
Chapter 6

Linear time algorithms
By Sariel Har-Peled, December 2, 2021¬ Version: 0.3

Here, we investigate some cool algorithms for solving problems in linear time. All these algorithms
use the search & prune technique – the idea is that you repeatedly reduce the input size, till it is
small enough that you can

6.1. Deterministic median selection in linear time

6.1.1. Preliminaries
Definition 6.1.1 (Rank of element.). Let 𝑋 be an unsorted array (i.e., set) of 𝑛 integers. For 𝑗 , 1 ≤ 𝑗 ≤ 𝑛,
element of rank 𝑗 is the 𝑗th smallest element in 𝑋. See Figure 6.1 for an example.

The median of 𝑋 is the element of rank 𝑗 = b(𝑛 + 1)/2c in 𝑋.

(For simplicity, we assume all the elements of 𝑋 are distinct.)

16 1214 20 534 3 19 11

1612 14 205 343 1911

12 3456 789

Unsorted array

Ranks

Sorted array

Figure 6.1: An example of an array and the ranks of its elements.

Problem 6.1.2 (Selection). The input is an unsorted array 𝑋 of 𝑛 integers, and an integer 𝑗 .
The task is to compute the 𝑗th smallest number in 𝑋 (i.e., the element of rank 𝑗) in 𝑋.

Naive algorithms for selection. The naive algorithm sorts the inputs of 𝑋, and returns the 𝑗th
element in the sorted array. This takes 𝑂 (𝑛 log 𝑛) time. It is natural to ask if one can avoid sorting and
get a linear time algorithm.

If 𝑗 is small or 𝑛 − 𝑗 is small then one can compute the 𝑗 smallest/largest elements in 𝑋 in 𝑂 (𝑗𝑛)
time (by finding the minimum, deleting it, and repeating). This still fails for the median, as 𝑗 = 𝑛/2,
and the resulting running time is 𝑂 (𝑛2).

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

6.1.2. Divide and conquer

6.1.3. quickSelect: The divide and conquer approach
The randomized quickSelect(𝑋, 𝑗) works as follows:

• It “picks” a pivot element 𝑥 from 𝑋.
• Partition 𝑋 based on 𝑥 into two sets: 𝑋less = {𝑦 ∈ 𝑋 | 𝑦 ≤ 𝑥} and 𝑋greater = {𝑥 ∈ 𝐴 | 𝑦 > 𝑥}.
• If |𝑋less | = 𝑗 : return 𝑎

• if |𝑋less | > 𝑗 : recursively find 𝑗th smallest element in 𝑋less
• if |𝑋less | < 𝑗 : recursively find 𝑘th smallest element in 𝑋greater, where 𝑘 = 𝑗 − |𝑋less |.

Running time analysis. The partitioning step takes 𝑂 (𝑛) time. But how do we choose the pivot?
Say the algorithm always choose the pivot to be 𝑋 [1], but then if 𝑋 is sorted in increasing order,

and 𝑗 = 𝑛. then the running time of quickSelectis Ω(𝑛2).

We need a better pivot. Suppose we somehow magically (using wishful thinking) chose the pivot
so it is the ℓth smallest element in 𝑋, where 𝑛/4 ≤ ℓ ≤ 3𝑛/4. Namely, the pivot is approximately in the
middle of 𝑋.

Then, it is easy to verify that

𝑛/4 ≤ |𝑋less | ≤ 3𝑛/4 and 𝑛/4 ≤ |𝑋greater | ≤ 3𝑛/4.

We get the following recurrence for the running time:

𝑇 (𝑛) ≤ 𝑇 (3𝑛/4) +𝑂 (𝑛),

and it is not hard to verify that 𝑇 (𝑛) = 𝑂 (𝑛).
In the standard implementation of the algorithm, one chooses the pivot as a random element in 𝑋.

The analysis is more complicated, and we will address it later. While this randomized algorithm can, in
the worse case, run in linear time, in practice it is amazingly fast.

6.1.4. A deterministic algorithm: Median of medians
The natural approach is to try to try to divide the problem into many subarrays, compute the medians
of the subarrays, and merge them together. The resulting algorithm is the following:

(I) Break input 𝑋 into many subarrays: 𝐿1, . . . 𝐿𝑘 .
(II) Find median 𝑚𝑖 in each subarray 𝐿𝑖.

