Algorithms CS 473, Fall 2021

Network flow, duality and Linear Programming

Lecture 24 November 18, 2021

LATEXed: November 18, 2021 15:16

Rounding thingies I Clicker question

Let G = (V, E) be a given graph. Consider the following:

max	$\sum_{v\inV}x_{v},$	
such that	$x_{v} \in \{0,1\}$	$\forall \mathbf{v} \in \mathbf{V}$
	$x_{v} + x_{u} \leq 1$	$\forall vu \in E.$

The above IP (Integer program) solves the problem of:

- Computing largest clique in G.
- Omputing largest edge cover in G.
- Computing largest vertex cover in G.
- Omputing largest clique cover in G.
- Computing largest independent set in G.

24.1: Network flow via linear programming

24.1.1: Network flow: Problem definition

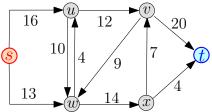
4

Network flow

- Transfer as much "merchandise" as possible from one point to another.
- Wireless network, transfer a large file from s to t.
- Limited capacities.

Network flow

- Transfer as much "merchandise" as possible from one point to another.
- Wireless network, transfer a large file from s to t.
- Icimited capacities.



6

Network: Definition

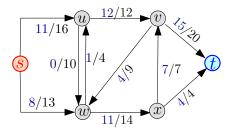
- Given a network with capacities on each connection.
- Q: How much "flow" can transfer from source s to a sink t?
- The flow is splitable.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

Definition

- G = (V, E): a directed graph.
- $\forall (u, v) \in \mathsf{E}(\mathsf{G})$: capacity $c(u, v) \geq 0$,
- $(u, v) \notin G \implies c(u, v) = 0.$
- s: source vertex, t: target sink vertex.
- G, s, t and $c(\cdot)$: form flow network or network.

7

Network Example



- All flow from the source ends up in the sink.
- 2 Flow on edge: non-negative quantity \leq capacity of edge.

Flow definition

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

- Bounded by capacity: $\forall (u, v) \in \mathsf{E} \quad f(u, v) \leq c(u, v).$
- **2** Anti symmetry: $\forall u, v \qquad f(u, v) = -f(v, u).$
- Two special vertices: (i) the source s and the sink t.

• Conservation of flow (Kirchhoff's Current Law): $\forall u \in V \setminus \{s, t\}$ $\sum f(u, v) = 0.$

flow/value of f: $|f| = \sum_{v \in V} f(s, v)$.

Problem: Max Flow

Flow on edge can be negative (i.e., positive flow on edge in other direction).

Problem (Maximum flow)

Given a network **G** find the **maximum flow** in **G**. Namely, compute a legal flow f such that |f| is maximized.

24.1.2: Network flow via linear programming

11

Network flow via linear programming

Input: $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ with source **s** and sink **t**, and capacities $\mathbf{c}(\cdot)$ on the edges. Compute max flow in **G**. $\forall (u, v) \in \mathbf{E} \qquad \mathbf{0} \leq x_{u \to v}$

 $x_{u \to v} = c(u \to v)$

$$\forall v \in V \setminus \{s, t\} \quad \sum_{(u,v) \in E} x_{u \to v} - \sum_{(v,w) \in E} x_{v \to w} \leq 0$$
$$\sum_{(u,v) \in E} x_{u \to v} - \sum_{(v,w) \in E} x_{v \to w} \geq 0$$

 $\sum_{(s,u)\in E} x_{s\to u}$

maximizing

24.1.3: Min-Cost Network flow via linear programming

Min cost flow

Input:

G = (V, E): directed graph.[s:] source. t: sink $c(\cdot):$ capacities on edges, $\phi:$ Desired amount (value) of flow. $\kappa(\cdot):$ Cost on the edges.

Definition - cost of flow

cost of flow f: cost(f) =
$$\sum_{e \in E} \kappa(e) * f(e)$$
.

Min cost flow problem

Min-cost flow

minimum-cost *s*-*t* **flow problem**: compute the flow **f** of min cost that has value ϕ .

min-cost circulation problem

Instead of ϕ we have lower-bound $\ell(\cdot)$ on edges. (All flow that enters must leave.)

Claim

If we can solve min-cost circulation \implies can solve min-cost flow.

