cs473: Algorithms
 Lecture 4: Dynamic Programming

Michael A. Forbes

University of Illinois at Urbana-Champaign

September 9, 2019

Overview
logistics:

Overview

logistics:

- pset2 due R5

Overview

logistics:

- pset2 due R5 - can submit in groups of ≤ 3

Overview

logistics:

■ pset2 due R5 - can submit in groups of ≤ 3
last lecture:

Overview

logistics:

- pset2 due R5 - can submit in groups of ≤ 3
last lecture:
- dynamic programming

Overview

logistics:

- pset2 due R5 - can submit in groups of ≤ 3
last lecture:
- dynamic programming on trees

Overview

logistics:

- pset2 due R5 - can submit in groups of ≤ 3
last lecture:
- dynamic programming on trees

■ maximum independent set

Overview

logistics:

- pset2 due R5 - can submit in groups of ≤ 3
last lecture:
- dynamic programming on trees
- maximum independent set
- dominating set

Overview

logistics:

- pset2 due R5 - can submit in groups of ≤ 3
last lecture:
- dynamic programming on trees
- maximum independent set
- dominating set

today:

Overview

logistics:

- pset2 due R5 - can submit in groups of ≤ 3
last lecture:
- dynamic programming on trees
- maximum independent set
- dominating set

today:

■ shortest paths

Overview

logistics:

■ pset2 due R5 - can submit in groups of ≤ 3
last lecture:

- dynamic programming on trees
- maximum independent set
- dominating set

today:

■ shortest paths

- with negative lengths

Overview

logistics:

■ pset2 due R5 - can submit in groups of ≤ 3
last lecture:

- dynamic programming on trees
- maximum independent set
- dominating set

today:

■ shortest paths

- with negative lengths
- all-pairs

Shortest Paths, with Negative Lengths

Shortest Paths, with Negative Lengths

Shortest Paths, with Negative Lengths

Shortest Paths, with Negative Lengths

questions:

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?

total cost:

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
total cost: $9+10+(-16)+16=$

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
total cost: $9+10+(-16)+16=19$

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?

- what happens if we get lost?

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?

- what happens if we get lost?

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?

- what happens if we get lost?

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?

- what happens if we get lost?

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
\square what is the length of the shortest path from s to every other node?

- what happens if we get lost?

total cost:

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?
■ what happens if we get lost?
total cost: $-16+11+3=$

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?
■ what happens if we get lost?
total cost: $-16+11+3=-3$

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?

- what is the length of the shortest path from s to every other node?

■ what happens if we get lost?
\square how to deal with negative cycles?
total cost: $-16+11+3=-3$

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?

■ what happens if we get lost?
\square how to deal with negative cycles?

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?

■ what happens if we get lost?
\square how to deal with negative cycles?

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?
■ what happens if we get lost?
\square how to deal with negative cycles?

total cost:

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?
■ what happens if we get lost?
\square how to deal with negative cycles?

total cost:

$9+10+$

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?
■ what happens if we get lost?
\square how to deal with negative cycles?

total cost:

$9+10+(-16+11+3)$

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?
■ what happens if we get lost?
\square how to deal with negative cycles?

total cost:

$9+10+(-16+11+3) \cdot k$

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?

■ what happens if we get lost?
\square how to deal with negative cycles?

total cost:

$9+10+(-16+11+3) \cdot k+(-16)+16$

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?
■ what happens if we get lost?
\square how to deal with negative cycles?

total cost:

$$
\begin{aligned}
9+10+ & (-16+11+3) \cdot k+(-16)+16 \\
& =19-3 k
\end{aligned}
$$

Shortest Paths, with Negative Lengths

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?
■ what happens if we get lost?
\square how to deal with negative cycles?

total cost:

$$
\begin{aligned}
9+10+ & (-16+11+3) \cdot k+(-16)+16 \\
& =19-3 k \rightarrow-\infty
\end{aligned}
$$

Shortest Paths, with Negative Lengths

total cost:

$$
\begin{aligned}
9+10+ & (-16+11+3) \cdot k+(-16)+16 \\
& =19-3 k \rightarrow-\infty
\end{aligned}
$$

questions:

- what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?
■ what happens if we get lost?
- how to deal with negative cycles? remarks:

Shortest Paths, with Negative Lengths

total cost:

$$
\begin{aligned}
9+10+ & (-16+11+3) \cdot k+(-16)+16 \\
& =19-3 k \rightarrow-\infty
\end{aligned}
$$

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?
■ what happens if we get lost?

- how to deal with negative cycles?

remarks:

- computing the length of the shortest simple $s \rightsquigarrow t$ path

Shortest Paths, with Negative Lengths

total cost:

$$
\begin{aligned}
9+10+ & (-16+11+3) \cdot k+(-16)+16 \\
& =19-3 k \rightarrow-\infty
\end{aligned}
$$

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?
■ what happens if we get lost?

- how to deal with negative cycles?

remarks:

- computing the length of the shortest simple $s \rightsquigarrow t$ path (with possibly negative lengths)

Shortest Paths, with Negative Lengths

total cost:

$$
\begin{aligned}
9+10+ & (-16+11+3) \cdot k+(-16)+16 \\
& =19-3 k \rightarrow-\infty
\end{aligned}
$$

questions:

■ what is the length of the shortest path between s and t ?

- what is the length of the shortest path from s to every other node?
■ what happens if we get lost?
- how to deal with negative cycles?

remarks:

- computing the length of the shortest simple $s \rightsquigarrow t$ path (with possibly negative lengths) is NP-hard

Shortest Paths, with Negative Lengths

total cost:

$$
\begin{aligned}
9+10+ & (-16+11+3) \cdot k+(-16)+16 \\
& =19-3 k \rightarrow-\infty
\end{aligned}
$$

questions:

■ what is the length of the shortest path between s and t ?
■ what is the length of the shortest path from s to every other node?

■ what happens if we get lost?
■ how to deal with negative cycles?

remarks:

■ computing the length of the shortest simple $s \rightsquigarrow t$ path (with possibly negative lengths) is NP-hard contains the Hamiltonian path problem

Shortest Paths, with Negative Lengths (II)

Shortest Paths, with Negative Lengths (II)

Definition

Shortest Paths, with Negative Lengths (II)

Definition
$G=(V, E)$ directed (simple) graph,

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.

Shortest Paths, with Negative Lengths (II)

Definition
$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.

- A path in G is a sequence of distinct vertices

Shortest Paths, with Negative Lengths (II)

Definition
$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.

- A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.

- A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i.

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.

- A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.
- A walk in G is a sequence of vertices

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.

- A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.
■ A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i.

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.

- A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-walk is a walk where $v_{0}=s$ and $v_{k}=t$.

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.
■ A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-walk is a walk where $v_{0}=s$ and $v_{k}=t$.
■ The length of a walk is the sum of the edge lengths $\sum_{i} \ell\left(v_{i}, v_{i+1}\right)$.

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.
■ A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-walk is a walk where $v_{0}=s$ and $v_{k}=t$.
■ The length of a walk is the sum of the edge lengths $\sum_{i} \ell\left(v_{i}, v_{i+1}\right)$.
■ The distance from s to t in G,

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.
■ A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-walk is a walk where $v_{0}=s$ and $v_{k}=t$.

- The length of a walk is the sum of the edge lengths $\sum_{i} \ell\left(v_{i}, v_{i+1}\right)$.
- The distance from s to t in G, denoted $\operatorname{dist}(s, t)$,

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.
■ A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-walk is a walk where $v_{0}=s$ and $v_{k}=t$.
■ The length of a walk is the sum of the edge lengths $\sum_{i} \ell\left(v_{i}, v_{i+1}\right)$.

- The distance from s to t in G, denoted $\operatorname{dist}(s, t)$, is the length of the shortest (s, t)-walk,

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.
■ A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-walk is a walk where $v_{0}=s$ and $v_{k}=t$.
■ The length of a walk is the sum of the edge lengths $\sum_{i} \ell\left(v_{i}, v_{i+1}\right)$.

- The distance from s to t in G, denoted $\operatorname{dist}(s, t)$, is the length of the shortest (s, t)-walk, $\operatorname{dist}(s, t):=\min _{(s, t) \text {-walk }} w \ell(w)$.

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.
■ A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-walk is a walk where $v_{0}=s$ and $v_{k}=t$.
■ The length of a walk is the sum of the edge lengths $\sum_{i} \ell\left(v_{i}, v_{i+1}\right)$.
■ The distance from s to t in G, denoted $\operatorname{dist}(s, t)$, is the length of the shortest (s, t)-walk, $\operatorname{dist}(s, t):=\min _{(s, t) \text {-walk }} w \ell(w)$.

remarks:

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.
■ A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-walk is a walk where $v_{0}=s$ and $v_{k}=t$.
■ The length of a walk is the sum of the edge lengths $\sum_{i} \ell\left(v_{i}, v_{i+1}\right)$.

- The distance from s to t in G, denoted $\operatorname{dist}(s, t)$, is the length of the shortest (s, t)-walk, $\operatorname{dist}(s, t):=\min _{(s, t) \text {-walk }} w \ell(w)$.

remarks:

■ (s, t)-walk containing a negative length cycle

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.
■ A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-walk is a walk where $v_{0}=s$ and $v_{k}=t$.
■ The length of a walk is the sum of the edge lengths $\sum_{i} \ell\left(v_{i}, v_{i+1}\right)$.

- The distance from s to t in G, denoted $\operatorname{dist}(s, t)$, is the length of the shortest (s, t)-walk, $\operatorname{dist}(s, t):=\min _{(s, t) \text {-walk }} w \ell(w)$.

remarks:

■ (s, t)-walk containing a negative length cycle $\Longrightarrow \operatorname{dist}(s, t)=-\infty$

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.

- A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-walk is a walk where $v_{0}=s$ and $v_{k}=t$.
■ The length of a walk is the sum of the edge lengths $\sum_{i} \ell\left(v_{i}, v_{i+1}\right)$.
- The distance from s to t in G, denoted $\operatorname{dist}(s, t)$, is the length of the shortest (s, t)-walk, $\operatorname{dist}(s, t):=\min _{(s, t) \text {-walk }} w \ell(w)$.

remarks:

$■(s, t)$-walk containing a negative length cycle $\Longrightarrow \operatorname{dist}(s, t)=-\infty$
■ no (s, t)-walk containing a negative length cycle

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.

- A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-walk is a walk where $v_{0}=s$ and $v_{k}=t$.
■ The length of a walk is the sum of the edge lengths $\sum_{i} \ell\left(v_{i}, v_{i+1}\right)$.
- The distance from s to t in G, denoted $\operatorname{dist}(s, t)$, is the length of the shortest (s, t)-walk, $\operatorname{dist}(s, t):=\min _{(s, t) \text {-walk }} w \ell(w)$.

remarks:

■ (s, t)-walk containing a negative length cycle $\Longrightarrow \operatorname{dist}(s, t)=-\infty$
■ no (s, t)-walk containing a negative length cycle \Longrightarrow shortest walk is a path

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.

