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Rounding thingies I
Clicker question

Let G = (V,E) be a given graph. Consider the following:

max
∑
v∈V

xv,

such that xv ∈ {0, 1} ∀v ∈ V

xv + xu ≤ 1 ∀vu ∈ E.

The above IP (Integer program) solves the problem of:
(A) Computing largest clique in G.
(B) Computing largest edge cover in G.
(C) Computing largest vertex cover in G.
(D) Computing largest clique cover in G.
(E) Computing largest independent set in G.
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24.1: Network flow via linear
programming
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24.1.1: Network flow: Problem definition
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Network flow

1 Transfer as much “merchandise” as possible from one point to
another.

2 Wireless network, transfer a large file from s to t.

3 Limited capacities.
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Network: Definition

1 Given a network with capacities on each connection.
2 Q: How much “flow” can transfer from source s to a sink t?
3 The flow is splitable.
4 Network examples: water pipes moving water. Electricity

network.
5 Internet is packet base, so not quite splitable.

Definition
G = (V,E): a directed graph.

∀(u, v) ∈ E(G): capacity c(u, v) ≥ 0,

(u, v) /∈ G =⇒ c(u, v) = 0.

s: source vertex, t: target sink vertex.

G, s, t and c(·): form flow network or network.
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Network Example
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1 All flow from the source ends up in the sink.

2 Flow on edge: non-negative quantity ≤ capacity of edge.
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Flow definition

Definition (flow)

flow in network is a function f (·, ·) : E(G)→ R:

1 Bounded by capacity:
∀(u, v) ∈ E f (u, v) ≤ c(u, v).

2 Anti symmetry:
∀u, v f (u, v) = −f (v , u).

3 Two special vertices: (i) the source s and the sink t.

4 Conservation of flow (Kirchhoff’s Current Law):

∀u ∈ V \ {s, t}
∑

v

f (u, v) = 0.

flow/value of f : |f | =
∑
v∈V

f (s, v).
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Problem: Max Flow

1 Flow on edge can be negative (i.e., positive flow on edge in
other direction).

Problem (Maximum flow)

Given a network G find the maximum flow in G. Namely, compute
a legal flow f such that |f | is maximized.
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24.1.2: Network flow via linear programming
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Network flow via linear programming

Input: G = (V,E) with source s and sink t, and capacities c(·) on
the edges. Compute max flow in G.

∀(u, v) ∈ E 0 ≤ xu→v
xu→v ≤ c(u → v)

∀v ∈ V \ {s, t}
∑

(u,v)∈E

xu→v −
∑

(v ,w)∈E

xv→w ≤ 0

∑
(u,v)∈E

xu→v −
∑

(v ,w)∈E

xv→w ≥ 0

maximizing
∑

(s,u)∈E xs→u
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24.1.3: Min-Cost Network flow via linear
programming
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Min cost flow

Input:

G = (V,E): directed graph.
[s:] source.
t: sink
c(·): capacities on edges,
φ: Desired amount (value) of flow.
κ(·): Cost on the edges.

Definition - cost of flow

cost of flow f: cost(f) =
∑
e∈E

κ(e) ∗ f(e).
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Min cost flow problem

Min-cost flow
minimum-cost s-t flow problem: compute the flow f of min cost
that has value φ.

min-cost circulation problem

Instead of φ we have lower-bound `(·) on edges.
(All flow that enters must leave.)

Claim
If we can solve min-cost circulation =⇒ can solve min-cost flow.
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Rounding thingies II
Clicker question

Let G = (V,E) be a given graph. Consider the following:

max
∑
v∈V

xv,

such that xv ∈ {0, 1} ∀v ∈ V

xv + xu ≤ 1 ∀vu ∈ E.

In the worst case, the optimal solution to the above IP is:
(A) 1
(B) |V|
(C) |E|
(D) ∞.
(E) 0.
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Rounding thingies III
Clicker question

Let G = (V,E) be a given graph. Consider the following LP:

max
∑
v∈V

xv,

such that 0 ≤ xv ≤ 1 ∀v ∈ V

xv + xu ≤ 1 ∀vu ∈ E.