Rounding thingies II Clicker question

Let G = (V, E) be a given graph. Consider the following:

max	$\sum_{v\inV}x_{v},$	
such that	$x_{v} \in \{0,1\}$	$\forall \mathbf{v} \in \mathbf{V}$
	$x_{v} + x_{u} \leq 1$	$\forall vu \in E.$

In the worst case, the optimal solution to the above IP is:

- © |E|
- ◙ ∞.
- D.

Rounding thingies III Clicker question

Let G = (V, E) be a given graph. Consider the following LP:

max	$\sum_{v\inV}x_{v},$	
such that	$0 \leq x_{v} \leq 1$	$\forall \mathbf{v} \in \mathbf{V}$
	$x_v + x_u \leq 1$	$\forall vu \in E.$

17

In the worst case, the optimal solution to the above \underline{LP} is:

- ightarrow
 ightarro
- $|\mathbf{S}| \geq |\mathbf{E}|/2$
- ❷ ∞.
- **() ()**.

Rounding thingies IV Clicker question

Consider an optimization problem (a maximization problem) on a graph, that can be written as an IP.

 α' : optimal solution of the IP.

 α : optimal solution of the LP (aka **fractional solution**). We always have that:

- $\ \mathbf{0} \quad \alpha' = \alpha.$
- $\ \mathbf{0} \ \ \alpha' \leq \alpha.$
- $\ \, {\mathfrak G} \ \, \alpha'-\alpha\leq {\mathbf 2}.$

Rounding thingies V

Consider an optimization problem (a maximization problem) on a graph with n vertices and m edges, that can be written as an IP. α' : optimal solution of the IP. α : optimal solution of the LP. We always have that:

- $\ \, {\mathfrak O} \ \, \alpha/\alpha' \leq n.$
- Always $\alpha/\alpha' \geq m$. Unless $m \leq n^{3/2}$ and then $\alpha/\alpha' \geq \sqrt{m}/n$.
- **Q** In the worst case $\alpha/\alpha' \ge n/2$, but it can be much worse.

24.2: Duality and Linear Programming

Duality...

- Severy linear program *L* has a dual linear program *L'*.
- Solving the dual problem is essentially equivalent to solving the primal linear program original LP.
- Icts look an example..

24.2.1: Duality by Example

Duality by Example

 $\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 &\leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$

- η : maximal possible value of target function.
- 2 Any feasible solution \Rightarrow a lower bound on η .
- In above: $x_1 = 1, x_2 = x_3 = 0$ is feasible, and implies z = 4 and thus $\eta \ge 4$.
- $x_1 = x_2 = 0, x_3 = 3$ is feasible $\implies \eta \ge z = 9$.
- Solution is to opt? (i.e., η)
- If very close to optimal might be good enough. Maybe stop?

 $\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 &\leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$

Add the first inequality (multiplied by 2) to the second inequality (multiplied by 3):

$$\begin{array}{l} 2(x_1+4x_2) \leq 2(1) \\ +3(3x_1-x_2+x_3) \leq 3(3). \end{array}$$

The resulting inequality is

 $11x_1 + 5x_2 + 3x_3 \le 11.$

(1)

max	$z = 4x_1 + x_2 + 3x_3$
s.t.	$x_1+4x_2 \leq 1$
	$3x_1 - x_2 + x_3 \leq 3$
	$x_1, x_2, x_3 \geq 0$

- **1** got $11x_1 + 5x_2 + 3x_3 \le 11$.
- Inequality must hold for any feasible solution of L.
- Objective: $z = 4x_1 + x_2 + 3x_3$ and x_{1,x_2} and x_3 are all non-negative.
- Inequality above has larger coefficients than objective (for corresponding variables)
- Sor any feasible solution:

 $z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$

 $\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 &\leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$

- For any feasible solution: $z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11$,
- **2** Opt solution is LP L is somewhere between **9** and **11**.
- Multiply first inequality by y₁, second inequality by y₂ and add them up:

<i>y</i> ₁ (<i>x</i> ₁	+	4 <i>x</i> ₂) ≤	<i>y</i> ₁ (1)
$+ y_2(3x_1)$	-	<i>x</i> ₂	+	<i>x</i> ₃) ≤	<i>y</i> ₂ (3)
$(y_1 + 3y_2)x_1$	+	$(4y_1 - y_2)x_2$	+	<i>y</i> ₂ <i>x</i> ₃	\leq	$y_1 + 3y_2$.