(III) Find the median 𝑥 of the medians 𝑚1, . . . , 𝑚𝑘 .
(IV) Intuition: The median 𝑥 should be close to being a good median of all the numbers in 𝑋.
(V) Use 𝑥 as pivot in previous algorithm.

Example 6.1.3. The input is the array (which is already written as matrix with five rows).
75 31 13 26 83 110 60 120 63 30 3 41 44 107 30 23 91 17 6 110
68 24 41 26 58 57 61 20 52 45 13 79 86 91 55 66 13 103 36 60
19 40 45 111 56 74 17 95 96 77 29 65 36 96 93 119 9 61 3 9
100 3 88 47 115 107 79 39 109 20 59 25 92 81 36 10 30 113 73 116
72 58 24 16 12 69 40 24 19 92 7 65 75 41 43 117 103 38 8 20

We compute the median for each column. This results in the following numbers:

2

75 31 13 26 83 110 60 120 63 30 3 41 44 107 30 23 91 17 6 110
68 24 41 26 58 57 61 20 52 45 13 79 86 91 55 66 13 103 36 60
19 40 45 111 56 74 17 95 96 77 29 65 36 96 93 119 9 61 3 9
100 3 88 47 115 107 79 39 109 20 59 25 92 81 36 10 30 113 73 116
72 58 24 16 12 69 40 24 19 92 7 65 75 41 43 117 103 38 8 20

We compute the median of these medians. Namely, the median of the numbers in the array:
72 74 13 66
31 60 65 30
41 39 75 61
26 63 91 8
58 45 43 60

The returned value is 60, and we now use it to partition After partition (pivot 60), the resulting array
is:

19 3 13 16 12 57 17 20 19 20 3 25 92 109 96 79 110 69 83 75
41 24 24 26 56 17 40 24 52 30 7 60 77 81 63 61 107 115 111 72
20 31 41 26 58 30 60 39 36 45 13 65 75 91 120 66 74 61 88 68
9 40 45 47 3 13 23 55 30 44 29 65 86 96 95 117 91 103 100 110
36 58 8 6 38 9 10 43 41 36 59 79 92 107 93 119 103 113 73 116

The pivot has rank 57. As such, we recurse on the subarray containing the smaller elements. In this
array:

19 3 13 16 12 57 17 20 19 20 3 25
41 24 24 26 56 17 40 24 52 30 7
20 31 41 26 58 30 60 39 36 45 13
9 40 45 47 3 13 23 55 30 44 29
36 58 8 6 38 9 10 43 41 36 59

we are computing the element of rank 50.

Algorithm description in detail. The resulting algorithm works as follows:
(I) Partition array 𝑋 into d𝑛/5e lists of 5 items each.

𝐿1 = {𝑋 [1], 𝑋 [2], . . . , 𝑋 [5]}, 𝐿2 = {𝑋 [6], . . . , 𝑋 [10]}, . . ., 𝐿𝑖 = {𝑋 [5𝑖 + 1], . . . , 𝑋 [5𝑖 − 4]}, . . .,
𝐿 d𝑛/5e = {𝑋 [5 d𝑛/5e − 4, . . . , 𝑋 [𝑛]}.

(II) For each 𝑖 find median 𝑏𝑖 of 𝐿𝑖 using brute-force in 𝑂 (1) time. Total 𝑂 (𝑛) time
(III) Let 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏d𝑛/5e}
(IV) Find median 𝑏 of 𝐵
See also Figure 6.2.

6.1.5. Analysis
We prove the following below, but for the time being assume the following lemma is correct.

Lemma 6.1.4. Median of 𝐵 is an approximate median of 𝑋. That is, if 𝑏 is used a pivot to partition
𝑋, then |𝑋less | ≤ 7𝑛/10 + 6 and |𝑋greater | ≤ 7𝑛/10 + 6.

The running time recurrence is

𝑇 (𝑛) ≤ 𝑇 (d𝑛/5e) + max{𝑇 (|𝑋less |), 𝑇 (|𝑋greater) |} +𝑂 (𝑛).

We have that

𝑇 (𝑛) ≤ 𝑇 (d𝑛/5e) + 𝑇 (b7𝑛/10 + 6c) +𝑂 (𝑛) and 𝑇 (𝑛) = 𝑂 (1) for 𝑛 < 10.

