝑂 (𝑓 (𝑛)) time decreases to 0 as 𝑛 goes to
infinity. In our discussion, we would use the following (considerably more restrictive definition), that
requires that

P[RT(𝐴𝑙𝑔(𝑛)) ≥ 𝑐 · 𝑓 (𝑛)] ≤ 1
𝑛𝑑

,

where 𝑐 and 𝑑 are appropriate constants. For technical reasons, we also require that E[RT(𝐴𝑙𝑔(𝑛))] =
𝑂 (𝑓 (𝑛)).

13.5. Analyzing QuickSort
The previous analysis works also for QuickSort. However, there is an alternative analysis which is also
very interesting and elegant. Let 𝑎1, ..., 𝑎𝑛 be the 𝑛 given numbers (in sorted order – as they appear in
the output).

It is enough to bound the number of comparisons performed by QuickSort to bound its running time,
as can be easily verified. Observe, that two specific elements are compared to each other by QuickSort
at most once, because QuickSort performs only comparisons against the pivot, and after the comparison
happen, the pivot does not being passed to the two recursive subproblems.

Let 𝑋𝑖 𝑗 be an indicator variable if QuickSort compared 𝑎𝑖 to 𝑎 𝑗 in the current execution, and zero
otherwise. The number of comparisons performed by QuickSort is exactly 𝑍 =

∑
𝑖< 𝑗 𝑋𝑖 𝑗 .

Observation 13.5.1. The element 𝑎𝑖 is compared to 𝑎 𝑗 iff one of them is picked to be the pivot and
they are still in the same subproblem.

Also, we have that 𝜇 = E
[
𝑋𝑖 𝑗

]
= P

[
𝑋𝑖 𝑗 = 1

]
. To quantify this probability, observe that if the pivot

is smaller than 𝑎𝑖 or larger than 𝑎 𝑗 then the subproblem still contains the block of elements 𝑎𝑖, . . . , 𝑎 𝑗 .
Thus, we have that

𝜇 = P
[
𝑎𝑖 or 𝑎 𝑗 is first pivot ∈ 𝑎𝑖, . . . , 𝑎 𝑗

]
=

2
𝑗 − 𝑖 + 1 .

­Caveat Emptor - let the buyer beware (i.e., one buys at one’s own risk)

8

QuickSelect(𝑋, 𝑘)
// Input: 𝑋 = {𝑥1, . . . , 𝑥𝑛} numbers, 𝑘.
// Assume 𝑥1, . . . , 𝑥𝑛 are all distinct.
// Task: Return 𝑘th smallest number in 𝑋.
𝑦 ← random element of 𝑋.
𝑟 ← rank of 𝑦 in 𝑋.
if 𝑟 = 𝑘 then return 𝑦

𝑋< = all elements in 𝑋 < than 𝑦

𝑋> = all elements in 𝑋 > than 𝑦

// By assumption |𝑋< | + |𝑋> | + 1 = |𝑋 |.
if 𝑟 < 𝑘 then

return QuickSelect(𝑋>, 𝑘 − 𝑟)
else

return QuickSelect(𝑋≤, 𝑘)

Figure 13.2: QuickSelect pseudo-code.

Another (and hopefully more intuitive) explanation for the above phenomena is the following: Imag-
ine, that before running QuickSort we choose for every element a random priority, which is a real number
in the range [0, 1]. Now, we reimplement QuickSort such that it always pick the element with the lowest
random priority (in the given subproblem) to be the pivot. One can verify that this variant and the
standard implementation have the same running time. Now, 𝑎𝑖 gets compares to 𝑎 𝑗 if and only if all the
elements 𝑎𝑖+1, . . . , 𝑎 𝑗−1 have random priority larger than both the random priority of 𝑎𝑖 and the random
priority of 𝑎 𝑗 . But the probability that one of two elements would have the lowest random-priority out
of 𝑗 − 𝑖 + 1 elements is 2 ∗ 1/(𝑗 − 𝑖 + 1), as claimed.