- A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-walk is a walk where $v_{0}=s$ and $v_{k}=t$.
■ The length of a walk is the sum of the edge lengths $\sum_{i} \ell\left(v_{i}, v_{i+1}\right)$.
■ The distance from s to t in G, denoted $\operatorname{dist}(s, t)$, is the length of the shortest (s, t)-walk, $\operatorname{dist}(s, t):=\min _{(s, t) \text {-walk }} w \ell(w)$.

remarks:

$■(s, t)$-walk containing a negative length cycle $\Longrightarrow \operatorname{dist}(s, t)=-\infty$
■ no (s, t)-walk containing a negative length cycle \Longrightarrow shortest walk is a path \Longrightarrow shortest walk $\leq n-1$ edges

Shortest Paths, with Negative Lengths (II)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.
■ A path in G is a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-path is a path where $v_{0}=s$ and $v_{k}=t$.

- A walk in G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all i. An (s, t)-walk is a walk where $v_{0}=s$ and $v_{k}=t$.
■ The length of a walk is the sum of the edge lengths $\sum_{i} \ell\left(v_{i}, v_{i+1}\right)$.
■ The distance from s to t in G, denoted $\operatorname{dist}(s, t)$, is the length of the shortest (s, t)-walk, $\operatorname{dist}(s, t):=\min _{(s, t) \text {-walk }} w \ell(w)$.

remarks:

$■(s, t)$-walk containing a negative length cycle $\Longrightarrow \operatorname{dist}(s, t)=-\infty$
■ no (s, t)-walk containing a negative length cycle \Longrightarrow shortest walk is a path \Longrightarrow shortest walk $\leq n-1$ edges and is of finite length

Shortest Paths, with Negative Lengths (III)

Shortest Paths, with Negative Lengths (III)

Definition

Shortest Paths, with Negative Lengths (III)

Definition
$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$,

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

■ given $s, t \in V$, find a minimum length (s, t)-path

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle $(\Longrightarrow \operatorname{dist}(s, t)=-\infty)$

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

■ given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle $(\Longrightarrow \operatorname{dist}(s, t)=-\infty)$

- given $s \in V$,

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

■ given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle $(\Longrightarrow \operatorname{dist}(s, t)=-\infty)$
■ given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

■ given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle $(\Longrightarrow \operatorname{dist}(s, t)=-\infty)$

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$
- determine if G has any negative cycle

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle $(\Longrightarrow \operatorname{dist}(s, t)=-\infty)$
- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$
- determine if G has any negative cycle

remarks:

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

■ given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle $(\Longrightarrow \operatorname{dist}(s, t)=-\infty)$
■ given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$

- determine if G has any negative cycle

remarks:

■ negative lengths can be natural in modelling real life

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle $(\Longrightarrow \operatorname{dist}(s, t)=-\infty)$
■ given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$
- determine if G has any negative cycle

remarks:

■ negative lengths can be natural in modelling real life

- e.g., demand/supply on an electrical grid,

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle $(\Longrightarrow \operatorname{dist}(s, t)=-\infty)$
■ given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$
- determine if G has any negative cycle

remarks:

■ negative lengths can be natural in modelling real life
■ e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle $(\Longrightarrow \operatorname{dist}(s, t)=-\infty)$
- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$
- determine if G has any negative cycle

remarks:

■ negative lengths can be natural in modelling real life
■ e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage
■ negative lengths can arise as by-products of other algorithms,

Shortest Paths, with Negative Lengths (III)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle $(\Longrightarrow \operatorname{dist}(s, t)=-\infty)$
- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$
- determine if G has any negative cycle

remarks:

■ negative lengths can be natural in modelling real life
■ e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage
■ negative lengths can arise as by-products of other algorithms, e.g., flows in graphs

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's algorithm:

Dijkstra's Algorithm

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm,

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's algorithm: greedily grow shortest paths from source s

remarks:

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's algorithm: greedily grow shortest paths from source s

remarks:

- greedy exploration,

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's algorithm: greedily grow shortest paths from source s

remarks:

- greedy exploration, ordering vertices $v \in V$ by $\operatorname{dist}(s, v)$

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's algorithm: greedily grow shortest paths from source s

remarks:

- greedy exploration, ordering vertices $v \in V$ by $\operatorname{dist}(s, v)$ - without updates!

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's algorithm: greedily grow shortest paths from source s

remarks:

\square greedy exploration, ordering vertices $v \in V$ by $\operatorname{dist}(s, v)$ - without updates!
\Longrightarrow algorithm assumes the distance only grows as the graph is explored

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's algorithm: greedily grow shortest paths from source s

remarks:

- greedy exploration, ordering vertices $v \in V$ by $\operatorname{dist}(s, v)$ - without updates!
\Longrightarrow algorithm assumes the distance only grows as the graph is explored
\equiv assumes all edge lengths are non-negative

Shortest Paths, with Negative Lengths (IV)

Shortest Paths, with Negative Lengths (IV)

Lemma
 $G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.

Shortest Paths, with Negative Lengths (IV)

Lemma
 $G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. If $s=v_{0}$

Shortest Paths, with Negative Lengths (IV)

Lemma
 $G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. If $s=v_{0} \rightarrow V_{1}$

Shortest Paths, with Negative Lengths (IV)

Lemma
 $G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. If $s=v_{0} \rightarrow v_{1} \rightarrow v_{2}$

Shortest Paths, with Negative Lengths (IV)

Lemma
 $G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. If $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots$

Shortest Paths, with Negative Lengths (IV)

Lemma
 $G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. If $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t$

Shortest Paths, with Negative Lengths (IV)

Lemma
 $G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. If $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t$ is a shortest (s, t)-walk,

Shortest Paths, with Negative Lengths (IV)

Lemma
 $G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. If $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t$ is a shortest (s, t)-walk, then

Shortest Paths, with Negative Lengths (IV)

$$
\begin{aligned}
& \text { Lemma } \\
& \begin{array}{l}
G=(V, E) \text { directed (simple) graph, with edge length function } \ell: E \rightarrow \mathbb{Z} \text {. If } \\
s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t \text { is a shortest }(s, t) \text {-walk, then } \\
1 s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i} \text { is a shortest }\left(s, v_{i}\right) \text {-walk, }
\end{array}
\end{aligned}
$$

Shortest Paths, with Negative Lengths (IV)

$$
\begin{aligned}
& \text { Lemma } \\
& \begin{array}{l}
G=(V, E) \text { directed (simple) graph, with edge length function } \ell: E \rightarrow \mathbb{Z} \text {. If } \\
s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t \text { is a shortest }(s, t) \text {-walk, then } \\
1 \quad s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i} \text { is a shortest }\left(s, v_{i}\right) \text {-walk, for } i \leq k
\end{array}
\end{aligned}
$$

Shortest Paths, with Negative Lengths (IV)

$$
\begin{aligned}
& \text { Lemma } \\
& \begin{array}{l}
G=(V, E) \text { directed (simple) graph, with edge length function } \ell: E \rightarrow \mathbb{Z} \text {. If } \\
s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t \text { is a shortest }(s, t) \text {-walk, then } \\
1 \quad s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i} \text { is a shortest }\left(s, v_{i}\right) \text {-walk, for } i \leq k \\
2 \text { if } \ell \text { is non-negative, }
\end{array}
\end{aligned}
$$

Shortest Paths, with Negative Lengths (IV)

$$
\begin{aligned}
& \text { Lemma } \\
& \begin{array}{l}
G=(V, E) \text { directed (simple) graph, with edge length function } \ell: E \rightarrow \mathbb{Z} \text {. If } \\
s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t \text { is a shortest }(s, t) \text {-walk, then } \\
1 \quad s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i} \text { is a shortest }\left(s, v_{i}\right) \text {-walk, for } i \leq k \\
2 \text { if } \ell \text { is non-negative, } \operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{i+1}\right) \text { for all } i
\end{array}
\end{aligned}
$$

Shortest Paths, with Negative Lengths (IV)

$$
\begin{aligned}
& \text { Lemma } \\
& \begin{array}{l}
G=(V, E) \text { directed (simple) graph, with edge length function } \ell: E \rightarrow \mathbb{Z} \text {. If } \\
s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t \text { is a shortest }(s, t) \text {-walk, then } \\
1 \quad s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i} \text { is a shortest }\left(s, v_{i}\right) \text {-walk, for } i \leq k \\
2 \text { if } \ell \text { is non-negative, } \operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{i+1}\right) \text { for all } i
\end{array}
\end{aligned}
$$

Proof.

Shortest Paths, with Negative Lengths (IV)

$$
\begin{aligned}
& \text { Lemma } \\
& \begin{array}{l}
G=(V, E) \text { directed (simple) graph, with edge length function } \ell: E \rightarrow \mathbb{Z} \text {. If } \\
s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t \text { is a shortest }(s, t) \text {-walk, then } \\
1 \quad s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i} \text { is a shortest }\left(s, v_{i}\right) \text {-walk, for } i \leq k \\
2 \text { if } \ell \text { is non-negative, } \operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{i+1}\right) \text { for all } i
\end{array}
\end{aligned}
$$

Proof.

(1) Cut and paste.

Shortest Paths, with Negative Lengths (IV)

$$
\begin{aligned}
& \text { Lemma } \\
& \begin{array}{l}
G=(V, E) \text { directed (simple) graph, with edge length function } \ell: E \rightarrow \mathbb{Z} \text {. If } \\
s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t \text { is a shortest }(s, t) \text {-walk, then } \\
1 \quad s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i} \text { is a shortest }\left(s, v_{i}\right) \text {-walk, for } i \leq k \\
2 \text { if } \ell \text { is non-negative, } \operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{i+1}\right) \text { for all } i
\end{array}
\end{aligned}
$$

Proof.

(1) Cut and paste. (2) Clear.

Shortest Paths, with Negative Lengths (IV)

$$
\begin{aligned}
& \text { Lemma } \\
& \begin{array}{l}
G=(V, E) \text { directed (simple) graph, with edge length function } \ell: E \rightarrow \mathbb{Z} \text {. If } \\
s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t \text { is a shortest }(s, t) \text {-walk, then } \\
1 \quad s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i} \text { is a shortest }\left(s, v_{i}\right) \text {-walk, for } i \leq k \\
\mathbf{2} \text { if } \ell \text { is non-negative, } \operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{i+1}\right) \text { for all } i
\end{array}
\end{aligned}
$$

Proof.