3

select(𝑋 [1 . . . 𝑛], 𝑗):
Form lists 𝐿1, 𝐿2, . . . , 𝐿 d𝑛/5e where 𝐿𝑖 = {𝑋 [5𝑖 − 4], . . . , 𝑋 [5𝑖]}
Find median 𝑏𝑖 of each 𝐿𝑖 using brute-force
Find median 𝑏 of 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏d𝑛/5e}
Partition 𝑋 into 𝑋less and 𝑋greater using 𝑏 as pivot
if |𝑋less | = 𝑗 then

return 𝑏

if |𝑋less | > 𝑗 then
return select(𝑋less, 𝑗)

else
return select(𝑋greater, 𝑗 − |𝑋less |)

Figure 6.2: Pseudo-code for deterministic median selection.

Lemma 6.1.5. For 𝑇 (𝑛) ≤ 𝑇 (d𝑛/5e) + 𝑇 (b7𝑛/10 + 6c) +𝑂 (𝑛), it holds that 𝑇 (𝑛) = 𝑂 (𝑛).

Proof: We claim that 𝑇 (𝑛) ≤ 𝑐𝑛, for some constant 𝑐. We have that 𝑇 (𝑖) ≤ 𝑐 for all 𝑖 = 1, . . . , 1000, by
picking 𝑐 to be sufficiently large. This implies the base of the induction. Similarly, we can assume that
the 𝑂 (𝑛) in the above recurrence is smaller than 𝑐𝑛/100, by picking 𝑐 to be sufficiently large.

So, assume the claim holds for any 𝑖 < 𝑛, and we will prove it for 𝑛. By induction, we have

𝑇 (𝑛) ≤ 𝑇 (d𝑛/5e) + 𝑇 (b7𝑛/10 + 6c) +𝑂 (𝑛)
≤ 𝑐(𝑛/5 + 1) + 𝑐(7𝑛/10 + 6) + 𝑐𝑛/100
= 𝑐𝑛(1/5 + 7/10 + 1/100 + 1/𝑛 + 6/𝑛) ≤ 𝑐𝑛,

for 𝑛 > 1000.

Claim 6.1.6. There are at least 3𝑛/10 − 6 elements smaller than the median of medians 𝑏.

Proof: There are 𝑛/5 medians, and as such there are (𝑛/5)/2− 1 columns where their median is strictly
smaller than the median of medians. Each of these columns contribute three elements smaller than the
median. There are also the two elements from the columns of the median itself. This illustrated in
Figure 6.3. �. R��������

Figure �.8. Visualizing the median of medians

Figure �.�. Discarding approximately �/�� of the array

second key insight is that the total size of the two recursive subproblems is a constant
factor smaller than the size of the original input array. The worst-case running time of
the algorithm obeys the recurrence

T (n) O(n) + T (n/5) + T (7n/10).

The recursion tree method implies the solution T (n) = O(n); the total work at each level
of level of the recursion tree is at most 9/10 the total work at the previous level. If we
had used blocks of size � instead of �, the running time recurrence would have been

T (n) O(n) + T (n/3) + T (2n/3),

whose solution is O(n log n)—no better than sorting!
Finer analysis reveals that the constant hidden by the O() is quite large, even if

we count only comparisons. Selecting the median of 5 elements requires at most 6
comparisons, so we need at most 6n/5 comparisons to set up the recursive subproblem.
We need another n� 1 comparisons to partition the array after the recursive call returns.
So a more accurate recurrence for the worst-case number of comparisons is

T (n) 11n/5+ T (n/5) + T (7n/10).

The recursion tree method implies the upper bound

T (n) 11n
5

X
i�0

Å
9

10

ãi
=

11n
5
· 10= 22n.

This algorithm isn’t as awful in practice as this worst-case analysis predicts—getting a
worst-case partition at every level of recursion is incredibly unlikely—but it is still worse
than sorting for even moderately large arrays..

��

�. R��������

Figure �.8. Visualizing the median of medians

Figure �.�. Discarding approximately �/�� of the array

second key insight is that the total size of the two recursive subproblems is a constant
factor smaller than the size of the original input array. The worst-case running time of
the algorithm obeys the recurrence

T (n) O(n) + T (n/5) + T (7n/10).