 $\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 &\leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$

• $(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2$.

• Compare to target function – require expression bigger than target function in each variable. $\Rightarrow z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3$ $\le y_1 + 3y_2.$

 $\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 &\leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$

• $(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2$.

• Compare to target function – require expression bigger than target function in each variable. $\Rightarrow z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3$ $\le y_1 + 3y_2.$

max	$z = 4x_1 + x_2 + 3x_3$
s.t.	$x_1+4x_2 \leq 1$
	$3x_1 - x_2 + x_3 \leq 3$
	$x_1, x_2, x_3 \geq 0$

 $(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \leq y_1 + 3y_2.$

 $\begin{array}{rcl} 4 & \leq & y_1 + 3y_2 \\ 1 & \leq & 4y_1 - y_2 \\ 3 & \leq & y_2, \end{array}$ $\begin{array}{rcl} \bullet & \text{Compare to target function } - \\ \bullet & \text{require expression bigger than} \\ \bullet & \text{target function in each} \\ \text{variable.} \end{array}$

 $\implies z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \\ \le y_1 + 3y_2.$

Primal LP: max $z = 4x_1 + x_2 + 3x_3$ s.t. $x_1 + 4x_2 \le 1$ $3x_1 - x_2 + x_3 \le 3$ $x_1, x_2, x_3 \ge 0$ Dual LP: \hat{L} min $y_1 + 3y_2$ s.t. $y_1 + 3y_2 \ge 4$ $4y_1 - y_2 \ge 1$ $y_2 \ge 3$ $y_1, y_2 > 0.$

() Best upper bound on η (max value of z) then solve the LP \widehat{L} .

- **2** \widehat{L} : Dual program to L.
- **③** opt. solution of \widehat{L} is an upper bound on optimal solution for L.

Primal program/Dual program

$$\begin{array}{ll} \max & \sum_{j=1}^{n} c_{j} x_{j} \\ \text{s.t.} & \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \\ & \text{for } i = 1, \dots, m, \\ & x_{j} \geq 0, \\ & \text{for } j = 1, \dots, n. \end{array} \qquad \begin{array}{ll} \min \sum_{i=1}^{m} b_{i} y_{i} \\ \text{s.t.} & \sum_{i=1}^{m} a_{ij} y_{i} \geq c_{j}, \\ & \text{for } j = 1, \dots, n, \\ & y_{i} \geq 0, \\ & \text{for } i = 1, \dots, m. \end{array}$$

Primal program/Dual program

Primal Dual variables variables	$x_1 \ge 0$	$x_2 \ge 0$	$x_3 \ge 0$		$x_n \ge 0$	Primal relation	Min v
$y_1 \ge 0$	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	• • •	a_{1n}	≦	b_1
$y_2 \ge 0$	<i>a</i> ₂₁	a22	a23	•••	a_{2n}	≦	b_2
:	:	÷	:		÷	÷	:
$y_m \ge 0$	a_{m1}	a_{m2}	a_{m3}	• • •	a_{mn}	≦	b_m
Dual Relation	IIV	IIV	IIV		IIV		
Max z	<i>c</i> ₁	<i>c</i> ₂	c_3	•••	C _n]	

 $c^T x$ max s. t. $Ax \leq b$. *x* > **0**.

 $\begin{array}{ll} \min & y^{\mathsf{T}}b \\ \text{s. t.} & y^{\mathsf{T}}A \geq c^{\mathsf{T}}. \end{array}$ $y \ge 0.$

Primal program/Dual program

What happens when you take the dual of the dual?

max	$\sum_{j=1}^{n} c_j x_j$	$\min\sum_{i=1}^m b_i y_i$
s.t.	$\sum_{j=1}^n a_{ij} x_j \le b_i,$	s.t. $\sum_{i=1}^m a_{ij} y_i \ge c_j$,
	for $i = 1, \ldots, m$, $x_j \ge 0$,	for $j=1,\ldots,n,$ $y_i\geq 0,$
	for $j = 1,, n$.	for $i = 1,, m$.