In the worst case, the optimal solution to the above LP is:
(A) ≥ 1
(B) ≥ |V| /2
(C) ≥ |E| /2
(D) ∞.
(E) 0.
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Rounding thingies IV
Clicker question

Consider an optimization problem (a maximization problem) on a
graph, that can be written as an IP.
αI : optimal solution of the IP.
α: optimal solution of the LP (aka fractional solution).
We always have that:

(A) αI ≥ α.
(B) αI = α.
(C) αI ≤ 2α.
(D) αI ≤ α.
(E) αI − α ≤ 2.
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Rounding thingies V
Clicker question

Consider an optimization problem (a maximization problem) on a
graph with n vertices and m edges, that can be written as an IP.
αI : optimal solution of the IP.
α: optimal solution of the LP.
We always have that:

(A) α/αI ≤ 1.
(B) α/αI ≤ n.
(C) Always α/αI ≥ m. Unless m ≤ n3/2 and then

α/αI ≥
√

m/n.
(D) In the worst case α/αI ≥ n/2, but it can be much worse.
(E) α/αI ≥ 1.
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24.2: Duality and Linear
Programming
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Duality...

1 Every linear program L has a dual linear program L′.
2 Solving the dual problem is essentially equivalent to solving the

primal linear program original LP.

3 Lets look an example..
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24.2.1: Duality by Example
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Duality by Example

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

1 η: maximal possible value of target function.

2 Any feasible solution⇒ a lower bound on η.

3 In above: x1 = 1, x2 = x3 = 0 is feasible, and implies z = 4
and thus η ≥ 4.

4 x1 = x2 = 0, x3 = 3 is feasible =⇒ η ≥ z = 9.

5 How close this solution is to opt? (i.e., η)

6 If very close to optimal – might be good enough. Maybe stop?
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Duality by Example: II

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

1 Add the first inequality (multiplied by 2) to the second inequality
(multiplied by 3):

2( x1 + 4x2 ) ≤ 2(1)

+3(3x1 − x2 + x3) ≤ 3(3).

2 The resulting inequality is

11x1 + 5x2 + 3x3 ≤ 11. (1)
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Duality by Example: II

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

1 got 11x1 + 5x2 + 3x3 ≤ 11.

2 inequality must hold for any feasible solution of L.

3 Objective: z = 4x1 + x2 + 3x3 and x1,x2 and x3 are all
non-negative.

4 Inequality above has larger coefficients than objective (for
corresponding variables)

5 For any feasible solution:
z = 4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11,
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Duality by Example: III

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

1 For any feasible solution:
z = 4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11,

2 Opt solution is LP L is somewhere between 9 and 11.

3 Multiply first inequality by y1, second inequality by y2 and add
them up:

y1(x1 + 4x2 ) ≤ y1(1)
+ y2(3x1 - x2 + x3 ) ≤ y2(3)

(y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2.
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Duality by Example: IV

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

1 (y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2.

1 Compare to target function –
require expression bigger than
target function in each
variable.

=⇒ z = 4x1 + x2 + 3x3 ≤ (y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3

≤ y1 + 3y2.
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Duality by Example: IV

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

1 (y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2.

1 Compare to target function –
require expression bigger than
target function in each
variable.

=⇒ z = 4x1 + x2 + 3x3 ≤ (y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3

≤ y1 + 3y2.

28



Duality by Example: IV
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Duality by Example: IV

Primal LP:
max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

Dual LP: L̂

min y1 + 3y2

s.t. y1 + 3y2 ≥ 4

4y1 − y2 ≥ 1

y2 ≥ 3

y1, y2 ≥ 0.

1 Best upper bound on η (max value of z) then solve the LP L̂.

2 L̂: Dual program to L.

3 opt. solution of L̂ is an upper bound on optimal solution for L.
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Primal program/Dual program

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi ,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . , n.

min
m∑

i=1

biyi

s.t.
m∑

i=1

aijyi ≥ cj ,

for j = 1, . . . , n,
yi ≥ 0,

for i = 1, . . . ,m.
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Primal program/Dual program

max cTx
s. t. Ax ≤ b.

x ≥ 0.

min yTb
s. t. yTA ≥ cT .

y ≥ 0.
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Primal program/Dual program

What happens when you take the dual of the dual?

