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Overview

logistics:

pset2 due R5 — can submit in groups of ≤ 3

last lecture:

dynamic programming on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs
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Shortest Paths, with Negative Lengths

s
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questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s  t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem
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Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E ) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w ).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length
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Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E ) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle ( =⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs
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Dijkstra’s Algorithm,

with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s
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=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative
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Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E ) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)
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Shortest Paths, with Negative Lengths (V)

Definition

G = (V , E ) directed (simple) graph, with edge length function ` : E → Z. For

s, t ∈ V , define distk(s, t) to be the length of the shortest (s, t)-walk using ≤ k

edges.

distk(s, t) := min
(s,t)-walk w
|w |≤k

`(w ) .

remarks:

distk(s, t) =∞ if no (≤ k)-edge (s, t)-walk

dist0(s, s) = 0, dist0(s, v ) =∞ for v 6= s
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Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E ), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v ) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge
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Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), and even distn−1(s, v ) = dist(s, v ).

2 If for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ), then there are no negative length

cycles.
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Shortest Paths, with Negative Lengths (VIII)

Lemma

G = (V , E ), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v ) + `(v , t)}
.

Corollary

For all k ≥ 0,

all v ∈ V , distk(s, v ) ≤ distk−1(s, v )

If all v ∈ V , distk(s, v ) = distk−1(s, v )

=⇒ all v ∈ V , distk+1(s, v ) = distk(s, v )

=⇒ all v ∈ V , distk+2(s, v ) = distk+1(s, v ) =⇒ · · ·
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Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v ).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v ).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v )-walk of value d = distn(s, v )− C with

distn(s, v ) ≥ d ≥ distn−1(s, v ).
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distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,
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14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v ) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s.

If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v ) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v )

≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v ) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ),

then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v ) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v ) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v ) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary,

for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v ) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v )

≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v ) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v )

=⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v ) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v )

= distn+1(s, v ) = distn+2(s, v ) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v )

= distn+2(s, v ) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v )

= · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v ) = · · · .

As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v ) = · · · . As all v are

reachable from s

=⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v ) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v .

Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v ) ≤ distn(s, v ), then limk→∞ distk(s, v ) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v ) ≤ distn(s, v ) =⇒ for all v ∈ V ,

distn−1(s, v ) = distn(s, v ) = distn+1(s, v ) = distn+2(s, v ) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v ) <∞ for all k and v . Hence

limk→∞ distk(s, v ) = distn−1(s, v ) is finite for all v .

14 / 27



Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V , E ), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v )-walk containing a negative length cycle, then limk→∞ distk(s, v ) = −∞.

Proof.

Let s  u  u  v be an (s, v )-walk with length L, where u  u is a negative

length cycle of length −C < 0. Then consider the (s, v )-walk s  u  u  u  v ,

which is of value L− C . Hence, for any j there is (s, v )-walk of length L− C · j .

Hence limk→∞ distk(s, v ) = −∞.
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Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths:

source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )

for v ∈ V
d0[s][v ] =∞

d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞

d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n,

v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V

dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] =

min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ],

dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] +

`(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}

for v ∈ V
if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness:

clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better:

O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn),

dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better:

only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·]

=⇒ O(n)

18 / 27



Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V )
for v ∈ V

d0[s][v ] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v ] = dk−1[s][v ]

for u ∈ N−(v)

dk [s][v ] = min{dk [s][v ], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v ] < dn−1[s][v ]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27



Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v )}v∈V ) with `′(s ′, v ) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)
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All-Pairs Shortest Paths

Definition

G = (V , E ) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time
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All-Pairs Shortest Paths (II)

Definition

G = (V , E ) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps), O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time 7→ Θ(n4) if m = Θ(n2)

question: can we do better?
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All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E ) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v )-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .
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intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .
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dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4
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All-Pairs Shortest Paths (IV)

Lemma

G = (V , E ), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s  vk path and vk  t path are of index < k , and must be shortest paths
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Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i ][j ] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i ][j ] = min

{
dk−1[i ][j ]

dk−1[i ][k] + dk−1[k][j ]

for 1 ≤ i ≤ n
if dn[i ][i ] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???
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Floyd-Warshall (II)

Proposition

G = (V , E ), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k ][i ] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i ][k ] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k ][k ] ≤ dk−1[k ][i ] + dk−1[i ][k ] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C ) < 0

=⇒ dk+1[k ][k ] ≤ dk [k ][k ] < 0

=⇒ dn[k ][k ] < 0 =⇒ negative cycle detected
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Floyd-Warshall (II)

Proposition

G = (V , E ), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle
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Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i ][j ] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i ][j ] = min

{
dk−1[i ][j ]

dk−1[i ][k] + dk−1[k][j ]

for 1 ≤ i ≤ n
if dn[i ][i ] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???
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FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i ][j ] = `(i , j)
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return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, correctness is

now done
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Overview (II)

today:

shortest paths

with negative lengths — Bellman-Ford in O(mn) time

all-pairs — Floyd-Warshall in O(n3) time

next lecture:

more dynamic programming

logistics:

pset2 due R5 — can submit in groups of ≤ 3
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