The recursion tree method implies the solution T (n) = O(n); the total work at each level
of level of the recursion tree is at most 9/10 the total work at the previous level. If we
had used blocks of size � instead of �, the running time recurrence would have been

T (n) O(n) + T (n/3) + T (2n/3),

whose solution is O(n log n)—no better than sorting!
Finer analysis reveals that the constant hidden by the O() is quite large, even if

we count only comparisons. Selecting the median of 5 elements requires at most 6
comparisons, so we need at most 6n/5 comparisons to set up the recursive subproblem.
We need another n� 1 comparisons to partition the array after the recursive call returns.
So a more accurate recurrence for the worst-case number of comparisons is

T (n) 11n/5+ T (n/5) + T (7n/10).

The recursion tree method implies the upper bound

T (n) 11n
5

X
i�0

Å
9

10

ãi
=

11n
5
· 10= 22n.

This algorithm isn’t as awful in practice as this worst-case analysis predicts—getting a
worst-case partition at every level of recursion is incredibly unlikely—but it is still worse
than sorting for even moderately large arrays..

��

Figure 6.3

4

Doing this calculation more carefully, we have that the number of elements smaller than 𝑏 is

3
⌊
b𝑛/5c + 1

2

⌋
− 1 ≥ 3𝑛/10 − 6.

This implies the following.

Corollary 6.1.7. We have that |𝑋greater | ≤ 7𝑛/10 + 6 and |𝑋less | ≤ 7𝑛/10 + 6.

6.1.6. Summary
Theorem 6.1.8. The algorithm select(𝑋 [1 . . 𝑛], 𝑘) computes in 𝑂 (𝑛) deterministic time the 𝑘th small-
est element in 𝑋.

On the other hand, we have (for now).

Lemma 6.1.9. The algorithm quickSelect(𝑋 [1 . . 𝑛], 𝑘) computes the 𝑘th smallest element in 𝑋. The
running time of quickSelect is Θ(𝑛2) in the worst case.

Question 6.1.10. Consider the following:
• Why did we choose lists of size 5? Will lists of size 3 work?
• Write a recurrence to analyze the algorithm’s running time if we choose a list of size 𝑘.

6.2. The lowest point above a set of lines
Let 𝐿 be a set of 𝑛 lines in the plane. To simplify the exposition, assume the lines are in general position:
(A) No two lines of 𝐿 are parallel.
(B) No line of 𝐿 is vertical or horizontal.
(C) No three lines of 𝐿 meet in a point.

We are interested in the problem of computing the point with the minimum 𝑦 coordinate that is above
all the lines of 𝐿. We consider a point on a line to be above it.

UL UL

opt(L)

Figure 6.4: An input to the problem, the critical curve 𝑈𝐿, and the optimal solution – the point opt(𝐿).

For a line ℓ ∈ 𝐿, and a value 𝛼 ∈ R, let ℓ(𝑥) be the value of ℓ at 𝛼. Formally, consider the intersection
point of 𝑝 = ℓ ∩ (𝑥 = 𝛼) (here, 𝑥 = 𝛼 is the vertical line passing through (𝛼, 0)). Then ℓ(𝑥) = 𝑦(𝑝).

Let 𝑈𝐿 (𝛼) = maxℓ∈𝐿 ℓ(𝛼) be the upper envelope of 𝐿. The function 𝑈𝐿 (·) is convex, as one can
easily verify. The problem asks to compute 𝑦∗ = min𝑥∈R𝑈𝐿 (𝑥). Let 𝑥∗ be the coordinate such that
𝑦∗ = 𝑈𝐿 (𝑥∗).

5

`1

`2

x

opt(L)

UL

Figure 6.5: Illustration of the proof of Lemma 6.2.4.

Definition 6.2.1. Let opt(𝐿) = (𝑥∗, 𝑦∗) denote the optimal solution – that is, lowest point on 𝑈𝐿 (𝑥).

Remark 6.2.2. There are some uninteresting cases of this problem. For example, if all the lines of 𝐿 have
negative slope, then the solution is at 𝑥∗ = +∞. Similarly, if all the slopes are positive, then the solution
is 𝑥∗ = −∞. We can easily check these cases in linear time. In the following, we assume that at least
one line of 𝐿 has positive slope, and at least one line has a negative slope.