(1) Cut and paste. (2) Clear.

remarks:

Shortest Paths, with Negative Lengths (IV)

> Lemma $\left.\begin{array}{l}G=(V, E) \text { directed (simple) graph, with edge length function } \ell: E \rightarrow \mathbb{Z} \text {. If } \\ s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t \text { is a shortest }(s, t) \text {-walk, then } \\ 1 \\ 1\end{array}\right) v_{1} \rightarrow \cdots \rightarrow v_{i}$ is a shortest $\left(s, v_{i}\right)$-walk, for $i \leq k$ $\mathbf{2}$ if ℓ is non-negative, $\operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{i+1}\right)$ for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

■ shortest walks are shortest paths,

Shortest Paths, with Negative Lengths (IV)

$$
\begin{aligned}
& \text { Lemma } \\
& \left.\begin{array}{l}
G=(V, E) \text { directed (simple) graph, with edge length function } \ell: E \rightarrow \mathbb{Z} \text {. If } \\
s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t \text { is a shortest }(s, t) \text {-walk, then } \\
1 \\
1
\end{array}\right) v_{1} \rightarrow \cdots \rightarrow v_{i} \text { is a shortest }\left(s, v_{i}\right) \text {-walk, for } i \leq k \\
& \mathbf{2} \text { if } \ell \text { is non-negative, } \operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{i+1}\right) \text { for all } i
\end{aligned}
$$

Proof.

(1) Cut and paste. (2) Clear.

remarks:

■ shortest walks are shortest paths, if no negative cycle

Shortest Paths, with Negative Lengths (IV)

$$
\begin{aligned}
& \text { Lemma } \\
& \begin{array}{l}
G=(V, E) \text { directed (simple) graph, with edge length function } \ell: E \rightarrow \mathbb{Z} \text {. If } \\
s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t \text { is a shortest }(s, t) \text {-walk, then } \\
1 \quad s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i} \text { is a shortest }\left(s, v_{i}\right) \text {-walk, for } i \leq k \\
\mathbf{2} \text { if } \ell \text { is non-negative, } \operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{i+1}\right) \text { for all } i
\end{array}
\end{aligned}
$$

Proof.

(1) Cut and paste. (2) Clear.

remarks:

■ shortest walks are shortest paths, if no negative cycle
■ Dijkstra's algorithm defines subproblems

Shortest Paths, with Negative Lengths (IV)

Lemma

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. If $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t$ is a shortest (s, t)-walk, then
$1 s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i}$ is a shortest $\left(s, v_{i}\right)$-walk, for $i \leq k$
2 if ℓ is non-negative, $\operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{i+1}\right)$ for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

■ shortest walks are shortest paths, if no negative cycle
■ Dijkstra's algorithm defines subproblems by restricting the graph by dist($s, \cdot \cdot)$

Shortest Paths, with Negative Lengths (IV)

Lemma

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. If $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t$ is a shortest (s, t)-walk, then
$1 s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i}$ is a shortest $\left(s, v_{i}\right)$-walk, for $i \leq k$
2 if ℓ is non-negative, $\operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{i+1}\right)$ for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

■ shortest walks are shortest paths, if no negative cycle
■ Dijkstra's algorithm defines subproblems by restricting the graph by dist($s, \cdot)$
■ idea:

Shortest Paths, with Negative Lengths (IV)

Lemma

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. If $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t$ is a shortest (s, t)-walk, then
$1 s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i}$ is a shortest $\left(s, v_{i}\right)$-walk, for $i \leq k$
2 if ℓ is non-negative, $\operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{i+1}\right)$ for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

■ shortest walks are shortest paths, if no negative cycle
■ Dijkstra's algorithm defines subproblems by restricting the graph by dist($s, \cdot)$
■ idea: parameterize subproblems by number of edges in a walk,

Shortest Paths, with Negative Lengths (IV)

Lemma

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. If $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}=t$ is a shortest (s, t)-walk, then
$1 s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i}$ is a shortest $\left(s, v_{i}\right)$-walk, for $i \leq k$
2 if ℓ is non-negative, $\operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{i+1}\right)$ for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

■ shortest walks are shortest paths, if no negative cycle
■ Dijkstra's algorithm defines subproblems by restricting the graph by dist(s, \cdot)

- idea: parameterize subproblems by number of edges in a walk, and allow updates to $\operatorname{dist}(s, \cdot)$

Shortest Paths, with Negative Lengths (V)

Shortest Paths, with Negative Lengths (V)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.

Shortest Paths, with Negative Lengths (V)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. For $s, t \in V$, define $\operatorname{dist}_{k}(s, t)$ to be the length of the shortest (s, t)-walk using $\leq k$ edges.

Shortest Paths, with Negative Lengths (V)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. For $s, t \in V$, define $\operatorname{dist}_{k}(s, t)$ to be the length of the shortest (s, t)-walk using $\leq k$ edges.

$$
\operatorname{dist}_{k}(s, t):=\min _{\substack{(s, t) \text {-walk } \\|w|<k}} \ell(w) .
$$

Shortest Paths, with Negative Lengths (V)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. For $s, t \in V$, define $\operatorname{dist}_{k}(s, t)$ to be the length of the shortest (s, t)-walk using $\leq k$ edges.

$$
\operatorname{dist}_{k}(s, t):=\min _{\substack{(s, t) \text {-walk } \\|w|<k}} \ell(w) .
$$

remarks:

Shortest Paths, with Negative Lengths (V)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. For $s, t \in V$, define $\operatorname{dist}_{k}(s, t)$ to be the length of the shortest (s, t)-walk using $\leq k$ edges.

$$
\operatorname{dist}_{k}(s, t):=\min _{\substack{(s, t) \text {-walk } \\|w| \leq k}} \ell(w) .
$$

remarks:

$\square \operatorname{dist}_{k}(s, t)=\infty$ if no ($\leq k$)-edge (s, t)-walk

Shortest Paths, with Negative Lengths (V)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. For $s, t \in V$, define $\operatorname{dist}_{k}(s, t)$ to be the length of the shortest (s, t)-walk using $\leq k$ edges.

$$
\operatorname{dist}_{k}(s, t):=\min _{\substack{(s, t) \text {-walk } \\|w|<k}} \ell(w) .
$$

remarks:

$\square \operatorname{dist}_{k}(s, t)=\infty$ if no ($\leq k$)-edge (s, t)-walk
$\square \operatorname{dist}_{0}(s, s)=0$,

Shortest Paths, with Negative Lengths (V)

Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. For $s, t \in V$, define $\operatorname{dist}_{k}(s, t)$ to be the length of the shortest (s, t)-walk using $\leq k$ edges.

$$
\operatorname{dist}_{k}(s, t):=\min _{\substack{(s, t) \text {-walk } \\|w| \leq k}} \ell(w) .
$$

remarks:

$\square \operatorname{dist}_{k}(s, t)=\infty$ if no ($\leq k$)-edge (s, t)-walk

- $\operatorname{dist}_{0}(s, s)=0, \operatorname{dist}_{0}(s, v)=\infty$ for $v \neq s$

Shortest Paths, with Negative Lengths (VI)

Shortest Paths, with Negative Lengths (VI)

Lemma

Shortest Paths, with Negative Lengths (VI)

```
Lemma
\[
G=(V, E)
\]
```


Shortest Paths, with Negative Lengths (VI)

> Lemma $$
G=(V, E), \ell: E \rightarrow \mathbb{Z}
$$

Shortest Paths, with Negative Lengths (VI)

Abstract

Lemma $G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

Shortest Paths, with Negative Lengths (VI)

$$
\begin{aligned}
& \text { Lemma } \\
& G=(V, E), \ell: E \rightarrow \mathbb{Z} \text {. Then for all } s, t \in V \\
& \qquad \operatorname{dist}_{k}(s, t)=
\end{aligned}
$$

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \{
$$

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\operatorname{dist}_{k-1}(s, t)\right.
$$

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}
\end{array}\right.
$$

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\right.
\end{array}\right.
$$

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Let $s=v_{0}$

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Let $s=v_{0} \rightarrow v_{1}$

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2}$

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots$

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{j}=t$

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{j}=t$ be a shortest length $j \leq k(s, t)$-walk.

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{j}=t$ be a shortest length $j \leq k(s, t)$-walk. Then, $\square j<k$:

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{j}=t$ be a shortest length $j \leq k(s, t)$-walk. Then,
$\square j<k$: hence this is a $(\leq k-1)$-edge (s, t)-walk of length $\operatorname{dist}_{k-1}(s, t)$

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{j}=t$ be a shortest length $j \leq k(s, t)$-walk. Then,
$\square j<k$: hence this is a $(\leq k-1)$-edge (s, t)-walk of length $\operatorname{dist}_{k-1}(s, t)$
■ $j=k$:

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{j}=t$ be a shortest length $j \leq k(s, t)$-walk. Then,
$\square j<k$: hence this is a $(\leq k-1)$-edge (s, t)-walk of length $\operatorname{dist}_{k-1}(s, t)$
$\square j=k$: hence $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k-1}$ is a shortest length ($\leq k-1$)-edge $\left(s, v_{k-1}\right)$ walk

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{j}=t$ be a shortest length $j \leq k(s, t)$-walk. Then,
$\square j<k$: hence this is a $(\leq k-1)$-edge (s, t)-walk of length $\operatorname{dist}_{k-1}(s, t)$
$\square j=k$: hence $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k-1}$ is a shortest length ($\leq k-1$)-edge $\left(s, v_{k-1}\right)$ walk \Longrightarrow can add $\ell\left(v_{k-1}, t\right)$ to reach t

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{j}=t$ be a shortest length $j \leq k(s, t)$-walk. Then,
$\square j<k$: hence this is a $(\leq k-1)$-edge (s, t)-walk of length $\operatorname{dist}_{k-1}(s, t)$
$\square j=k$: hence $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k-1}$ is a shortest length ($\leq k-1$)-edge $\left(s, v_{k-1}\right)$ walk \Longrightarrow can add $\ell\left(v_{k-1}, t\right)$ to reach t

remark:

Shortest Paths, with Negative Lengths (VI)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{j}=t$ be a shortest length $j \leq k(s, t)$-walk. Then,
$\square j<k$: hence this is a $(\leq k-1)$-edge (s, t)-walk of length $\operatorname{dist}_{k-1}(s, t)$
$\square j=k$: hence $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k-1}$ is a shortest length ($\leq k-1$)-edge $\left(s, v_{k-1}\right)$ walk \Longrightarrow can add $\ell\left(v_{k-1}, t\right)$ to reach t
remark: $\ell(v, t)=\infty$ if there is no edge

Shortest Paths, with Negative Lengths (VII)

Shortest Paths, with Negative Lengths (VII)

Theorem

Shortest Paths, with Negative Lengths (VII)

Theorem
 $G=(V, E), \ell: E \rightarrow \mathbb{Z}$,

Shortest Paths, with Negative Lengths (VII)

Theorem
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$,

Shortest Paths, with Negative Lengths (VII)

> Theorem
> $G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.

Shortest Paths, with Negative Lengths (VII)

Theorem
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.
1 If there are no negative length cycles,

Shortest Paths, with Negative Lengths (VII)

Theorem
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.
1 If there are no negative length cycles, then for all $v \in V$,

Shortest Paths, with Negative Lengths (VII)

Theorem
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.
1 If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v)$

Shortest Paths, with Negative Lengths (VII)

Theorem
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.
1 If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$,

Shortest Paths, with Negative Lengths (VII)

Theorem
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.
1 If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, and even $\operatorname{dist}_{n-1}(s, v)=\operatorname{dist}(s, v)$.

