
HW 8 Due on Wednesday, October 27, 2021 at 10am

CS 473: Algorithms, Fall 2021 Version: 2.3

Submission guidelines and policies as in homework 1.

22 (100 pts.) A long path revisited.

Let G be an undirected connected graph with n vertices and m edges.

22.A. (10 pts.) The average degree of G is davg(G) =
∑

v∈V(G) d(v)/n = 2m/n.

Prove that if there is a vertex v in graph, such that d(v) < m/n, then davg(G− v) > davg(G),
where G− v is the graph resulting from removing v and all its adjacent edges.

22.B. (20 pts.) Consider the algorithm that starts with an arbitrary vertex v1 ∈ V(G). In the
ith iteration, it picks a vertex vi+1 which is a neighbor of vi, which was not visited yet. The
algorithm continues in this fashion till it gets stuck, as all the neighbors of this final vertex
are already visited. Show how to modify this algorithm so it computes a path with ≥ m/n+1
vertices. What is the running time of your algorithm.

22.C. (40 pts.) Let δ = minv∈V(G) d(v), with 4δ < n, and consider a path π = v1v2 . . . vk in G, with
at k ≤ 2δ vertices (assume k > 2). Prove that either:

(I) The vertices v1 or vk have neighbors that are not in π (and thus π can be extended).

(II) The vertices v1 and vk are neighbors. Then the cycle C formed by v1 · · · vk can be modified
into a simple path with k+ 1 vertices (i.e., a path made out of k+ 1 distinct vertices and
no vertex is visited twice by the path).

(III) Otherwise, using the pigeonhole principle, show that there is an i, 1 < i < k, such that
vivk ∈ E(G) and vi+1v1 ∈ E(G). Conclude, that one can turn π into a simple cycle, and
compute from it a path with k + 1 vertices.

Conclude that there is always a path in G with 2δ + 1 vertices.

22.D. (30 pts.) Using the above, describe an algorithm, with polynomial running time, that
computes a path in G with at least 2m/n + 1 vertices. What is the running time of your
algorithm?

23 (100 pts.) Shorter question.

The input is a set X = {x1, x2, . . . , xn} of n numbers. For a number y ∈ R, the closest number to
y is `(y) = minx∈X\{y} |x− y|. Consider the set of distances L = {`(x1), . . . , `(xn)}.

23.A. (20 pts.) Let #k = #k(X) be the kth smallest number in L. Describe how to compute #k

in O(n log n) time.

23.B. (20 pts.) Let r be a parameter. Describe how to decide in linear time, for each number
x ∈ X, whether

(i) r < `(x),
(ii) r > `(x), or

(iii) or r = `(x).

23.C. (20 pts.) Prove that if for some element x ∈ X, we have `(x) > #k(X), then #k(X − x) =
#k(X), where X − x = X \ {x}.

1

23.D. (40 pts.) Using the above, describe an algorithm that computes #k(X) in O(k log k + n)
expected time.

[Hint: Either |X| = O(k), or alternatively, a random number x ∈ X, with good probability,
has the property that `(x) > #k(X), and at least (say) third of the numbers in X have even
bigger value of `. One can throw such numbers away, and continue.]

(One can get O(n) expected running time here for any value of k, but it requires quite a bit
more work.)

24 (100 pts.) Shortest question.

You are given a connected undirected graph G with n vertices and m edges. Using 22 (verify that
it works even if the graph is disconnected), describe a polynomial time algorithm that computes
a set of O(n log n) simple paths that are edge disjoint, and cover all the edges of G. What is the
running time of your algorithm?

2