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi ,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . , n.

min
m∑

i=1

biyi

s.t.
m∑

i=1

aijyi ≥ cj ,

for j = 1, . . . , n,
yi ≥ 0,

for i = 1, . . . ,m.
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Primal program / Dual program in standard form

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi ,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . , n.

max
m∑

i=1

(−bi)yi

s.t.
m∑

i=1

(−aij)yi ≤ −cj ,

for j = 1, . . . , n,
yi ≥ 0,

for i = 1, . . . ,m.
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Dual program in standard form
Dual of a dual program

max
m∑

i=1

(−bi)yi

s.t.
m∑

i=1

(−aij)yi ≤ −cj ,

for j = 1, . . . , n,
yi ≥ 0,

for i = 1, . . . ,m.

min
n∑

j=1

−cjxj

s.t.
n∑

j=1

(−aij)xj ≥ −bi ,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . , n.
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Dual of dual program
Dual of a dual program written in standard form

min
n∑

j=1

−cjxj

s.t.
n∑

j=1

(−aij)xj ≥ −bi ,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . , n.

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi ,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . , n.

=⇒ Dual of the dual LP is the primal LP!
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Result

Proved the following:

Lemma
Let L be an LP, and let L′ be its dual. Let L′′ be the dual to L′.
Then L and L′′ are the same LP.
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24.2.2: The Weak Duality Theorem
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Weak duality theorem

Theorem
If (x1, x2, . . . , xn) is feasible for the primal LP and
(y1, y2, . . . , ym) is feasible for the dual LP, then∑

j

cjxj ≤
∑

i

biyi .

Namely, all the feasible solutions of the dual bound all the feasible
solutions of the primal.
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Weak duality theorem – proof

Proof.
By substitution from the dual form, and since the two solutions are
feasible, we know that

∑
j

cjxj ≤
∑

j

(
m∑

i=1

yiaij

)
xj ≤

∑
i

∑
j

aijxj

yi

≤
∑

i

biyi .

1 y being dual feasible implies cT ≤ yTA
2 x being primal feasible implies Ax ≤ b
3 ⇒ cTx ≤ (yTA)x ≤ yT (Ax) ≤ yTb
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Weak duality is weak...

1 If apply the weak duality theorem on the dual program,

2 =⇒
m∑

i=1

(−bi)yi ≤
n∑

j=1

−cjxj ,

3 which is the original inequality in the weak duality theorem.

4 Weak duality theorem does not imply the strong duality theorem
which will be discussed next.
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24.3: The strong duality theorem
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The strong duality theorem

Theorem (Strong duality theorem.)

If the primal LP problem has an optimal solution
x∗ =

(
x∗1 , . . . , x

∗
n

)
then the dual also has an optimal solution,

y∗ =
(
y∗1 , . . . , y

∗
m

)
, such that∑

j

cjx∗j =
∑

i

biy∗i .

Proof is tedious and omitted.
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24.4: Some duality examples
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24.4.1: Maximum matching in Bipartite graph
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Max matching in bipartite graph as LP

Input:G = (L ∪ R,E).

max
∑
uv∈E

xuv

s.t.
∑
uv∈E

xuv ≤ 1 ∀v ∈ G.

xuv ≥ 0 ∀uv ∈ E
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Max matching in bipartite graph as LP (Copy)

Input:G = (L ∪ R,E).

max
∑
uv∈E

xuv

s.t.
∑
uv∈E

xuv ≤ 1 ∀v ∈ G.

xuv ≥ 0 ∀uv ∈ E
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Max matching in bipartite graph as LP (Notes)
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24.4.2: Shortest path
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Shortest path

1 G = (V,E): graph. s: source ,
t: target

2 ∀(u, v) ∈ E: weight ω(u, v) on
edge.

3 Q: Comp. shortest s-t path.

4 No edges into s/out of t.

5 dx : var=dist. s to x , ∀x ∈ V.

6 ∀(u, v) ∈ E:
du + ω(u, v) ≥ dv .

7 Also ds = 0.

8 Trivial solution: all variables 0.

9 Target: find assignment max dt.

10 LP to solve this!
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Shortest path
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Shortest path
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Shortest path
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Shortest path
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t: target
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Shortest path

max dt

s.t. ds ≤ 0

du + ω(u, v) ≥ dv

∀(u, v) ∈ E,

dx ≥ 0 ∀x ∈ V.

