Submission guidelines and policies as in homework 1.

25 (100 PTS.) How many colors do we really need?

25.A. (30 PTS.) Prove that a graph G with a chromatic number $k>2$ (i.e., k is the minimal number of colors needed to color G), must have $\Omega\left(k^{2}\right)$ edges.
25.B. (30 PTs.) Prove that a graph G with m edges can be colored using $4 \sqrt{m}$ colors (Hint: If a vertex v has "low" degree, then first color $G \backslash v$ recursively, and then color v.)
25.C. (40 PTS.) Describe a polynomial time algorithm that given a graph G, which is 3 -colorable, it computes a coloring of G using, say, at most $O(\sqrt{n})$ colors. (Hint: Let v be a vertex, and let $N=N(v)$ be its neighbors. The induced subgraph $G_{N(v)}$ is two-colorable.)

26 (100 PTS.) Scheduling.
You are given a graph $G=(\mathrm{V}, \mathrm{E})$ with n vertices and m edges. An edge between two vertices represents a conflict. Given k, describe an algorithm, as efficient as possible, that outputs a partition of V into k disjoint sets $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{k}$ with a "few" active conflicts. A conflict $u v \in \mathrm{E}$ is active if u and v belong to the same set V_{j}, for some j.
26.A. (50 PTS.) Describe a deterministic algorithm (as fast as possible) for this problem, that outputs a partition with at most m / k active conflicts. Prove its correctness and bound its running time.
26.B. (50 PTS.) Describe a faster randomized algorithm, that in expectation generates at most m / k active conflicts. Prove the correctness of your algorithm, and bound its running time.

27 (100 PTS.) Stab these triangles.

You are given a set \mathcal{T} of m triangles in the plane, and a set P of n points in the plane. The task at hand is to pick a minimum size set $X \subseteq P$, such that for all $\triangle \in \mathcal{T}$, we have that $\triangle \cap X \neq \emptyset$. Let ζ be the size of the optimal (i.e., minimum) set that has this property.
Assume that for all $p \in P$, at most α triangles of \mathcal{T} contains p, where α is some number (potentially much smaller than m).
Consider the greedy algorithm that at the i th iteration adds to the solution the point that stabs the largest number of triangles not stabbed yet (let s_{i} be this number of triangles).
27.A. (10 PTS.) Prove that $s_{1} \geq s_{2} \geq \cdots$.
27.B. (30 PTs.) The epoch starting at iteration u, is a maximum range of iterations $u, u+1, \ldots, v$, such that $s_{v} \geq s_{u} / 2$. Give a bound, as tight as tight as possible, on $v-u+1$ (i.e., the length of the epoch) in terms of ζ.
27.C. (30 PTs.) Provide an upper bound, as small as possible, on the minimum number of epochs needed to cover all the iterations performed by the algorithm.
27.D. (30 PTs.) Using 27.B. and 27.C. provide an upper bound, as tight as possible, on the size of the solution output by the algorithm, as a function of ζ and α.

