
cs473: Algorithms Assigned: Mon., Oct. 26, 2020

Problem Set #7

Forbes/Chekuri Due: Thu., Nov. 5, 2020 (5:00pm)

For problems that use maximum flows as a black box, a full-credit solution requires the following.

• A complete description of the relevant flow network, specifying the set of vertices, the set of
edges (being careful about direction), the source and target vertices s and t, and the capacity
of every edge. (If the flow network is part of the original input, just say that.)

• A description of the algorithm to construct this flow network from the stated input. This
could be as simple as “we can construct the flow network in O(n3) time by brute force.”

• A description of the algorithm to extract the answer to the stated problem from the maximum
flow. This could be as simple as “return True if the maximum flow value is at least 42 and
False otherwise.”

• A proof that your reduction is correct. This proof will almost always have two components. For
example, if your algorithm returns a boolean value, you should prove that its True answers
are correct and that its False answers are correct. If your algorithm returns a number, you
should prove that number is neither too large nor too small.

• The running time of the overall algorithm, expressed as a function of the original input
parameters, not just the number of vertices and edges in your flow network.

• You may assume that maximum flows can be computed in O(V E) time. Do not regurgitate
the maximum flow algorithm itself.

Reductions to other flow-based algorithms described in class or in the notes (for example: edge-
disjoint paths, maximum bipartite matching, minimum-cost max-flows) or to other standard
graph problems (for example: reachability, minimum spanning tree, shortest paths) have similar
requirements.
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All problems are of equal value.

1. The maxflow-mincut theorem and its specializations (e.g., Hall’s Theorem, Menger’s Theorem)
can translate questions between the language of flows to the language of cuts, and vice versa.
This can facilitate proving useful and interesting facts that would otherwise be difficult to
show directly. Prove the following.

• Suppose G is an Eulerian directed graph, that is, a graph where the in-degree of each
vertex is the same as the out-degree of each vertex. Prove that if there are k edge-disjoint
paths from u to v then there are k edge-disjoint paths from v to u.

• Suppose G is d-regular bipartite graph. Prove that it has a perfect matching.

2. Let G = (V,E) be an undirected graph. Let V be partitioned into two sets of nodes R and
N where R is the set of reliable nodes and N is the set of non-reliable nodes. The reliable
nodes never fail but non-reliable nodes and edges can fail. Call N ∪E the elements. Given
two reliable nodes s, t describe an algorithm that computes the minimum number of elements
whose failure results in s and t being disconnected from each other. See Fig 1.
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Figure 1: Black nodes are reliable. Removing dotted edges and nodes disconnects s from t.

3. Problem 16 in Chapter 11 of Jeff Erickson’s Algorithms book. Only parts (a), (b).
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https://jeffe.cs.illinois.edu/teaching/algorithms/book/11-maxflowapps.pdf