1 G = (V,E): graph. s: source ,
t: target

2 ∀(u, v) ∈ E: weight ω(u, v) on
edge.

3 Q: Comp. shortest s-t path.

4 No edges into s/out of t.

5 dx : var=dist. s to x , ∀x ∈ V.

6 ∀(u, v) ∈ E:
du + ω(u, v) ≥ dv .

7 Also ds = 0.

8 Trivial solution: all variables 0.

9 Target: find assignment max dt.

10 LP to solve this!
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Shortest path

max dt

s.t. ds ≤ 0

du + ω(u, v) ≥ dv

∀(u, v) ∈ E,

dx ≥ 0 ∀x ∈ V.

Equivalently:
max dt

s.t. ds ≤ 0

dv − du ≤ ω(u, v)

∀(u, v) ∈ E,

dx ≥ 0 ∀x ∈ V.

1 G = (V,E): graph. s: source ,
t: target

2 ∀(u, v) ∈ E: weight ω(u, v) on
edge.

3 Q: Comp. shortest s-t path.

4 No edges into s/out of t.

5 dx : var=dist. s to x , ∀x ∈ V.

6 ∀(u, v) ∈ E:
du + ω(u, v) ≥ dv .

7 Also ds = 0.

8 Trivial solution: all variables 0.

9 Target: find assignment max dt.

10 LP to solve this!
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The dual

max dt

s.t. ds ≤ 0

dv − du ≤ ω(u, v)

∀(u, v) ∈ E,

dx ≥ 0 ∀x ∈ V.

min
∑

(u,v)∈E

yuvω(u, v)

s.t. ys −
∑

(s,u)∈E

ysu ≥ 0 (∗)

∑
(u,x)∈E

yux −
∑

(x,v)∈E

yxv ≥ 0

∀x ∈ V \ {s, t} (∗∗)∑
(u,t)∈E

yut ≥ 1 (∗ ∗ ∗)

yuv ≥ 0, ∀(u, v) ∈ E,

ys ≥ 0.
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The dual – details

1 yuv : dual variable for the edge (u, v).

2 ys: dual variable for ds ≤ 0

3 Think about the yuv as a flow on the edge yuv .

4 Assume that weights are positive.

5 LP is min cost flow of sending 1 unit flow from source s to t.

6 Indeed... (**) can be assumed to be hold with equality in the
optimal solution...

7 conservation of flow.

8 Equation (***) implies that one unit of flow arrives to the sink t.

9 (*) implies that at least ys units of flow leaves the source.

10 Remaining of LP implies that ys ≥ 1.
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Integrality

1 In the previous example there is always an optimal solution with
integral values.

2 This is not an obvious statement.

3 This is not true in general.

4 If it were true we could solve NPC problems with LP.
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Set cover...
Details in notes...

Set cover LP:

min
∑
Fj∈F

xj

s.t.
∑
Fj∈F,
ui∈Fj

xj ≥ 1 ∀ui ∈ S,

xj ≥ 0 ∀Fj ∈ F.
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Set cover dual is a packing LP...
Details in notes...

max
∑
ui∈S

yi

s.t.
∑
ui∈Fj

yi ≤ 1 ∀Fj ∈ F,

yi ≥ 0 ∀ui ∈ S.
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Network flow

max
∑

(s,v)∈E

xs→v

xu→v ≤ c(u → v) ∀(u, v) ∈ E∑
(u,v)∈E

xu→v −
∑

(v ,w)∈E

xv→w ≤ 0 ∀v ∈ V \ {s, t}

−
∑

(u,v)∈E

xu→v +
∑

(v ,w)∈E

xv→w ≤ 0 ∀v ∈ V \ {s, t}

0 ≤ xu→v ∀(u, v) ∈ E.
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Dual of network flow...

min
∑

(u,v)∈E

c(u → v) yu→v

du − dv ≤ yu→v ∀(u, v) ∈ E

yu→v ≥ 0 ∀(u, v) ∈ E

ds = 1, dt = 0.

Under right interpretation: shortest path (see notes).
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Duality and min-cut max-flow
Details in class notes

Lemma
The Min-Cut Max-Flow Theorem follows from the strong duality
Theorem for Linear Programming.
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