Primal program / Dual program in standard form

$$\begin{array}{l} \max \quad \sum_{j=1}^{n} c_{j} x_{j} \\ \text{s.t.} \quad \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \\ \text{for } i = 1, \dots, m, \\ x_{j} \geq \mathbf{0}, \\ \text{for } j = 1, \dots, n. \end{array} \right) \\ \begin{array}{l} \max \quad \sum_{i=1}^{m} (-b_{i}) y_{i} \\ \text{s.t.} \quad \sum_{i=1}^{m} (-a_{ij}) y_{i} \leq -c_{j}, \\ \text{for } j = 1, \dots, n, \\ y_{i} \geq \mathbf{0}, \\ \text{for } i = 1, \dots, m. \end{array}$$

Dual program in standard form Dual of a dual program

$$\max \sum_{i=1}^{m} (-b_i) y_i$$

s.t.
$$\sum_{i=1}^{m} (-a_{ij}) y_i \leq -c_j,$$

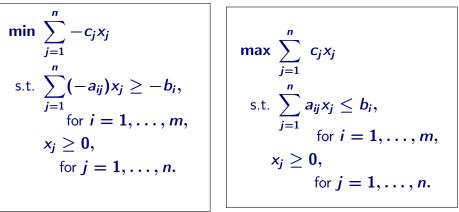
for $j = 1, \dots, n,$
 $y_i \geq 0,$
for $i = 1, \dots, m.$

min
$$\sum_{j=1}^{n} -c_j x_j$$

s.t. $\sum_{j=1}^{n} (-a_{ij}) x_j \ge -b_i$,
for $i = 1, \dots, m$,
 $x_j \ge 0$,
for $j = 1, \dots, n$.

Dual of dual program

Dual of a dual program written in standard form



 \implies Dual of the dual LP is the primal $\operatorname{LP}!$

Result

Proved the following:

Lemma

Let L be an LP, and let L' be its dual. Let L" be the dual to L'. Then L and L" are the same LP.

24.2.2: The Weak Duality Theorem

Weak duality theorem

Theorem

If $(x_1, x_2, ..., x_n)$ is feasible for the primal LP and $(y_1, y_2, ..., y_m)$ is feasible for the dual LP, then

$$\sum_j c_j x_j \leq \sum_i b_i y_i.$$

Namely, all the feasible solutions of the dual bound all the feasible solutions of the primal.

Weak duality theorem - proof

Proof.

By substitution from the dual form, and since the two solutions are feasible, we know that

$$\sum_{j} c_{j} x_{j} \leq \sum_{j} \left(\sum_{i=1}^{m} y_{i} a_{ij} \right) x_{j} \leq \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$$
$$\leq \sum_{i} b_{i} y_{i} .$$

- y being dual feasible implies $c^{T} \leq y^{T} A$
- **2** x being primal feasible implies $Ax \leq b$
- $\Rightarrow c^{\mathsf{T}} x \leq (y^{\mathsf{T}} A) x \leq y^{\mathsf{T}} (Ax) \leq y^{\mathsf{T}} b$

Weak duality is weak...

- If apply the weak duality theorem on the dual program,
- $\implies \sum_{i=1}^m (-b_i) y_i \leq \sum_{j=1}^n -c_j x_j,$
- which is the original inequality in the weak duality theorem.
- Weak duality theorem does not imply the strong duality theorem which will be discussed next.

24.3: The strong duality theorem

Theorem (Strong duality theorem.)

If the primal LP problem has an optimal solution $x^* = (x_1^*, \dots, x_n^*)$ then the dual also has an optimal solution, $y^* = (y_1^*, \dots, y_m^*)$, such that

$$\sum_j c_j x_j^* = \sum_i b_i y_i^*.$$

Proof is tedious and omitted.

24.4: Some duality examples

24.4.1: Maximum matching in Bipartite graph

Max matching in bipartite graph as LP

Input: $\mathbf{G} = (L \cup R, \mathbf{E})$.

 $\begin{array}{ll} \max & \sum_{uv \in \mathsf{E}} x_{uv} \\ s.t. & \sum_{uv \in \mathsf{E}} x_{uv} \leq 1 & \forall v \in \mathsf{G}. \\ & x_{uv} \geq 0 & \forall uv \in \mathsf{E} \end{array}$

Max matching in bipartite graph as LP (Copy)

Input:
$$\mathbf{G} = (L \cup R, \mathbf{E}).$$

max $\sum_{uv \in \mathbf{E}} x_{uv}$
s.t. $\sum_{uv \in \mathbf{E}} x_{uv} \leq 1 \quad \forall v \in \mathbf{G}.$
 $x_{uv} \geq 0 \quad \forall uv \in \mathbf{E}$

Max matching in bipartite graph as LP (Notes)

24.4.2: Shortest path

Q G = (V, E): graph. s: source ,

- ∀(u, v) ∈ E: weight ω(u, v) on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $\forall (u, v) \in \mathsf{E}: \\ d_u + \omega(u, v) \ge d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- LP to solve this!