Thus, the running time of QuickSort is

E
[
RT(𝑛)

]
= E

[∑︁
𝑖< 𝑗

𝑋𝑖 𝑗

]
=

∑︁
𝑖< 𝑗

E
[
𝑋𝑖 𝑗

]
=

∑︁
𝑖< 𝑗

2
𝑗 − 𝑖 + 1 = 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

1
𝑗 − 𝑖 + 1

= 2
𝑛−1∑︁
𝑖=1

𝑛−𝑖+1∑︁
Δ=2

1
Δ
≤ 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
Δ=1

1
Δ
≤ 2

𝑛−1∑︁
𝑖=1

𝐻𝑛 = 2𝑛𝐻𝑛.

by linearity of expectations, where 𝐻𝑛 =
∑𝑛

𝑖=1
1
𝑖
≤ ln 𝑛 + 1 is the 𝑛th harmonic number,

As we will see in the near future, the running time of QuickSort is 𝑂 (𝑛 log 𝑛) with high-probability.
We need some more tools before we can show that.

13.6. QuickSelect – median selection in linear time
Consider the problem of given a set 𝑋 of 𝑛 numbers, and a parameter 𝑘, to output the 𝑘th smallest
number (which is the number with rank 𝑘 in 𝑋). This can be easily be done by modifying QuickSort
only to perform one recursive call. See Figure 13.2 for a pseud-code of the resulting algorithm.

Intuitively, at each iteration of QuickSelect the input size shrinks by a constant factor, leading to a
linear time algorithm.

9

Theorem 13.6.1. Given a set 𝑋 of 𝑛 numbers, and any integer 𝑘, the expected running time of Quick-
Select(𝑋, 𝑛) is 𝑂 (𝑛).

Proof: Let 𝑋1 = 𝑋, and 𝑋𝑖 be the set of numbers in the 𝑖th level of the recursion. Let 𝑦𝑖 and 𝑟𝑖 be
the random element and its rank in 𝑋𝑖, respectively, in the 𝑖th iteration of the algorithm. Finally, let
𝑛𝑖 = |𝑋𝑖 |. Observe that the probability that the pivot 𝑦𝑖 is in the “middle” of its subproblem is

𝛼 = P

[
𝑛𝑖

4 ≤ 𝑟𝑖 ≤
3
4𝑛𝑖

]
≥ 1

2 ,

and if this happens then

𝑛𝑖+1 ≤ max(𝑟𝑖 − 1, 𝑛𝑖 − 𝑟𝑖) ≤
3
4𝑛𝑖 .

We conclude that

E[𝑛𝑖+1 | 𝑛𝑖] ≤ P[𝑦𝑖 in the middle] 34𝑛𝑖 + P[𝑦𝑖 not in the middle]𝑛𝑖

≤ 𝛼
3
4𝑛𝑖 + (1 − 𝛼)𝑛𝑖 = 𝑛𝑖 (1 − 𝛼/4) ≤ 𝑛𝑖 (1 − (1/2)/4) = (7/8)𝑛𝑖 .

Now, we have that

𝑚𝑖+1 = E[𝑛𝑖+1] = E[E[𝑛𝑖+1 | 𝑛𝑖]] ≤ E[(7/8)𝑛𝑖] = (7/8) E[𝑛𝑖] = (7/8)𝑚𝑖

= (7/8)𝑖𝑚0 = (7/8)𝑖𝑛,

since for any two random variables we have that E[𝑋] = E
[
E
[
𝑋

���𝑌]]
. In particular, the expected

running time of QuickSelect is proportional to

E

[∑︁
𝑖

𝑛𝑖

]
=

∑︁
𝑖

E[𝑛𝑖] ≤
∑︁
𝑖

𝑚𝑖 =
∑︁
𝑖

(7/8)𝑖𝑛 = 𝑂 (𝑛),

as desired.

Bibliography

10

	Randomized Algorithms
	Example: Estimating the median is sublinear time
	Some Probability
	Preliminaries
	Geometric distribution
	Some needed math

	Sorting Nuts and Bolts
	Running time analysis
	What are randomized algorithms?

	Analyzing QuickSort
	RedVioletQuickSelect – median selection in linear time

	Bibliography