Shortest Paths, with Negative Lengths (VII)

Theorem
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.
1 If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, and even $\operatorname{dist}_{n-1}(s, v)=\operatorname{dist}(s, v)$.
2 If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$,

Shortest Paths, with Negative Lengths (VII)

Theorem
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.
1 If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, and even $\operatorname{dist}_{n-1}(s, v)=\operatorname{dist}(s, v)$.
2 If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then there are no negative length cycles.

Shortest Paths, with Negative Lengths (VIII)

Shortest Paths, with Negative Lengths (VIII)

Lemma
$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Shortest Paths, with Negative Lengths (VIII)

$$
\begin{aligned}
& \text { Lemma } \\
& G=(V, E), \ell: E \rightarrow \mathbb{Z} \text {. Then for all } s, t \in V \\
& \qquad \operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
\end{aligned}
$$

Shortest Paths, with Negative Lengths (VIII)

Lemma
$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Corollary
For all $k \geq 0$,

Shortest Paths, with Negative Lengths (VIII)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Corollary

For all $k \geq 0$,
■ all $v \in V, \operatorname{dist}_{k}(s, v) \leq \operatorname{dist}_{k-1}(s, v)$

Shortest Paths, with Negative Lengths (VIII)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

```
Corollary
For all \(k \geq 0\),
    ■ all \(v \in V, \operatorname{dist}_{k}(s, v) \leq \operatorname{dist}_{k-1}(s, v)\)
    - If all \(v \in V\),
```


Shortest Paths, with Negative Lengths (VIII)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

```
Corollary
For all \(k \geq 0\),
    ■ all \(v \in V, \operatorname{dist}_{k}(s, v) \leq \operatorname{dist}_{k-1}(s, v)\)
    - If all \(v \in V, \operatorname{dist}_{k}(s, v)=\operatorname{dist}_{k-1}(s, v)\)
```


Shortest Paths, with Negative Lengths (VIII)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Corollary

For all $k \geq 0$,
■ all $v \in V, \operatorname{dist}_{k}(s, v) \leq \operatorname{dist}_{k-1}(s, v)$
■ If all $v \in V, \operatorname{dist}_{k}(s, v)=\operatorname{dist}_{k-1}(s, v)$
\Longrightarrow all $v \in V$,

Shortest Paths, with Negative Lengths (VIII)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Corollary

For all $k \geq 0$,
■ all $v \in V, \operatorname{dist}_{k}(s, v) \leq \operatorname{dist}_{k-1}(s, v)$

- If all $v \in V, \operatorname{dist}_{k}(s, v)=\operatorname{dist}_{k-1}(s, v)$
$\Longrightarrow \quad$ all $v \in V, \operatorname{dist}_{k+1}(s, v)$

Shortest Paths, with Negative Lengths (VIII)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Corollary

For all $k \geq 0$,
■ all $v \in V, \operatorname{dist}_{k}(s, v) \leq \operatorname{dist}_{k-1}(s, v)$
■ If all $v \in V, \operatorname{dist}_{k}(s, v)=\operatorname{dist}_{k-1}(s, v)$
$\Longrightarrow \quad a l l v \in V, \operatorname{dist}_{k+1}(s, v)=\operatorname{dist}_{k}(s, v)$

Shortest Paths, with Negative Lengths (VIII)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Corollary

For all $k \geq 0$,
■ all $v \in V, \operatorname{dist}_{k}(s, v) \leq \operatorname{dist}_{k-1}(s, v)$
■ If all $v \in V, \operatorname{dist}_{k}(s, v)=\operatorname{dist}_{k-1}(s, v)$
$\Longrightarrow \quad$ all $v \in V, \operatorname{dist}_{k+1}(s, v)=\operatorname{dist}_{k}(s, v)$
$\Longrightarrow \quad$ all $v \in V, \operatorname{dist}_{k+2}(s, v)=\operatorname{dist}_{k+1}(s, v)$

Shortest Paths, with Negative Lengths (VIII)

Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$. Then for all $s, t \in V$,

$$
\operatorname{dist}_{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}_{k-1}(s, t) \\
\min _{v \in V}\left\{\operatorname{dist}_{k-1}(s, v)+\ell(v, t)\right\}
\end{array}\right.
$$

Corollary

For all $k \geq 0$,
■ all $v \in V, \operatorname{dist}_{k}(s, v) \leq \operatorname{dist}_{k-1}(s, v)$
■ If all $v \in V, \operatorname{dist}_{k}(s, v)=\operatorname{dist}_{k-1}(s, v)$
$\Longrightarrow \quad$ all $v \in V, \operatorname{dist}_{k+1}(s, v)=\operatorname{dist}_{k}(s, v)$
$\Longrightarrow \quad a l l v \in V, \operatorname{dist}_{k+2}(s, v)=\operatorname{dist}_{k+1}(s, v) \Longrightarrow \cdots$

Shortest Paths, with Negative Lengths (IX)

Shortest Paths, with Negative Lengths (IX)

Proposition

Shortest Paths, with Negative Lengths (IX)

Proposition

$$
G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V
$$

Shortest Paths, with Negative Lengths (IX)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.

Shortest Paths, with Negative Lengths (IX)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles,

Shortest Paths, with Negative Lengths (IX)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$,

Shortest Paths, with Negative Lengths (IX)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v)$

Shortest Paths, with Negative Lengths (IX)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Shortest Paths, with Negative Lengths (IX)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Proof.

Shortest Paths, with Negative Lengths (IX)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_{k}=v$ be a walk of $(\leq n)$-edges,

Shortest Paths, with Negative Lengths (IX)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_{k}=v$ be a walk of $(\leq n)$-edges, with length $\operatorname{dist}_{n}(s, v)$.

Shortest Paths, with Negative Lengths (IX)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_{k}=v$ be a walk of $(\leq n)$-edges, with length $\operatorname{dist}_{n}(s, v)$.

- If $k<n$,

Shortest Paths, with Negative Lengths (IX)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_{k}=v$ be a walk of $(\leq n)$-edges, with length $\operatorname{dist}_{n}(s, v)$.

■ If $k<n$, then this is a $(<n)$-edge walk and hence of length $\geq \operatorname{dist}_{n-1}(s, v)$.

Shortest Paths, with Negative Lengths (IX)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_{k}=v$ be a walk of $(\leq n)$-edges, with length $\operatorname{dist}_{n}(s, v)$.

- If $k<n$, then this is a $(<n)$-edge walk and hence of length $\geq \operatorname{dist}_{n-1}(s, v)$.
- If $k=n$,

Shortest Paths, with Negative Lengths (IX)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_{k}=v$ be a walk of $(\leq n)$-edges, with length $\operatorname{dist}_{n}(s, v)$.

- If $k<n$, then this is a $(<n)$-edge walk and hence of length $\geq \operatorname{dist}_{n-1}(s, v)$.

■ If $k=n$, then the walk visits $n+1$ vertices

Shortest Paths, with Negative Lengths (IX)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_{k}=v$ be a walk of $(\leq n)$-edges, with length $\operatorname{dist}_{n}(s, v)$.

- If $k<n$, then this is a $(<n)$-edge walk and hence of length $\geq \operatorname{dist}_{n-1}(s, v)$.

■ If $k=n$, then the walk visits $n+1$ vertices \Longrightarrow some vertex is repeated

Shortest Paths, with Negative Lengths (IX)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_{k}=v$ be a walk of $(\leq n)$-edges, with length $\operatorname{dist}_{n}(s, v)$.

- If $k<n$, then this is a $(<n)$-edge walk and hence of length $\geq \operatorname{dist}_{n-1}(s, v)$.

■ If $k=n$, then the walk visits $n+1$ vertices \Longrightarrow some vertex is repeated \equiv there is a cycle.

Shortest Paths, with Negative Lengths (IX)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_{k}=v$ be a walk of $(\leq n)$-edges, with length $\operatorname{dist}_{n}(s, v)$.

- If $k<n$, then this is a $(<n)$-edge walk and hence of length $\geq \operatorname{dist}_{n-1}(s, v)$.

■ If $k=n$, then the walk visits $n+1$ vertices \Longrightarrow some vertex is repeated \equiv there is a cycle. As the cycle is of non-negative length $C \geq 0$,

Shortest Paths, with Negative Lengths (IX)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_{k}=v$ be a walk of $(\leq n)$-edges, with length $\operatorname{dist}_{n}(s, v)$.

- If $k<n$, then this is a $(<n)$-edge walk and hence of length $\geq \operatorname{dist}_{n-1}(s, v)$.

■ If $k=n$, then the walk visits $n+1$ vertices \Longrightarrow some vertex is repeated \equiv there is a cycle. As the cycle is of non-negative length $C \geq 0$, we can remove it to obtain a $(<n)$-edge (s, v)-walk of value $d=\operatorname{dist}_{n}(s, v)-C$

Shortest Paths, with Negative Lengths (IX)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_{k}=v$ be a walk of $(\leq n)$-edges, with length $\operatorname{dist}_{n}(s, v)$.

- If $k<n$, then this is a $(<n)$-edge walk and hence of length $\geq \operatorname{dist}_{n-1}(s, v)$.

■ If $k=n$, then the walk visits $n+1$ vertices \Longrightarrow some vertex is repeated \equiv there is a cycle. As the cycle is of non-negative length $C \geq 0$, we can remove it to obtain a $(<n)$-edge (s, v)-walk of value $d=\operatorname{dist}_{n}(s, v)-C$ with $\operatorname{dist}_{n}(s, v) \geq d$

Shortest Paths, with Negative Lengths (IX)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$.

Proof.

Let $s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_{k}=v$ be a walk of $(\leq n)$-edges, with length $\operatorname{dist}_{n}(s, v)$.

- If $k<n$, then this is a $(<n)$-edge walk and hence of length $\geq \operatorname{dist}_{n-1}(s, v)$.

■ If $k=n$, then the walk visits $n+1$ vertices \Longrightarrow some vertex is repeated \equiv there is a cycle. As the cycle is of non-negative length $C \geq 0$, we can remove it to obtain a $(<n)$-edge (s, v)-walk of value $d=\operatorname{dist}_{n}(s, v)-C$ with $\operatorname{dist}_{n}(s, v) \geq d \geq \operatorname{dist}_{n-1}(s, v)$.

Shortest Paths, with Negative Lengths (X)

Shortest Paths, with Negative Lengths (X)

Proposition

Shortest Paths, with Negative Lengths (X)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.

Shortest Paths, with Negative Lengths (X)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v)$

Shortest Paths, with Negative Lengths (X)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$,

Shortest Paths, with Negative Lengths (X)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Shortest Paths, with Negative Lengths (X)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proof.