Q G = (V, E): graph. s: source ,

- ∀(u, v) ∈ E: weight ω(u, v) on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $\forall (u, v) \in \mathsf{E}: \\ d_u + \omega(u, v) \ge d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- LP to solve this!

Q G = (V, E): graph. s: source ,

- ∀(u, v) ∈ E: weight ω(u, v) on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $\forall (u, v) \in \mathsf{E}: \\ d_u + \omega(u, v) \ge d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- LP to solve this!

Q G = (V, E): graph. s: source ,

- ∀(u, v) ∈ E: weight ω(u, v) on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $\forall (u, v) \in \mathsf{E}: \\ d_u + \omega(u, v) \ge d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- LP to solve this!

Q G = (V, E): graph. s: source ,

- ∀(u, v) ∈ E: weight ω(u, v) on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $\forall (u, v) \in \mathsf{E}: \\ d_u + \omega(u, v) \ge d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- LP to solve this!

Q G = (V, E): graph. s: source ,

- ∀(u, v) ∈ E: weight ω(u, v) on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $\forall (u, v) \in \mathsf{E}: \\ d_u + \omega(u, v) \ge d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- LP to solve this!

Q G = (V, E): graph. s: source ,

- ∀(u, v) ∈ E: weight ω(u, v) on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $\forall (u, v) \in \mathsf{E}: \\ d_u + \omega(u, v) \ge d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- LP to solve this!

Q G = (V, E): graph. s: source ,

- ∀(u, v) ∈ E: weight ω(u, v) on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $\forall (u, v) \in \mathsf{E}: \\ d_u + \omega(u, v) \ge d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- LP to solve this!

Q G = (V, E): graph. s: source ,

- ∀(u, v) ∈ E: weight ω(u, v) on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $\forall (u, v) \in \mathsf{E}: \\ d_u + \omega(u, v) \ge d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- LP to solve this!

Q G = (V, E): graph. s: source ,

- ∀(u, v) ∈ E: weight ω(u, v) on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $\forall (u, v) \in \mathsf{E}: \\ d_u + \omega(u, v) \ge d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- LP to solve this!

 $\begin{array}{ll} \max & d_{\mathrm{t}} \\ \mathrm{s.t.} & d_{\mathrm{s}} \leq 0 \\ & d_{u} + \omega(u,v) \geq d_{v} \\ & \forall (u,v) \in \mathsf{E}, \\ & d_{x} \geq 0 \quad \forall x \in \mathsf{V}. \end{array}$

- G = (V, E): graph. s: source , t: target
- ∀(u, v) ∈ E: weight ω(u, v) o edge.
- **Q**: Comp. shortest **s-t** path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $\forall (u, v) \in \mathsf{E}:$ $d_u + \omega(u, v) \ge d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

 $\begin{array}{ll} \max & d_{\mathrm{t}} \\ \mathrm{s.t.} & d_{\mathrm{s}} \leq 0 \\ & d_{u} + \omega(u,v) \geq d_{v} \\ & \forall (u,v) \in \mathsf{E}, \\ & d_{x} \geq 0 \quad \forall x \in \mathsf{V}. \end{array}$

Equivalently: max d_t

s.t.
$$d_{s} \leq 0$$

 $d_{v} - d_{u} \leq \omega(u, v)$
 $\forall (u, v) \in E,$
 $d_{x} \geq 0 \quad \forall x \in V.$

- G = (V, E): graph. s: source , t: target
- ∀(u, v) ∈ E: weight ω(u, v) o edge.
- **Q**: Comp. shortest **s-t** path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $\forall (u, v) \in \mathsf{E}:$ $d_u + \omega(u, v) \ge d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- LP to solve this!