Lemma 6.2.3. Given a value 𝑥, and a set 𝐿 of 𝑛 lines, one can in linear time do the following:
(A) Compute the value of 𝑈𝐿 (𝑥).
(B) Decide which one of the following happens: (I) 𝑥 = 𝑥∗, (II) 𝑥 < 𝑥∗, or (III) 𝑥 > 𝑥∗.

Proof: (A) Computing ℓ(𝑥), for 𝑥 ∈ R, takes 𝑂 (1) time. Thus computing this value for all the lines of
𝐿 takes 𝑂 (𝑛) time, and the maximum can be computed in 𝑂 (𝑛) time.

(B) For case (I) to happen, there must be two lines that realizes 𝑈𝐿 (𝑥) – one of them has a positive
slope, the other has negative slope. This clearly can be checked in linear time.

Otherwise, consider 𝑈𝐿 (𝑥). If there is a single line that realizes the maximum for 𝑥, then its slope is
the slope of 𝑈𝐿 (𝑥) at 𝑥. If this slope is positive than 𝑥∗ < 𝑥. If the slope is negative then 𝑥 < 𝑥∗.

The slightly more challenging case is when two lines realizes the value of 𝑈𝐿 (𝑥). That is
(
𝑥,𝑈𝐿 (𝑥)

)
is an intersection point of two lines of 𝐿 (i.e., a vertex) on the upper envelope of the lines of 𝐿). Let
ℓ1, ℓ2 be these two lines, and assume that slope(ℓ1) < slope(ℓ2).

If slope(ℓ2) < 0, then both lines have negative slope, and 𝑥∗ > 𝑥. If slope(ℓ1) > 0, then both lines
have positive slope, and 𝑥∗ < 𝑥. If slope(ℓ1) < 0, and slope(ℓ1) > 0, then this is case (I), and we are
done.

Lemma 6.2.4. Let (𝑥, 𝑦) be the intersection point of two lines ℓ1, ℓ2 ∈ 𝐿, such that slope(ℓ1) < slope(ℓ2),
and 𝑥 < 𝑥∗. Then opt(𝐿) = opt(𝐿 − ℓ1), where 𝐿 − ℓ1 = 𝐿 \ {ℓ1}

Proof: See Figure 6.5. Since 𝑥 < 𝑥∗, it must be that 𝑈𝐿 (·) has a negative slope at 𝑥 (and also immediately
to its right). In particular, for any 𝛼 > 𝑥, we have that 𝑈𝐿 (𝛼) ≥ ℓ2(𝑥) > ℓ1(𝑥). That is, the line ℓ1(𝑥)
is “buried” below ℓ2, and can not touch 𝑈𝐿 (·) to the right of 𝑥. In particular, removing ℓ1 from 𝐿 can
not change 𝑈𝐿 (·) to the right of 𝑥. Furthermore, since 𝑈𝐿 (·) has negative slope immediately after 𝑥, it
implies that minimum point can not move by the deletion of ℓ1. Thus implying the claim.

Lemma 6.2.5. Let (𝑥, 𝑦) be the intersection point of two lines ℓ1, ℓ2 ∈ 𝐿, such that slope(ℓ1) < slope(ℓ2),
and 𝑥∗ < 𝑥. Then opt(𝐿) = opt(𝐿 − ℓ2).

6

opt(L)

UL

`1

`2
x

Figure 6.6: Illustration of the proof of Lemma 6.2.5.

Proof: Symmetric argument to the one used in the proof of Lemma 6.2.4.

Observation 6.2.6. The point 𝑝 = opt(𝐿) is a vertex formed by the intersection of two lines of 𝐿.
Indeed, since none of the lines of 𝐿 are horizontal, if 𝑝 was in the middle of a line, then we could move
it and improve the value of the solution.

Lemma 6.2.7 (Prune). Given a set 𝐿 of 𝑛 lines, one can compute, in linear time, either:
(A) A set 𝐿′ ⊆ 𝐿 such that opt(𝐿) = opt(𝐿′), and |𝐿′| ≤ (7/8) |𝐿 |.
(B) A value 𝑥 such that 𝑥∗(𝐿) = 𝑥.