Shortest Paths, with Negative Lengths (X)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary,

Shortest Paths, with Negative Lengths (X)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $\operatorname{dist}_{n-1}(s, v)$

Shortest Paths, with Negative Lengths (X)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$

Shortest Paths, with Negative Lengths (X)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v) \Longrightarrow$ for all $v \in V$, $\operatorname{dist}_{n-1}(s, v)=\operatorname{dist}_{n}(s, v)$

Shortest Paths, with Negative Lengths (X)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v) \Longrightarrow$ for all $v \in V$, $\operatorname{dist}_{n-1}(s, v)=\operatorname{dist}_{n}(s, v)=\operatorname{dist}_{n+1}(s, v)$

Shortest Paths, with Negative Lengths (X)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v) \Longrightarrow$ for all $v \in V$, $\operatorname{dist}_{n-1}(s, v)=\operatorname{dist}_{n}(s, v)=\operatorname{dist}_{n+1}(s, v)=\operatorname{dist}_{n+2}(s, v)$

Shortest Paths, with Negative Lengths (X)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v) \Longrightarrow$ for all $v \in V$, $\operatorname{dist}_{n-1}(s, v)=\operatorname{dist}_{n}(s, v)=\operatorname{dist}_{n+1}(s, v)=\operatorname{dist}_{n+2}(s, v)=\cdots$.

Shortest Paths, with Negative Lengths (X)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v) \Longrightarrow$ for all $v \in V$, $\operatorname{dist}_{n-1}(s, v)=\operatorname{dist}_{n}(s, v)=\operatorname{dist}_{n+1}(s, v)=\operatorname{dist}_{n+2}(s, v)=\cdots$. As all v are reachable from s

Shortest Paths, with Negative Lengths (X)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v) \Longrightarrow$ for all $v \in V$, $\operatorname{dist}_{n-1}(s, v)=\operatorname{dist}_{n}(s, v)=\operatorname{dist}_{n+1}(s, v)=\operatorname{dist}_{n+2}(s, v)=\cdots$. As all v are reachable from $s \Longrightarrow-\infty<\operatorname{dist}_{n-1}(s, v)<\infty$ for all k and v.

Shortest Paths, with Negative Lengths (X)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v) \Longrightarrow$ for all $v \in V$, $\operatorname{dist}_{n-1}(s, v)=\operatorname{dist}_{n}(s, v)=\operatorname{dist}_{n+1}(s, v)=\operatorname{dist}_{n+2}(s, v)=\cdots$. As all v are reachable from $s \Longrightarrow-\infty<\operatorname{dist}_{n-1}(s, v)<\infty$ for all k and v. Hence $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=\operatorname{dist}_{n-1}(s, v)$ is finite for all v.

Shortest Paths, with Negative Lengths (XI)

Shortest Paths, with Negative Lengths (XI)

Proposition

Shortest Paths, with Negative Lengths (XI)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.

Shortest Paths, with Negative Lengths (XI)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle,

Shortest Paths, with Negative Lengths (XI)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Shortest Paths, with Negative Lengths (XI)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Proof.

Shortest Paths, with Negative Lengths (XI)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Proof.

Let $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$ be an (s, v)-walk with length L,

Shortest Paths, with Negative Lengths (XI)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Proof.

Let $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$ be an (s, v)-walk with length L, where $u \rightsquigarrow u$ is a negative length cycle of length $-C<0$.

Shortest Paths, with Negative Lengths (XI)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Proof.

Let $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$ be an (s, v)-walk with length L, where $u \rightsquigarrow u$ is a negative length cycle of length $-C<0$. Then consider the (s, v)-walk $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$,

Shortest Paths, with Negative Lengths (XI)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Proof.

Let $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$ be an (s, v)-walk with length L, where $u \rightsquigarrow u$ is a negative length cycle of length $-C<0$. Then consider the (s, v)-walk $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$, which is of value $L-C$.

Shortest Paths, with Negative Lengths (XI)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Proof.

Let $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$ be an (s, v)-walk with length L, where $u \rightsquigarrow u$ is a negative length cycle of length $-C<0$. Then consider the (s, v)-walk $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$, which is of value $L-C$. Hence, for any j there is (s, v)-walk of length $L-C \cdot j$.

Shortest Paths, with Negative Lengths (XI)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Proof.

Let $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$ be an (s, v)-walk with length L, where $u \rightsquigarrow u$ is a negative length cycle of length $-C<0$. Then consider the (s, v)-walk $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$, which is of value $L-C$. Hence, for any j there is (s, v)-walk of length $L-C \cdot j$. Hence $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Shortest Paths, with Negative Lengths (XII)

Shortest Paths, with Negative Lengths (XII)

Proposition
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v), \lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Shortest Paths, with Negative Lengths (XII)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v), \lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Shortest Paths, with Negative Lengths (XII)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v), \lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Corollary

Shortest Paths, with Negative Lengths (XII)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v), \lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Corollary

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.

Shortest Paths, with Negative Lengths (XII)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v), \lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Corollary

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$,

Shortest Paths, with Negative Lengths (XII)

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v), \lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)$ is finite for all $v \in V$.

Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=-\infty$.

Corollary

$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then there are no negative length cycles.

Shortest Paths, with Negative Lengths (VII)

Shortest Paths, with Negative Lengths (VII)

Theorem

Shortest Paths, with Negative Lengths (VII)

Theorem
$G=(V, E), \ell: E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.
1 If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, and $\operatorname{dist}_{n-1}(s, v)=\lim _{k \rightarrow \infty} \operatorname{dist}_{k}(s, v)=\operatorname{dist}(s, v)$.
2 If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_{n}(s, v)$, then there are no negative length cycles.

Bellman-Ford

Bellman-Ford

(single source) shortest paths:

Bellman-Ford

(single source) shortest paths: source $s \in V$,

Bellman-Ford

(single source) shortest paths: source $s \in V$,

 can reach every other node
Bellman-Ford

(single source) shortest paths: source $s \in V$,

 can reach every other nodeBellmanFord $(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, s \in V)$

Bellman-Ford

(single source) shortest paths: source $s \in V$,

 can reach every other nodeBellmanFord $(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, s \in V)$
for $v \in V$

Bellman-Ford

(single source) shortest paths: source $s \in V$,

 can reach every other node```
BellmanFord \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
```


## Bellman-Ford

## (single source) shortest paths: source $s \in V$,

 can reach every other nodeBellmanFord $(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)$
for $v \in V$
$d_{0}[s][v]=\infty$
$d_{0}[s][s]=0$

## Bellman-Ford

## (single source) shortest paths: source $s \in V$,

can reach every other node
BellmanFord $(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)$
for $v \in V$
$d_{0}[s][v]=\infty$
$d_{0}[s][s]=0$
for $1 \leq k \leq n$,

## Bellman-Ford

## (single source) shortest paths: source $s \in V$,

 can reach every other nodeBellmanFord $(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, s \in V)$
for $v \in V$
$d_{0}[s][v]=\infty$
$d_{0}[s][s]=0$
for $1 \leq k \leq n, \quad v \in V$

## Bellman-Ford

## (single source) shortest paths: source $s \in V$,

can reach every other node

```
BellmanFord \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
```


## Bellman-Ford

## (single source) shortest paths: source $s \in V$,

can reach every other node

```
BellmanFord \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
```


## Bellman-Ford

## (single source) shortest paths: source $s \in V$,

can reach every other node

```
BellmanFord \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\)
```


## Bellman-Ford

## (single source) shortest paths: source $s \in V$,

can reach every other node

```
BellmanFord \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v]\right.\),
```


## Bellman-Ford

## (single source) shortest paths: source $s \in V$,

can reach every other node

```
BellmanFord \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\right.\)
```


## Bellman-Ford

## (single source) shortest paths: source $s \in V$,

can reach every other node

```
BellmanFord \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
```


## Bellman-Ford

## (single source) shortest paths: source $s \in V$,

can reach every other node

```
BellmanFord \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
```


## Bellman-Ford

## (single source) shortest paths: source $s \in V$,

can reach every other node

```
BellmanFord \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
```


## Bellman-Ford

## (single source) shortest paths: source $s \in V$,

can reach every other node

```
BellmanFord \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected')
```


## Bellman-Ford

(single source) shortest paths: source $s \in V$,
can reach every other node

```
BellmanFord \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected''
 return \(d_{n-1}[s][\cdot]\)
```


## Bellman-Ford

(single source) shortest paths: source $s \in V$,
can reach every other node

```
\(\operatorname{BellmanFord}(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected'"
 return \(d_{n-1}[s][\cdot]\)
```


## Bellman-Ford

(single source) shortest paths: source $s \in V$,
can reach every other node

```
\(\operatorname{BellmanFord}(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected''
 return \(d_{n-1}[s][\cdot]\)
```


## correctness:

## Bellman-Ford

(single source) shortest paths: source $s \in V$,
can reach every other node

```
\(\operatorname{BellmanFord}(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected')
 return \(d_{n-1}[s][\cdot]\)
```


## correctness: clear

## Bellman-Ford

(single source) shortest paths: source $s \in V$,
complexity:
can reach every other node

```
\(\operatorname{BellmanFord}(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected')
 return \(d_{n-1}[s][\cdot]\)
```


## correctness: clear

## Bellman-Ford

(single source) shortest paths: source $s \in V$, can reach every other node

```
\(\operatorname{BellmanFord}(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, \quad s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected''
 return \(d_{n-1}[s][\cdot]\)
```

for $v \in V$
$d_{0}[s][v]=\infty$
$d_{0}[s][s]=0$
for $1 \leq k \leq n, \quad v \in V$
$d_{k}[s][v]=d_{k-1}[s][v]$
for $u \in N^{-}(v)$
$d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}$
for $v \in V$
if $d_{n}[s][v]<d_{n-1}[s][v]$
return ''negative cycle detected''
return $d_{n-1}[s][\cdot]$

## correctness: clear

## complexity:

■ time

## Bellman-Ford

(single source) shortest paths: source $s \in V$, can reach every other node

```
BellmanFord \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected')
 return \(d_{n-1}[s][\cdot]\)
```


## complexity:

■ time

- clearly $O\left(n^{3}\right)$


## correctness: clear

## Bellman-Ford

(single source) shortest paths: source $s \in V$, can reach every other node

```
BellmanFord \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected''
 return \(d_{n-1}[s][\cdot]\)
```


## correctness: clear

## complexity:

■ time

- clearly $O\left(n^{3}\right)$
- better:


## Bellman-Ford

(single source) shortest paths: source $s \in V$,
can reach every other node

```
\(\operatorname{BellmanFord}(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected''
 return \(d_{n-1}[s][\cdot]\)
```


## complexity:

■ time

- clearly $O\left(n^{3}\right)$
- better: $O(m n)$,


## correctness: clear

## Bellman-Ford

(single source) shortest paths: source $s \in V$,
can reach every other node

```
\(\operatorname{BellmanFord}(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected')
 return \(d_{n-1}[s][\cdot]\)
```


## complexity:

■ time

- clearly $O\left(n^{3}\right)$
- better: $O(m n), d_{k}[s][\cdot]$ updates along edges


## correctness: clear

## Bellman-Ford

(single source) shortest paths: source $s \in V$,
can reach every other node