61

The dual

$$\begin{array}{ll} \min & \sum_{(u,v)\in\mathsf{E}} y_{uv}\omega(u,v) \\ \text{s.t.} & y_{\mathsf{s}} - \sum_{(\mathsf{s},u)\in\mathsf{E}} y_{\mathsf{s}u} \geq 0 \qquad (*) \\ & & \sum_{(u,x)\in\mathsf{E}} y_{ux} - \sum_{(x,v)\in\mathsf{E}} y_{xv} \geq 0 \\ & & \forall x \in \mathsf{V} \setminus \{\mathsf{s},\mathsf{t}\} \qquad (**) \\ & & \sum_{(u,\mathsf{t})\in\mathsf{E}} y_{u\mathsf{t}} \geq 1 \qquad (***) \\ & & y_{uv} \geq 0, \quad \forall (u,v) \in \mathsf{E}, \\ & & y_{\mathsf{s}} \geq 0. \end{array}$$

62

$$\begin{array}{ll} \max & d_{\mathrm{t}} \\ \mathrm{s.t.} & d_{\mathrm{s}} \leq 0 \\ & d_{\mathrm{v}} - d_{u} \leq \omega(u,v) \\ & \forall (u,v) \in \mathsf{E}, \\ & d_{x} \geq 0 \quad \forall x \in \mathsf{V}. \end{array}$$

The dual – details

- y_{uv} : dual variable for the edge (u, v).
- **2** y_{s} : dual variable for $d_{s} \leq 0$
- Think about the y_{uv} as a flow on the edge y_{uv}.
- Assume that weights are positive.
- **5** LP is min cost flow of sending **1** unit flow from source **s** to **t**.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- conservation of flow.
- Sequation (***) implies that one unit of flow arrives to the sink t.
- **(*)** implies that at least y_s units of flow leaves the source.
- **(**) Remaining of LP implies that $y_s \ge 1$.

Integrality

- In the previous example there is always an optimal solution with integral values.
- This is not an obvious statement.
- This is not true in general.
- If it were true we could solve NPC problems with LP.

Set cover... Details in notes...

Set cover LP:

min

s.t.

 $\sum_{\substack{F_j \in \mathcal{F} \\ F_j \in \mathcal{F}, \\ u_i \in F_j}} x_j \ge 1$ $x_j \ge 0$

 $\forall u_i \in \mathsf{S},$ $\forall F_i \in \mathfrak{F}.$

Set cover dual is a packing LP... Details in notes...

 $\begin{array}{ll} \max & \sum_{u_i \in \mathsf{S}} y_i \\ \text{s.t.} & \sum_{u_i \in F_j} y_i \leq 1 \\ & y_i \geq 0 \end{array} \quad \forall F_j \in \mathfrak{F}, \\ \forall u_i \in \mathsf{S}. \end{array}$

Network flow

 $\begin{array}{ll} \max & \sum_{(\mathbf{s}, \mathbf{v}) \in \mathsf{E}} x_{\mathbf{s} \to \mathbf{v}} \\ & x_{u \to v} \leq \mathsf{c}(u \to v) & \forall (u, v) \in \mathsf{E} \\ & \sum_{(u, v) \in \mathsf{E}} x_{u \to v} - \sum_{(v, w) \in \mathsf{E}} x_{v \to w} \leq \mathbf{0} & \forall v \in \mathsf{V} \setminus \{\mathbf{s}, \mathbf{t}\} \\ & - \sum_{(u, v) \in \mathsf{E}} x_{u \to v} + \sum_{(v, w) \in \mathsf{E}} x_{v \to w} \leq \mathbf{0} & \forall v \in \mathsf{V} \setminus \{\mathbf{s}, \mathbf{t}\} \\ & \mathbf{0} \leq x_{u \to v} & \forall (u, v) \in \mathsf{E}. \end{array}$

Dual of network flow...

$$\begin{split} \min \sum_{\substack{(u,v) \in \mathsf{E}}} \mathsf{c}(u \to v) \, y_{u \to v} \\ d_u - d_v &\leq y_{u \to v} \\ y_{u \to v} \geq 0 \\ d_s = 1, \qquad d_t = 0. \end{split} \quad \begin{array}{l} \forall (u,v) \in \mathsf{E} \\ \forall (u,v) \in \mathsf{E} \\ \forall (u,v) \in \mathsf{E} \end{array}$$

Under right interpretation: shortest path (see notes).

Duality and min-cut max-flow Details in class notes

Lemma

The Min-Cut Max-Flow Theorem follows from the strong duality Theorem for Linear Programming.