Proof: If |𝐿 | = 𝑛 = 𝑂 (1) then one can compute opt(𝐿) by brute force. Indeed, compute all the
(𝑛
2
)

vertices induced by 𝐿, and for each one of them check if they define the optimal solution using the
algorithm of Lemma 6.2.3. This takes 𝑂 (1) time, as desired.

Otherwise, pair the lines of 𝐿 in 𝑁 = b𝑛/2c pairs ℓ𝑖, ℓ
′
𝑖
. For each pair, let 𝑥𝑖 be the 𝑥-coordinate of

the vertex ℓ𝑖 ∩ ℓ′
𝑖
. Compute, in linear time, using median selection, the median value 𝑧 of 𝑥1, . . . , 𝑥𝑁 .

For the sake of simplicity of exposition assume that 𝑥𝑖 < 𝑧, for 𝑖 = 1, . . . , 𝑁/2 − 1, and 𝑥𝑖 > 𝑧, for
𝑖 = 𝑁/2 + 1, . . . , 𝑁 (otherwise, reorder the lines and the values so that it happens).

Using the algorithm of Lemma 6.2.3 decide which of the following happens:
(I) 𝑧 = 𝑥∗: we found the optimal solution, and we are done.

(II) 𝑧 < 𝑥∗. But then 𝑥𝑖 < 𝑧 < 𝑥∗, for 𝑖 = 1, . . . , 𝑁/2 − 1, By Lemma 6.2.4, either ℓ𝑖 or ℓ′
𝑖

can be
dropped without effecting the optimal solution, and which one can be dropped can be decided in
𝑂 (1) time. In particular, let 𝐿′ be the set of lines after we drop a line from each such pair. We
have that opt(𝐿′) = opt(𝐿), and |𝐿′| = 𝑛 − (𝑁/2 − 1) ≤ (7/8)𝑛.

(III) 𝑧 > 𝑥∗. This case is handled symmetrically, using Lemma 6.2.5.

Theorem 6.2.8. Given a set 𝐿 of 𝑛 lines in the plane, one can compute the lowest point that is above
all the lines of 𝐿 (i.e., opt(𝐿)) in linear time.

Proof: The algorithm repeatedly apply the pruning algorithm of Lemma 6.2.7. Clearly, by the above,
this algorithm computes opt(𝐿) as desired.

In the 𝑖th iteration of this algorithm, if the set of lines has 𝑛𝑖 lines, then this iteration takes 𝑂 (𝑛𝑖)
time. However, 𝑛𝑖 ≤ (7/8)𝑖𝑛. In particular, the overall running time of the algorithm is

𝑂

(∞∑︁
𝑖=0

(7/8)𝑖𝑛
)
= 𝑂 (𝑛).

7

6.3. Bottleneck edge in MST
Given an undirected graph G = (V, E), with 𝑛 vertices and 𝑚 edges, and with weights 𝜔(·) on the edges.
Consider the problem of computing the longest edge in the MST of G. One can of course compute the
MST, and then compute the longest edge. However, currently no deterministic algorithm for MST is
known that runs in linear time (i.e., 𝑂 (𝑛 + 𝑚)). It turns out that there is a simple elegant algorithm
that achieves linear time.

We assume that the edges of the graph G has all unique weights, and the longest edge in the MST
of G is its bottleneck edge, denoted by ℓMST(G).

We assume as usually that the weights of the edges are all distinct.

6.3.1. A fast decider
Lemma 6.3.1. Given a graph G as above with 𝑛 vertices and 𝑚 edges, and a real number 𝜏, one can
decide, in 𝑂 (𝑛 + 𝑚) time, if

(i) ℓMST(G) < 𝜏,
(ii) ℓMST(G) = 𝜏, or

(iii) ℓMST(G) > 𝜏.

Proof: Compute the graph G<𝜏 = (V(G), {𝑢𝑣 ∈ E(G) | 𝜔(𝑢𝑣) < 𝜏}). This takes 𝑂 (𝑛+𝑚) time. If G<𝜏 has
a single connected component, then ℓMST(G) > 𝜏. This can be checked using BFS or DFS in 𝑂 (𝑛 + 𝑚)
time.

