
cs473: Algorithms Assigned: Thu., Sep. 17, 2020
Updated: Wed., Sep. 23, 2020

Problem Set #3 (v2)

Prof. Michael A. Forbes Due: Thu., Sep. 24, 2020 (5:00pm)

Some reminders about logistics.

� Submission Policy: See the course webpage for how to submit your pset via gradescope.

� Collaboration Policy: For this problem set you are allowed to work in groups of up to
three. Only one copy should be submitted per group on gradescope. See the course webpage
for more details.

� Late Policy: Late psets are not accepted. Instead, we will drop several of your lowest pset
problem scores; see the course webpage for more details.

All problems are of equal value.

1. Erickson Chapter 9, #8 (http://jeffe.cs.illinois.edu/teaching/algorithms/book/
09-apsp.pdf).

2. Consider the subset-sum problem: given n positive integers a1, . . . , an > 0 and a target integer
T , decide whether there exists a subset S ⊆ {a1, . . . , an} that sums to exactly T . It is easy
to adapt the dynamic program presented in lecture for the knapsack problem to solve this
problem in O(nT )-time and O(nT ) space, even if we want to output the desired subset (or
otherwise declare that no subset exists).

In lecture we saw a space-saving trick for computing not only the optimal edit-distance between
two strings in smaller space, but also to output an optimal alignment within the same space
bound. Apply this trick to the subset-sum problem, to obtain a O(nT )-time, O(n + T )-space
algorithm that outputs a subset summing to exactly T (or otherwise declares that no subsets
exists).

3. In the selection problem we are given an array A of n numbers (not necessarily sorted) and an
integer k, and the goal is to output the rank k element of A. Consider a randomized algorithm
where we pick a number x uniformly at random from A and use it as a pivot as in quick sort
to partition A into numbers less than equal to x and numbers greater than x. The algorithm
recurses on one of these arrays depending on k and the size of the two arrays.

(a) Write down a description of randomized quick selection in pseudocode. Show that the
expected depth of the recursion of randomized quick selection is O(log n), and that the
expected running time is O(n).

Hint: Write a recurrence for the depth of the recursion, as well as for the runtime.

Remark: This algorithm has the advantage of being quite simple when compared to
deterministic algorithms with the same runtime, such as algorithms that compute median
of medians.

(b) Let A1, A2, . . . , Ah be h sorted arrays where Ai has ni elements, and let n =
∑h

i=1 ni.
Assume that the arrays have distinct elements. Describe a randomized algorithm that

1

http://jeffe.cs.illinois.edu/teaching/algorithms/book/09-apsp.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/09-apsp.pdf


given integer k finds the k-th smallest element in the combined set of arrays in O(h log2 n)
expected time.

Hint: Adapt the randomized quick selection algorithm and analysis from the first part.

Remark: It is possible to deterministically achieve a time bound of O(h log n).

2