```
\(\operatorname{BellmanFord}(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected')
 return \(d_{n-1}[s][\cdot]\)
```


## correctness: clear

## complexity:

■ time

- clearly $O\left(n^{3}\right)$
- better: $O(m n), d_{k}[s][\cdot]$ updates along edges

■ space

## Bellman-Ford

(single source) shortest paths: source $s \in V$,
can reach every other node

```
\(\operatorname{BellmanFord}(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected')
 return \(d_{n-1}[s][\cdot]\)
```


## complexity:

■ time

- clearly $O\left(n^{3}\right)$
- better: $O(m n), d_{k}[s][\cdot]$ updates along edges
■ space
- clearly $O\left(n^{2}\right)$


## Bellman-Ford

(single source) shortest paths: source $s \in V$,
can reach every other node

```
\(\operatorname{BellmanFord}(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected')
 return \(d_{n-1}[s][\cdot]\)
```


## correctness: clear

## complexity:

■ time

- clearly $O\left(n^{3}\right)$
- better: $O(m n), d_{k}[s][\cdot]$ updates along edges
■ space
- clearly $O\left(n^{2}\right)$
- better:


## Bellman-Ford

(single source) shortest paths: source $s \in V$,
can reach every other node

```
\(\operatorname{BellmanFord}(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected'"
 return \(d_{n-1}[s][\cdot]\)
```


## complexity:

■ time

- clearly $O\left(n^{3}\right)$
- better: $O(m n), d_{k}[s][\cdot]$ updates along edges

■ space

- clearly $O\left(n^{2}\right)$
- better: only store $d_{\text {cur }}[s][\cdot]$ and $d_{\text {prev }}[s][\cdot]$
correctness: clear


## Bellman-Ford

(single source) shortest paths: source $s \in V$,
can reach every other node

