
HW 7 Due on Wednesday, October 20, 2021 at 10am

CS 473: Algorithms, Fall 2021 Version: 1.1

Submission guidelines and policies as in homework 1.

19 (100 pts.) Min cut questions.

19.A. (50 pts.) Consider a graph G = (V,E) with n vertices, m edges and a min cut of size k.
Let F be the collection of all min-cuts in G (i.e., all the cuts in F are of size k). What is
the probability that MinCut (the simpler variant – see class notes) would output a specific
min-cut S ∈ F?

Using this lower bound on the probability, bound the size of F (hint: if an algorithm outputs
each element of a set S with probability ≥ α > 0, what is a natural upper bound on the size
of S?).

19.B. (50 pts.) A connected cut is a cut (S, S) such that the induced subgraphs GS and GS are
connected.

Consider a specific connected cut C =
(
S, S

)
with kt edges in it, where t ≥ 1. What is

the probability that MinCut would output this cut? (Again, provide a lower bound on this
probability.)

Next, consider the set F(t) of all connected cuts in G of size at most kt. Bound the size of
F(t) using the above.

20 (100 pts.) Randomized algorithms types.

Consider a randomized algorithm – there are several types of such algorithms, including:

(I) Monte Carlo algorithms: The algorithm might be wrong with low probability, but the
running time is polynomial. (For example, the algorithm for min-cut seen in class.)

(II) Las Vegas algorithm : The algorithm always output the correct answer, but the running
time is a random variable. QuickSort is one example of such an algorithm.

20.A. (30 pts.) Consider a Las Vegas randomized algorithm with expected running time µ(n). For
concreteness, say µ(n) = Θ(n2). Prove that the probability the algorithm takes more than
4µ(n) time, is at most 1/4.

20.B. (30 pts.) For the algorithm above, and a prescribed δ ∈ (0, 1), describe how to modify the
algorithm such that its running time is O(µ(n) log(1/δ)) with probability ≥ 1− δ.

20.C. (40 pts.) Assume you are given a Monte-Carlo algorithm for a problem (e.g., computing
minimum cut in a graph), that runs in O(T (n)) time, where its output is correct with prob-
ability ≥ 1/2. Furthermore, assume that you are given a polynomial time verifier – given a
solution, it can tell if it is correct, that runs in O(V (n)) time. Present a Las Vegas algorithm
for the given problem, with expected running time O

(
T (n) + V (n)

)
– that is an algorithm

that its result is always correct.

21 (100 pts.) A bit on hashing.

1



21.A. (50 pts.) Consider an algorithm that stores m elements in an array B of size n – as follows.
It randomly choose for each element a random cell in uniform from the cells of B. If two or
more elements get stored in the same cell in memory we throw them away. That is, we keep
only the elements that get mapped to their own unique cell.

What is the expected number of elements that get thrown away? Let this number be f(m).

21.B. (50 pts.) Consider playing the above starting with n elements. In the ith iteration, we throw
the elements that were not stored yet into a new array Bi[1 . . n], keeping in the array only the
elements that got mapped to their own cells (with no other elements mapped to this cell), and
moving all the others to the next round. We would like to bound the number of rounds one
needs till all the elements are stored. Proving the right bound here is somewhat technically
tedious and painful, so we are going to make a simplifying assumptions – the number of
elements moving to the next round is exactly the expected number of such elements (this is
up to a constant a correct assumption, but proving it requires tools that outside the scope of
this class).

Give an upper bound, as tight as possible, on the number of rounds one needs to play, till
all the elements are stored (under the above assumption). Prove your answer. (Your upper
bound should a clean bound – not a complicated formula.)

Getting the right answer here is hard. It is not too difficult to get a suboptimal but still
somewhat interesting answer, which would be worth half the points of the question.

2


