
HW 5 Due on Wednesday, October 6, 2021 at 10am

CS 473: Algorithms, Fall 2021 Version: 1.0

Submission guidelines and policies as in homework 1.

13 (100 pts.) FFT Applications

13.A. (25 pts.) You are given two sets B and C each containing integers from JnK. Design an
algorithm, as fast as possible, that computes

S = {b + c | b ∈ B and c ∈ C} .

(The running time of your algorithm will be a function of n).

13.B. (75 pts.) You are given two binary strings S ∈ {0, 1}∗ (text string) and P ∈ {0, 1}∗ (pattern
string) of length n and m where m � n. Our goal is to find the close occurrences of the
pattern string P in S. In particular, for all i ∈ Jn−m + 1K, the algorithm should output the
hamming distance between S1[i . . . i+m−1] and S2. Design an algorithm, as fast as possible.

14 (100 pts.) Randomized Algorithms

14.A. (25 pts.) You are given two n dimensional binary vectors u, v ∈ {0, 1}n. Consider a random
vector r ∈ {−1,+1}n (each coordinate is picked independently and uniformly). Observe that
if u = v then 〈r, u〉 = 〈r, v〉. Prove that if u 6= v then P[〈r, u〉 = 〈r, v〉] ≤ 1/2.

14.B. (25 pts.) You are given two n × n matrices B,C ∈ {0, 1}n×n, and a parameter p ∈ (0, 1).
You are given an oracle, such that for a vector v ∈ {−1,+1}n, and an n × n matrix D, it
computes vD in O(n) time.

Design an algorithm (as fast as possible) that outputs “equal” correctly if B = C, with
probability at least 1− p. If it outputs “unequal” then B and C are not equal. That is, most
of the time, the algorithm returns a correct answer (such algorithms are called Monte-Carlo
algorithms).

(Hint: Use 14.A..)

14.C. (25 pts.) In QuickSort, we invoke the function rand(n), which returns a random integer
between 1 and n. In this exercise, we want to investigate how to implement rand(n) with
parameters smaller than n.

Let n and m be two positive integers and n ≤ m. Show how to implement rand(n) using
rand(m) in expected constant time.

14.D. (25 pts.) Do part 14.C. for the following variant. Let
√
n ≤ m ≤ n. Show that one can

implement rand(n) using rand(m) in expected constant time.

1



15 (100 pts.) Sorting networks in matrix form.

Consider an n × n matrix (assume all the values in the matrix are distinct). One can sort it by
repeating the following procedure several times:

(I) Sort each odd row in increasing order.
(II) Sort each even row in decreasing order.

(III) Sort each column in increasing order.

Here is an example of this procedure execution when executed three times:

1001111110
0011100111
1101100100
1110111001
0010101111
1101111111
1111100011
0111100101
1111110101
1000101000

(I)−→

0001111111
0011100111
0000011111
1110111001
0000111111
1101111111
0001111111
0111100101
0011111111
1000101000

(II)−−→

0001111111
1111110000
0000011111
1111111000
0000111111
1111111110
0001111111
1111110000
0011111111
1110000000

(III)−−−→

0000000000
0000010000
0000110000
0001111000
0011111110
1111111111
1111111111
1111111111
1111111111
1111111111

(I)−→

0000000000
0000010000
0000000011
0001111000
0001111111
1111111111
1111111111
1111111111
1111111111
1111111111

(II)−−→

0000000000
1000000000
0000000011
1111000000
0001111111
1111111111
1111111111
1111111111
1111111111
1111111111

(III)−−−→

0000000000
0000000000
0000000000
1001000011
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111

(I)−→

0000000000
0000000000
0000000000
1001000011
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111

(II)−−→

0000000000
0000000000
0000000000
1111000000
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111

15.A. (40 pts.) Suppose the matrix contains only 0’s and 1’s. We repeat the above procedure again
and again until no changes occur. In what order should we out the entries of the matrix to
get sorted output (i.e., all the numbers in the matrix output in increasing order)? Prove that
any n× n matrix of 0’s and 1’s will be finally sorted.

15.B. (40 pts.) Prove, by reproving the zero-one principle in this case (see class notes), that by
repeating the above procedure, any matrix of real numbers can be sorted.

15.C. (20 pts.) Suppose k iterations are required for this procedure to sort the n × n numbers.
Give an upper bound for k. The tighter your upper bound the better (prove you bound).
[Hint: k ≪ n.]

2