```
\(\operatorname{BellmanFord}(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}, s \in V)\)
 for \(v \in V\)
 \(d_{0}[s][v]=\infty\)
 \(d_{0}[s][s]=0\)
 for \(1 \leq k \leq n, \quad v \in V\)
 \(d_{k}[s][v]=d_{k-1}[s][v]\)
 for \(u \in N^{-}(v)\)
 \(d_{k}[s][v]=\min \left\{d_{k}[s][v], d_{k-1}[s][u]+\ell(u, v)\right\}\)
 for \(v \in V\)
 if \(d_{n}[s][v]<d_{n-1}[s][v]\)
 return ''negative cycle detected'"
 return \(d_{n-1}[s][\cdot]\)
```


## complexity:

■ time

- clearly $O\left(n^{3}\right)$
- better: $O(m n), d_{k}[s][\cdot]$ updates along edges

■ space

- clearly $O\left(n^{2}\right)$
- better: only store $d_{\text {cur }}[s][\cdot]$ and $d_{\text {prev }}[s][\cdot] \Longrightarrow O(n)$
correctness: clear


## Bellman-Ford (II)

## Bellman-Ford (II)

## remarks:

## Bellman-Ford (II)

## remarks:

- compute actual paths


## Bellman-Ford (II)

## remarks:

- compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated,


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}
$$

## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }
$$

## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\right.
$$

## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$ $\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$ $\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
- better:


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
■ better: consider $G^{\prime}=$


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
■ better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}\right.$,


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
■ better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}, E \cup\right.$


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
- better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}, E \cup\left\{\left(s^{\prime}, v\right)\right\}_{v \in V}\right)$


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
■ better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}, E \cup\left\{\left(s^{\prime}, v\right)\right\}_{v \in V}\right)$ with $\ell^{\prime}\left(s^{\prime}, v\right)=0$


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
- better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}, E \cup\left\{\left(s^{\prime}, v\right)\right\}_{v \in V}\right)$ with $\ell^{\prime}\left(s^{\prime}, v\right)=0$ $\Longrightarrow$ all negative cycles in $G$ are reachable from $s^{\prime}$ in $G^{\prime}$


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
■ better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}, E \cup\left\{\left(s^{\prime}, v\right)\right\}_{v \in V}\right)$ with $\ell^{\prime}\left(s^{\prime}, v\right)=0$
$\Longrightarrow$ all negative cycles in $G$ are reachable from $s^{\prime}$ in $G^{\prime}$
$\Longrightarrow$ one Bellman-Ford required


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
- better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}, E \cup\left\{\left(s^{\prime}, v\right)\right\}_{v \in V}\right)$ with $\ell^{\prime}\left(s^{\prime}, v\right)=0$
$\Longrightarrow$ all negative cycles in $G$ are reachable from $s^{\prime}$ in $G^{\prime}$
$\Longrightarrow$ one Bellman-Ford required $\Longrightarrow O(m n)$ time


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
■ better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}, E \cup\left\{\left(s^{\prime}, v\right)\right\}_{v \in V}\right)$ with $\ell^{\prime}\left(s^{\prime}, v\right)=0$
$\Longrightarrow$ all negative cycles in $G$ are reachable from $s^{\prime}$ in $G^{\prime}$
$\Longrightarrow$ one Bellman-Ford required $\Longrightarrow O(m n)$ time
- directed acyclic graphs


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\}
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
■ better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}, E \cup\left\{\left(s^{\prime}, v\right)\right\}_{v \in V}\right)$ with $\ell^{\prime}\left(s^{\prime}, v\right)=0$
$\Longrightarrow$ all negative cycles in $G$ are reachable from $s^{\prime}$ in $G^{\prime}$
$\Longrightarrow$ one Bellman-Ford required $\Longrightarrow O(m n)$ time
- directed acyclic graphs

■ no (negative) cycles

## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\} .
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
■ better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}, E \cup\left\{\left(s^{\prime}, v\right)\right\}_{v \in V}\right)$ with $\ell^{\prime}\left(s^{\prime}, v\right)=0$
$\Longrightarrow$ all negative cycles in $G$ are reachable from $s^{\prime}$ in $G^{\prime}$
$\Longrightarrow$ one Bellman-Ford required $\Longrightarrow O(m n)$ time
- directed acyclic graphs

■ no (negative) cycles

- can simplify Bellman-Ford so $\operatorname{dist}_{k}(s, \cdot)$ only updates $v_{k}$,


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\} .
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
■ better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}, E \cup\left\{\left(s^{\prime}, v\right)\right\}_{v \in V}\right)$ with $\ell^{\prime}\left(s^{\prime}, v\right)=0$
$\Longrightarrow$ all negative cycles in $G$ are reachable from $s^{\prime}$ in $G^{\prime}$
$\Longrightarrow$ one Bellman-Ford required $\Longrightarrow O(m n)$ time
- directed acyclic graphs

■ no (negative) cycles

- can simplify Bellman-Ford so dist $_{k}(s, \cdot)$ only updates $v_{k}$, according to topological ordering $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\} .
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
■ better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}, E \cup\left\{\left(s^{\prime}, v\right)\right\}_{v \in V}\right)$ with $\ell^{\prime}\left(s^{\prime}, v\right)=0$
$\Longrightarrow$ all negative cycles in $G$ are reachable from $s^{\prime}$ in $G^{\prime}$
$\Longrightarrow$ one Bellman-Ford required $\Longrightarrow O(m n)$ time
- directed acyclic graphs

■ no (negative) cycles

- can simplify Bellman-Ford so $\operatorname{dist}_{k}(s, \cdot)$ only updates $v_{k}$, according to topological ordering $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$ - yields Dijkstra-esque algorithm


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\} .
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
- better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}, E \cup\left\{\left(s^{\prime}, v\right)\right\}_{v \in V}\right)$ with $\ell^{\prime}\left(s^{\prime}, v\right)=0$
$\Longrightarrow$ all negative cycles in $G$ are reachable from $s^{\prime}$ in $G^{\prime}$
$\Longrightarrow$ one Bellman-Ford required $\Longrightarrow O(m n)$ time
- directed acyclic graphs

■ no (negative) cycles

- can simplify Bellman-Ford so dist $_{k}(s, \cdot)$ only updates $v_{k}$, according to topological ordering $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$ - yields Dijkstra-esque algorithm
$\Longrightarrow O(m+n)$ time


## Bellman-Ford (II)

## remarks:

■ compute actual paths by storing pointers indicating how $d_{k}[s][\cdot]$ was updated, e.g.,

$$
v_{k-1}=\underset{u \in V}{\arg \min }\left\{\operatorname{dist}_{k-1}(s, u)+\ell\left(u, v_{k}\right)\right\} .
$$

- detecting negative cycles
- Bellman-Ford will detect any negative cycles reachable from $s$ in $G$
$\Longrightarrow$ one Bellman-Ford call per vertex will detect if there is any negative cycle in $G$ $\Longrightarrow O\left(m n^{2}\right)$ time
- better: consider $G^{\prime}=\left(V \cup\left\{s^{\prime}\right\}, E \cup\left\{\left(s^{\prime}, v\right)\right\}_{v \in V}\right)$ with $\ell^{\prime}\left(s^{\prime}, v\right)=0$
$\Longrightarrow$ all negative cycles in $G$ are reachable from $s^{\prime}$ in $G^{\prime}$
$\Longrightarrow$ one Bellman-Ford required $\Longrightarrow O(m n)$ time
- directed acyclic graphs

■ no (negative) cycles

- can simplify Bellman-Ford so dist $_{k}(s, \cdot)$ only updates $v_{k}$, according to topological ordering $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$ - yields Dijkstra-esque algorithm

$$
\Longrightarrow O(m+n) \text { time (exercise) }
$$

## All-Pairs Shortest Paths

## All-Pairs Shortest Paths

## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$.

## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

- given $s, t \in V$,


## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

- given $s, t \in V$, find a minimum length $(s, t)$-path


## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

- given $s, t \in V$, find a minimum length $(s, t)$-path
- given $s \in V$,


## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

- given $s, t \in V$, find a minimum length $(s, t)$-path
- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$


## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

- given $s, t \in V$, find a minimum length $(s, t)$-path
- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)


## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$


## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## single-source:

## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## single-source:

- Dijkstra:


## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## single-source:

- Dijkstra:
- non-negative lengths


## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## single-source:

■ Dijkstra:
■ non-negative lengths

- $O((m+n) \log n)$ time


## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## single-source:

■ Dijkstra:
■ non-negative lengths

- $O((m+n) \log n)$ time (heaps),


## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## single-source:

■ Dijkstra:
■ non-negative lengths

- $O((m+n) \log n)$ time (heaps), $O(m+n \log n)$


## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## single-source:

■ Dijkstra:

- non-negative lengths

■ $O((m+n) \log n)$ time (heaps), $O(m+n \log n)$ (Fibonacci heaps)

## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## single-source:

■ Dijkstra:
■ non-negative lengths

- $O((m+n) \log n)$ time (heaps), $O(m+n \log n)$ (Fibonacci heaps)

■ Bellman-Ford:

## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## single-source:

■ Dijkstra:

- non-negative lengths

■ $O((m+n) \log n)$ time (heaps), $O(m+n \log n)$ (Fibonacci heaps)

- Bellman-Ford:
- arbitrary weights


## All-Pairs Shortest Paths

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## single-source:

■ Dijkstra:

- non-negative lengths
- $O((m+n) \log n)$ time (heaps), $O(m+n \log n)$ (Fibonacci heaps)
- Bellman-Ford:
- arbitrary weights
- $O(m n)$ time

All-Pairs Shortest Paths (II)

## All-Pairs Shortest Paths (II)

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$.

## All-Pairs Shortest Paths (II)

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## All-Pairs Shortest Paths (II)

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

- given $s, t \in V$, find a minimum length ( $s, t$ )-path
- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## all-pairs:

## All-Pairs Shortest Paths (II)

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

- given $s, t \in V$, find a minimum length ( $s, t$ )-path
- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## all-pairs:

- n runs of Dijkstra:


## All-Pairs Shortest Paths (II)

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

- given $s, t \in V$, find a minimum length ( $s, t$ )-path
- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## all-pairs:

- n runs of Dijkstra:
- non-negative lengths


## All-Pairs Shortest Paths (II)

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

- given $s, t \in V$, find a minimum length ( $s, t$ )-path
- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## all-pairs:

- n runs of Dijkstra:
- non-negative lengths
- $O(n \cdot(m+n) \log n)$ time (heaps),


## All-Pairs Shortest Paths (II)

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

- given $s, t \in V$, find a minimum length ( $s, t$ )-path
- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## all-pairs:

- n runs of Dijkstra:
- non-negative lengths
- $O(n \cdot(m+n) \log n)$ time (heaps), $O(n \cdot(m+n \log n))$ (Fibonacci heaps)


## All-Pairs Shortest Paths (II)

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

- given $s, t \in V$, find a minimum length ( $s, t$ )-path
- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## all-pairs:

- n runs of Dijkstra:
- non-negative lengths

■ $O(n \cdot(m+n) \log n)$ time (heaps), $O(n \cdot(m+n \log n))$ (Fibonacci heaps)

- $n$ runs of Bellman-Ford:


## All-Pairs Shortest Paths (II)

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

- given $s, t \in V$, find a minimum length ( $s, t$ )-path
- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## all-pairs:

- n runs of Dijkstra:
- non-negative lengths
- $O(n \cdot(m+n) \log n)$ time (heaps), $O(n \cdot(m+n \log n))$ (Fibonacci heaps)

■ $n$ runs of Bellman-Ford:

- arbitrary weights


## All-Pairs Shortest Paths (II)

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:

- given $s, t \in V$, find a minimum length ( $s, t$ )-path
- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## all-pairs:

- n runs of Dijkstra:
- non-negative lengths
- $O(n \cdot(m+n) \log n)$ time (heaps), $O(n \cdot(m+n \log n))$ (Fibonacci heaps)
- $n$ runs of Bellman-Ford:
- arbitrary weights
- $O(n \cdot m n)$ time


## All-Pairs Shortest Paths (II)

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length $(s, t)$-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## all-pairs:

- n runs of Dijkstra:
- non-negative lengths
- $O(n \cdot(m+n) \log n)$ time (heaps), $O(n \cdot(m+n \log n))$ (Fibonacci heaps)

■ $n$ runs of Bellman-Ford:

- arbitrary weights
- $O(n \cdot m n)$ time $\mapsto \Theta\left(n^{4}\right)$ if $m=\Theta\left(n^{2}\right)$


## All-Pairs Shortest Paths (II)

## Definition

$G=(V, E)$ directed (simple) graph, $\ell: E \rightarrow \mathbb{Z}$. The shortest path problem is to:
■ given $s, t \in V$, find a minimum length ( $s, t$ )-path

- given $s \in V$, compute $\operatorname{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\operatorname{dist}(s, t)$ for all $s, t \in V$ (all pairs)


## all-pairs:

- n runs of Dijkstra:
- non-negative lengths
- $O(n \cdot(m+n) \log n)$ time (heaps), $O(n \cdot(m+n \log n))$ (Fibonacci heaps)

■ $n$ runs of Bellman-Ford:

- arbitrary weights
- $O(n \cdot m n)$ time $\mapsto \Theta\left(n^{4}\right)$ if $m=\Theta\left(n^{2}\right)$
question: can we do better?

All-Pairs Shortest Paths (III)

All-Pairs Shortest Paths (III)
idea:

## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$.

## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$.

## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$

## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$ has intermediate index $\leq j$,

## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$ has intermediate index $\leq j$, if $w_{1}, \ldots, w_{i-1} \in\left\{v_{1}, \ldots, v_{j}\right\}$.

## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$ has intermediate index $\leq j$, if $w_{1}, \ldots, w_{i-1} \in\left\{v_{1}, \ldots, v_{j}\right\}$. For $s, t \in V$,

## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$ has intermediate index $\leq j$, if $w_{1}, \ldots, w_{i-1} \in\left\{v_{1}, \ldots, v_{j}\right\}$. For $s, t \in V$, define $\operatorname{dist}^{k}(s, t)$

## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$ has intermediate index $\leq j$, if $w_{1}, \ldots, w_{i-1} \in\left\{v_{1}, \ldots, v_{j}\right\}$. For $s, t \in V$, define dist $^{k}(s, t)$ to be the length of the shortest $(s, t)$-walk

## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$ has
intermediate index $\leq j$, if $w_{1}, \ldots, w_{i-1} \in\left\{v_{1}, \ldots, v_{j}\right\}$. For $s, t \in V$, define dist $^{k}(s, t)$ to be the length of the shortest $(s, t)$-walk of intermediate index $\leq k$.

## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$ has
intermediate index $\leq j$, if $w_{1}, \ldots, w_{i-1} \in\left\{v_{1}, \ldots, v_{j}\right\}$. For $s, t \in V$, define dist $^{k}(s, t)$ to be the length of the shortest $(s, t)$-walk of intermediate index $\leq k$.


## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$ has
intermediate index $\leq j$, if $w_{1}, \ldots, w_{i-1} \in\left\{v_{1}, \ldots, v_{j}\right\}$. For $s, t \in V$, define dist $^{k}(s, t)$ to be the length of the shortest $(s, t)$-walk of intermediate index $\leq k$.


- $\operatorname{dist}^{0}\left(v_{3}, v_{4}\right)=$


## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$ has
intermediate index $\leq j$, if $w_{1}, \ldots, w_{i-1} \in\left\{v_{1}, \ldots, v_{j}\right\}$. For $s, t \in V$, define dist $^{k}(s, t)$ to be the length of the shortest $(s, t)$-walk of intermediate index $\leq k$.


- $\operatorname{dist}^{0}\left(v_{3}, v_{4}\right)=\ell\left(v_{3}, v_{4}\right)=8$


## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$ has
intermediate index $\leq j$, if $w_{1}, \ldots, w_{i-1} \in\left\{v_{1}, \ldots, v_{j}\right\}$. For $s, t \in V$, define dist $^{k}(s, t)$ to be the length of the shortest $(s, t)$-walk of intermediate index $\leq k$.


- $\operatorname{dist}^{0}\left(v_{3}, v_{4}\right)=\ell\left(v_{3}, v_{4}\right)=8$
- $\operatorname{dist}^{1}\left(v_{3}, v_{4}\right)=$


## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$ has
intermediate index $\leq j$, if $w_{1}, \ldots, w_{i-1} \in\left\{v_{1}, \ldots, v_{j}\right\}$. For $s, t \in V$, define dist $^{k}(s, t)$ to be the length of the shortest $(s, t)$-walk of intermediate index $\leq k$.


- $\operatorname{dist}^{0}\left(v_{3}, v_{4}\right)=\ell\left(v_{3}, v_{4}\right)=8$
- $\operatorname{dist}^{1}\left(v_{3}, v_{4}\right)=5$


## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$ has
intermediate index $\leq j$, if $w_{1}, \ldots, w_{i-1} \in\left\{v_{1}, \ldots, v_{j}\right\}$. For $s, t \in V$, define dist $^{k}(s, t)$ to be the length of the shortest $(s, t)$-walk of intermediate index $\leq k$.


- $\operatorname{dist}^{0}\left(v_{3}, v_{4}\right)=\ell\left(v_{3}, v_{4}\right)=8$

■ $\operatorname{dist}^{1}\left(v_{3}, v_{4}\right)=5$

- $\operatorname{dist}^{2}\left(v_{3}, v_{4}\right)=$


## All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

## Definition

$G=(V, E)$ directed (simple) graph, with edge length function $\ell: E \rightarrow \mathbb{Z}$. Order $V$ as $v_{1} \prec v_{2} \prec \cdots \prec v_{n}$. A $(u, v)$-walk $u=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{i}=v$ has
intermediate index $\leq j$, if $w_{1}, \ldots, w_{i-1} \in\left\{v_{1}, \ldots, v_{j}\right\}$. For $s, t \in V$, define dist $^{k}(s, t)$ to be the length of the shortest $(s, t)$-walk of intermediate index $\leq k$.


- $\operatorname{dist}^{0}\left(v_{3}, v_{4}\right)=\ell\left(v_{3}, v_{4}\right)=8$

■ $\operatorname{dist}^{1}\left(v_{3}, v_{4}\right)=5$

- $\operatorname{dist}^{2}\left(v_{3}, v_{4}\right)=4$

All-Pairs Shortest Paths (IV)

All-Pairs Shortest Paths (IV)

## Lemma <br> $G=(V, E)$,

All-Pairs Shortest Paths (IV)
Lemma
$G=(V, E), \ell: E \rightarrow \mathbb{Z}$,

## All-Pairs Shortest Paths (IV)

## Lemma <br> $G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles.

## All-Pairs Shortest Paths (IV)

Lemma
$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$,

## All-Pairs Shortest Paths (IV)

## Lemma <br> $G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$,

## All-Pairs Shortest Paths (IV)

Lemma
$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=
$$

## All-Pairs Shortest Paths (IV)

Lemma
$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \{
$$

## All-Pairs Shortest Paths (IV)

Lemma
$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\operatorname{dist}^{k-1}(s, t)\right.
$$

## All-Pairs Shortest Paths (IV)

Lemma
$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+
\end{array}\right.
$$

## All-Pairs Shortest Paths (IV)

Lemma
$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

Proof.

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0}$

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1}$

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2}$

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots$

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{i}=t$

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{i}=t$ be a shortest length $(s, t)$-walk

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{i}=t$ be a shortest length $(s, t)$-walk of intermediate index $\leq k$

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{i}=t$ be a shortest length $(s, t)$-walk of intermediate index $\leq k$ and length $\operatorname{dist}^{k}(s, t)$.

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{i}=t$ be a shortest length $(s, t)$-walk of intermediate index $\leq k$ and length $\operatorname{dist}^{k}(s, t)$. There are two cases:

- index $<k$ :


## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{i}=t$ be a shortest length $(s, t)$-walk of intermediate index $\leq k$ and length dist $^{k}(s, t)$. There are two cases:

- index $<k$ : hence is of value dist ${ }^{k-1}(s, t)$


## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{i}=t$ be a shortest length $(s, t)$-walk of intermediate index $\leq k$ and length dist $^{k}(s, t)$. There are two cases:

- index $<k$ : hence is of value dist ${ }^{k-1}(s, t)$

■ index $=k$ :

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{i}=t$ be a shortest length $(s, t)$-walk of intermediate index $\leq k$ and length dist $^{k}(s, t)$. There are two cases:

- index $<k$ : hence is of value dist ${ }^{k-1}(s, t)$

■ index $=k$ :
■ no negative cycles

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{i}=t$ be a shortest length $(s, t)$-walk of intermediate index $\leq k$ and length dist $^{k}(s, t)$. There are two cases:

- index $<k$ : hence is of value dist ${ }^{k-1}(s, t)$

■ index $=k$ :
■ no negative cycles $\Longrightarrow$ shortest walk is path

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{i}=t$ be a shortest length $(s, t)$-walk of intermediate index $\leq k$ and length dist $^{k}(s, t)$. There are two cases:

- index $<k$ : hence is of value dist ${ }^{k-1}(s, t)$

■ index $=k$ :
■ no negative cycles $\Longrightarrow$ shortest walk is path $\Longrightarrow v_{k}$ appears exactly once

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{i}=t$ be a shortest length $(s, t)$-walk of intermediate index $\leq k$ and length dist $^{k}(s, t)$. There are two cases:

- index $<k$ : hence is of value dist ${ }^{k-1}(s, t)$

■ index $=k$ :
■ no negative cycles $\Longrightarrow$ shortest walk is path $\Longrightarrow v_{k}$ appears exactly once
$\Longrightarrow s \rightsquigarrow v_{k}$ path and $v_{k} \rightsquigarrow t$ path

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{i}=t$ be a shortest length $(s, t)$-walk of intermediate index $\leq k$ and length dist $^{k}(s, t)$. There are two cases:

- index $<k$ : hence is of value dist ${ }^{k-1}(s, t)$

■ index $=k$ :
■ no negative cycles $\Longrightarrow$ shortest walk is path $\Longrightarrow v_{k}$ appears exactly once
$\Longrightarrow s \rightsquigarrow v_{k}$ path and $v_{k} \rightsquigarrow t$ path are of index $<k$,

## All-Pairs Shortest Paths (IV)

## Lemma

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $\operatorname{dist}^{0}(s, t)=\ell(s, t)$, and

$$
\operatorname{dist}^{k}(s, t)=\min \left\{\begin{array}{l}
\operatorname{dist}^{k-1}(s, t) \\
\operatorname{dist}^{k-1}\left(s, v_{k}\right)+\operatorname{dist}^{k-1}\left(v_{k}, t\right)
\end{array}\right.
$$

## Proof.

Let $s=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{i}=t$ be a shortest length $(s, t)$-walk of intermediate index $\leq k$ and length dist $^{k}(s, t)$. There are two cases:

- index $<k$ : hence is of value dist ${ }^{k-1}(s, t)$

■ index $=k$ :
■ no negative cycles $\Longrightarrow$ shortest walk is path $\Longrightarrow v_{k}$ appears exactly once
$\Longrightarrow s \rightsquigarrow v_{k}$ path and $v_{k} \rightsquigarrow t$ path are of index $<k$, and must be shortest paths

Floyd-Warshall

Floyd-Warshall

FloydWarshall $(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})$

Floyd-Warshall

$$
\begin{aligned}
& \text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}) \\
& \quad \text { for } 1 \leq i, j \leq n
\end{aligned}
$$

## Floyd-Warshall

$$
\begin{gathered}
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}) \\
\text { for } 1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j)
\end{gathered}
$$

## Floyd-Warshall

$$
\begin{aligned}
& \text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}) \\
& \text { for } 1 \leq i, j \leq n \\
& d^{0}[i j[j]=\ell(i, j) \\
& \text { for } 1 \leq k \leq n
\end{aligned}
$$

## Floyd-Warshall

$$
\begin{gathered}
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}) \\
\text { for } 1 \leq i, j \leq n \\
d^{0}[i j[j]=\ell(i, j) \\
\text { for } 1 \leq k \leq n \\
\text { for } 1 \leq i, j \leq n
\end{gathered}
$$

## Floyd-Warshall

$$
\begin{gathered}
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}) \\
\text { for } 1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j) \\
\text { for } 1 \leq k \leq n \\
\text { for } 1 \leq i, j \leq n \\
d^{k}[i][j]=
\end{gathered}
$$

## Floyd-Warshall

$$
\begin{gathered}
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}) \\
\text { for } 1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j) \\
\text { for } 1 \leq k \leq n \\
\text { for } 1 \leq i, j \leq n \\
d^{k}[i][j]=\min \{
\end{gathered}
$$

## Floyd-Warshall

$$
\begin{gathered}
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}) \\
\text { for } 1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j) \\
\text { for } 1 \leq k \leq n \\
\text { for } 1 \leq i, j \leq n \\
d^{k}[i][j]=\min \left\{d^{k-1}[i][j]\right.
\end{gathered}
$$

## Floyd-Warshall

$$
\begin{aligned}
& \text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}) \\
& \text { for } 1 \leq i, j \leq n \\
& d^{0}[i][j]=\ell(i, j) \\
& \text { for } 1 \leq k \leq n \\
& \text { for } 1 \leq i, j \leq n \\
& d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]
\end{array}\right.
\end{aligned}
$$

## Floyd-Warshall

$$
\begin{aligned}
& \text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}) \\
& \text { for } 1 \leq i, j \leq n \\
& d^{0}[i][j]=\ell(i, j) \\
& \text { for } 1 \leq k \leq n \\
& \text { for } 1 \leq i, j \leq n \\
& \quad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right.
\end{aligned}
$$

## Floyd-Warshall

$$
\begin{aligned}
& \text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}) \\
& \text { for } 1 \leq i, j \leq n \\
& d^{0}[i][j]=\ell(i, j) \\
& \text { for } 1 \leq k \leq n \\
& \text { for } 1 \leq i, j \leq n \\
& \quad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
& \text { for } 1 \leq i \leq n
\end{aligned}
$$

## Floyd-Warshall

FloydWarshall $(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})$
for $1 \leq i, j \leq n$
$d^{0}[i][j]=\ell(i, j)$
for $1 \leq k \leq n$
for $1 \leq i, j \leq n$
$d^{k}[i][j]=\min \left\{\begin{array}{l}d^{k-1}[i][j] \\ d^{k-1}[j][k]+d^{k-1}[k][j]\end{array}\right.$
for $1 \leq i \leq n$
if $d^{n}[i][i]<0$

## Floyd-Warshall

$$
\begin{aligned}
& \text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}) \\
& \text { for } 1 \leq i, j \leq n \\
& d^{0}[i][j]=\ell(i, j) \\
& \text { for } 1 \leq k \leq n \\
& \quad \text { for } 1 \leq i, j \leq n \\
& \\
& \quad d^{k}[j][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
& \text { for } 1 \leq i \leq n \\
& \text { if } d^{n}[i][i]<0 \\
& \quad \text { return ''negative cycle detected', }
\end{aligned}
$$

## Floyd-Warshall

$$
\begin{aligned}
& \text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}) \\
& \text { for } 1 \leq i, j \leq n \\
& d^{0}[i][j]=\ell(i, j) \\
& \text { for } 1 \leq k \leq n \\
& \text { for } 1 \leq i, j \leq n \\
& \\
& \quad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
& \text { for } 1 \leq i \leq n \\
& \text { if } d^{n}[i][i]<0 \\
& \text { return ''negative cycle detected', } \\
& \text { return } d^{n}[\cdot][\cdot]
\end{aligned}
$$

## Floyd-Warshall

$$
\begin{aligned}
& \text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z}) \\
& \text { for } 1 \leq i, j \leq n \\
& d^{0}[i][j]=\ell(i, j) \\
& \text { for } 1 \leq k \leq n \\
& \text { for } 1 \leq i, j \leq n \\
& \quad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
& \text { for } 1 \leq i \leq n \\
& \text { if } d^{n}[i][i]<0 \\
& \text { return 'snegative cycle detected', } \\
& \text { return } d^{n}[\cdot][\cdot]
\end{aligned}
$$

## remarks:

## Floyd-Warshall

