
cs473: Algorithms Assigned: Fri., Oct. 9, 2020

Problem Set #5

Forbes/Chekuri Due: Thu., Oct. 22, 2020 (5:00pm)

All problems are of equal value.

1. Sampling, Chebyshev vs Chernoff. Suppose you want to estimate the average of n
numbers via sampling, for example the average wealth of people in a town. The average
can be very skewed by outliers — perhaps there are a few billionaires that will not make
it to the sample but will clearly affect the average. However, we can obtain an accurate
estimate if we assume that the numbers are within some limited range. Assume the input
numbers z1, z2, . . . , zn are from [a, b] where a, b ∈ R with a ≤ b. Suppose you sample k input
numbers (with replacement) and output their average as the estimate for the true average
α = (

∑
i zi)/n. Let X be the random variable denoting the output value.

• Using Chebyshev’s inequality, show that for k ≥ (b−a)2
δε2

, we have

Pr[|X − α| ≥ ε] ≤ δ.

• Using the Chernoff inequality, show that there exists a constant c > 0 such that for

k ≥ c(b−a)2 log(2/δ)
ε2

, we have

Pr[|X − α| ≥ ε] ≤ δ.

2. Hashing. In this problem we consider yet another method for universal hashing. Suppose we
are hashing from the universe U = {0, 1, . . . , 2w − 1} of w-bit strings to a hash table of size
m = 2`; that is, we are hashing w-bit words into `-bit labels. To define our universal family of
hash functions, we think of words and labels as boolean vectors of length w and `, respectively,
and we specify our hash function by choosing a random boolean matrix.

For any `× w matrix M of 0s and 1s, define the hash function hM : {0, 1}w → {0, 1}` by the
boolean matrix-vector product

hM (x) = Mx mod 2 =

w⊕
i=1

Mixi =
⊕

i : xi=1

Mi.

where ⊕ denotes bitwise exclusive-or (that is, addition mod 2), Mi denotes the ith column of
M , and xi denotes the ith bit of x. Let M = {hm |M ∈ {0, 1}w×`} denote the set of all such
random-matrix hash functions.

For example, suppose w = 8 and ` = 4. Let M be the w × ` matrix

M =


0 1 0 0 1 1 1 1
1 0 1 1 0 0 1 1
1 0 0 1 0 1 1 0
1 0 1 0 1 0 1 1



1

Then we can compute hM (173) = 12 as follows:


0 1 0 0 1 1 1 1
1 0 1 1 0 0 1 1
1 0 0 1 0 1 1 0
1 0 1 0 1 0 1 1





1
0
1
0
1
1
0
1


=


0
1
1
1

⊕


0
1
0
1

⊕


1
0
0
1

⊕


1
0
1
0

⊕


1
1
0
1

 =


1
1
0
0



(a) Prove that M is a 2-universal family of hash functions.

(b) Prove that M is not uniform.

(c) Now consider a modification of the previous scheme, where we specify a hash function by
a random matrix M ∈ {0, 1}`×w and an independent random offset vector b ∈ {0, 1}`:

hM,b(x) = (Mx+ b) mod 2 =

(
w⊕
i=1

Mixi

)
⊕ b

Prove that the family M+ of all such functions is strongly universal (2-uniform).

(d) Prove that M+ is not 4-uniform.

(e) [Extra credit]: Prove that M+ is actually 3-uniform.

3. Two-dimensional pattern matching. In lecture we discussed the Karp-Rabin randomized
algorithm for pattern matching. The power of randomization is seen by considering the
two-dimensional pattern matching problem. The input consists of a n× n binary matrix T
and a m×m binary matrix P . Our goal is to check if P occurs as a (contiguous) submatrix
of T . Describe an algorithm that runs in O(n2) time assuming that arithmetic operation in
O(log n)-bit integers can be performed in constant time. This can be done via a modification
of the Karp-Rabin algorithm. To achieve this, you will have to apply some ingenuity in figuring
out how to update the fingerprint in only constant time for most positions in the array.

Hint: We can view an m × m matrix as an m2-bit integer. Rather than computing its
fingerprint directly, compute instead a fingerprint for each row first, and maintain these
fingerprints as you move around.

2

