Problem

1. Prove that if X is a finite set and Y is a subset of X, then $|Y| \leq |X|$. Draw a diagram to illustrate the problem.

Solution

- Use induction on the size of X.
- Base case: If $|X| = 1$, then Y can only be \emptyset or $\{1\}$, so $|Y| \leq 1 = |X|$.
- Inductive step: Assume the statement is true for all sets Z with $|Z| < n$. Let X be a set with $|X| = n$. If $Y = X$, then $|Y| = n = |X|$. Otherwise, remove an element $x \in X$ to get a set Z with $|Z| = n - 1$. By the inductive hypothesis, $|Y_{Z}| \leq |Z| = n - 1$. So $|Y| = |Y_{Z}| + 1 \leq |Z| + 1 = n = |X|$.

Diagram:

- Draw a Venn diagram showing X and Y.
- Shade Y within X.
- Illustrate the inductive step by showing Z and Y_{Z}.

2. Let X and Y be sets. Define a relation R on X by xRy if and only if x is an ancestor of y in a directed tree T. Prove that R is an equivalence relation.

Solution

- Reflexive: For any $x \in X$, x is an ancestor of itself in T, so xRx.
- Symmetric: If xRy, then x is an ancestor of y in T. Since parent-child relationships are symmetric, y is an ancestor of x in T, so yRx.
- Transitive: If xRy and yRz, then x is an ancestor of y and y is an ancestor of z in T. Therefore, x is an ancestor of z in T, so xRz.

Diagram:

- Draw a directed tree T.
- Label x, y, and z.
- Indicate the parent-child relationships.

3. Let X be a set and R be a relation on X. Define a function $f: X \to \mathcal{P}(X)$ by $f(x) = \{y \in X : yRx\}$. Prove that f is one-to-one if and only if R is a partial order.

Solution

- If f is one-to-one, then for any $x, y \in X$, $f(x) = f(y)$ implies $x = y$. This means that yRx implies $x = y$, so R is a partial order.
- If R is a partial order, then for any $x, y \in X$, yRx implies $x = y$, so $f(x) = \{y\}$. This means that $f(x) = f(y)$ implies $x = y$, so f is one-to-one.

Diagram:

- Draw a Venn diagram showing X.
- Label x and y.
- Indicate the parent-child relationship.

4. Let X be a set and R be an equivalence relation on X. Define a function $g: X \to \mathcal{P}(X)$ by $g(x) = \{y \in X : xRy\}$. Prove that g is surjective.

Solution

- For any $Y \subseteq X$, let $x \in X$. If $x \in Y$, then $g(x) = Y$. If $x \notin Y$, then $g(x)$ is a singleton set containing x, which is contained in Y. Therefore, $g(x) \subseteq Y$.

Diagram:

- Draw a Venn diagram showing X.
- Label x and Y.
- Indicate the containment relationship.

5. Let X be a set and R be an equivalence relation on X. Define a function $h: X \to \mathcal{P}(X)$ by $h(x) = \{y \in X : xRy\}$. Prove that h is injective.

Solution

- For any $x, y \in X$, if $h(x) = h(y)$, then xRy and yRx. Since R is an equivalence relation, $x = y$.

Diagram:

- Draw a Venn diagram showing X.
- Label x and y.
- Indicate the equivalence relationship.

6. Let X be a set and R be an equivalence relation on X. Define a function $k: X \to \mathcal{P}(X)$ by $k(x) = \{y \in X : xRy\}$. Prove that k is bijective.

Solution

- Since h is injective and g is surjective, $k = h \circ g$ is both injective and surjective, so k is bijective.

Diagram:

- Draw a Venn diagram showing X.
- Label x and Y.
- Indicate the containment relationship.

7. Let X be a set and R be an equivalence relation on X. Define a function $l: X \to \mathcal{P}(X)$ by $l(x) = \{y \in X : xRy\}$. Prove that l is a bijection.

Solution

- Since h is injective and g is surjective, $l = h \circ g$ is both injective and surjective, so l is a bijection.

Diagram:

- Draw a Venn diagram showing X.
- Label x and Y.
- Indicate the containment relationship.