Next, compute the graph G≤𝜏 = (V(G), {𝑢𝑣 ∈ E(G) | 𝜔(𝑢𝑣) < 𝜏}). This takes 𝑂 (𝑛 + 𝑚) time. If G≠𝜏

has a single connected component, then ℓMST(G) = 𝜏. This can be checked using BFS or DFS in 𝑂 (𝑛+𝑚)
time.

Otherwise, it must be that ℓMST(G) > 𝜏.

A naive algorithm. One can now sort the edges of G by their weights, and perform a binary search
over their weights, calling the decider described above. Clearly, this would compute the bottleneck
weight (and thus the edge) in 𝑂 ((𝑛 + 𝑚) log𝑚) time.

6.3.2. A search and prune algorithm
The algorithm first verifies that the input graph is connected. If not, it immediately rejects it.

Otherwise, the algorithm would compute the edge realizing the median edge weight in G. This can
be done in 𝑂 (𝑚) time, and let 𝑒 be this edge. Calling the decider we decide how 𝜔(𝑒) relates to the
weight of the bottleneck edge in the MST. There are three possibilities:

(I) ℓMST(G) < 𝜏. None of the edges longer than 𝜏 can appear in the MST. We might as well throw
them all away. Let G′′ be the resulting graph. This graph has at most 𝑚/2 edges, has the same
bottleneck edge is G, and computing it takes 𝑂 (𝑛 + 𝑚) time.

(II) ℓMST(G) > 𝜏: The algorithm computes the graph G≤𝜏 = (V(G), {𝑢𝑣 ∈ E(G) | 𝜔(𝑢𝑣) < 𝜏}). We
know that each connected component of this graph would be spanned by a tree in the Kruskal
algorithm for computing MST after inserting all the edges of weights smaller than 𝜏. As such, we
collapse each connected component of G≤𝜏 into a single vertex. An edge 𝑢𝑣 ∈ E(G) connecting two
different connected components of G≤𝜏 is added to the graph, as connecting the two connected
components. Note that we might have parallel edges, but it is straightforward to use bucket sort
to sort the edges, so that all the edges connecting the same connected components are grouped

8

together. We then keep only the cheapest edge. Let G′ be the resulting graph. Importantly, the
bottleneck edge in G and G′ are the same, and computing G′ took 𝑂 (𝑛 + 𝑚) time. Furthermore,
G′ has at most 𝑚/2 edges.

(III) ℓMST(G) = 𝜏: We are done. Yey!
If the algorithm is not done, it continues recursively on the G′ or G′′ (depending on the case). The
key observation is that in either case, these two graphs are connected, and thus the number of edges
dominate the number of vertices. We thus have the recurrence

𝑇 (𝑚) = 𝑂 (𝑚) + 𝑇 (𝑚/2),

and the solution to this recurrence is 𝑂 (𝑚).

Theorem 6.3.2. Given an undirected graph G = (V, E), with 𝑛 vertices and 𝑚 edges, and with weights
𝜔(·) on the edges. The bottleneck edge of the MST can be computed in 𝑂 (𝑛 + 𝑚) time.

6.4. Bibliographical notes
The beautiful median of medians algorithm of Section 6.1 is from Blum et al. [BFP+73] (there are four
Turing award winners among the authors of this paper)..

The algorithm presented in Section 6.2 is a simplification of the work of Megiddo [Meg84]. Megiddo
solved the much harder problem of solving linear programming in constant dimension in linear time,
The algorithm presented is essentially the core of his basic algorithm.

Bibliography
[BFP+73] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan.

Time bounds for selection. J. Comput. Sys. Sci., 7(4):448–461, 1973.

[Meg84] N. Megiddo. Linear programming in linear time when the dimension is fixed. J. Assoc.
Comput. Mach., 31:114–127, 1984.

9

https://www.sciencedirect.com/science/article/pii/S0022000073800339
http://www.acm.org/jacm/
http://www.acm.org/jacm/

	Linear time algorithms
	Deterministic median selection in linear time
	Preliminaries
	Divide and conquer
	RedVioletquickSelect: The divide and conquer approach
	A deterministic algorithm: Median of medians
	Analysis
	Summary

	The lowest point above a set of lines
	Bottleneck edge in MST
	A fast decider
	A search and prune algorithm

	Bibliographical notes

	Bibliography