```
FloydWarshall \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})\)
 for \(1 \leq i, j \leq n\)
 \(d^{0}[i][j]=\ell(i, j)\)
 for \(1 \leq k \leq n\)
 for \(1 \leq i, j \leq n\)
 \(d^{k}[i][j]=\min \left\{\begin{array}{l}d^{k-1}[i][j] \\ d^{k-1}[i][k]+d^{k-1}[k][j]\end{array}\right.\)
 for \(1 \leq i \leq n\)
 if \(d^{n}[i][i]<0\)
 return ''negative cycle detected''
 return \(d^{n}[\cdot][\cdot]\)
```


## remarks:

- compute actual paths


## Floyd-Warshall

```
FloydWarshall \((G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})\)
 for \(1 \leq i, j \leq n\)
 \(d^{0}[i][j]=\ell(i, j)\)
 for \(1 \leq k \leq n\)
 for \(1 \leq i, j \leq n\)
 \(d^{k}[i][j]=\min \left\{\begin{array}{l}d^{k-1}[i][j] \\ d^{k-1}[i][k]+d^{k-1}[k][j]\end{array}\right.\)
 for \(1 \leq i \leq n\)
 if \(d^{n}[i][i]<0\)
 return ''negative cycle detected''
 return \(d^{n}[\cdot][\cdot]\)
```


## remarks:

■ compute actual paths by storing pointers indicating how $d^{k}[\cdot][\cdot]$ was updated

## Floyd-Warshall

$$
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})
$$

$$
\begin{aligned}
& \text { for } \begin{array}{l}
1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j)
\end{array} \\
& \text { for } \begin{array}{l}
1 \leq k \leq n \\
\text { for } 1 \leq i, j \leq n
\end{array} \\
& \qquad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
& \text { for } 1 \leq i \leq n \\
& \text { if } d^{n}[i][i]<0 \\
& \quad \text { return ''negative cycle detected'' } \\
& \text { return } d^{n}[\cdot][\cdot]
\end{aligned}
$$

## remarks:

■ compute actual paths by storing pointers indicating how $d^{k}[\cdot][\cdot]$ was updated

## Floyd-Warshall

FloydWarshall $(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})$

$$
\begin{aligned}
& \text { for } \begin{array}{l}
1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j)
\end{array} \\
& \text { for } \begin{array}{r}
1 \leq k \leq n \\
\\
\text { for } 1 \leq i, j \leq n
\end{array} \\
& \qquad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
& \text { for } 1 \leq i \leq n \\
& \text { if } d^{n}[i][i]<0 \\
& \quad \text { return ''negative cycle detected') } \\
& \text { return } d^{n}[\cdot][\cdot]
\end{aligned}
$$

## remarks:

■ compute actual paths by storing pointers indicating how $d^{k}[\cdot][\cdot]$ was updated

## complexity:

- $O\left(n^{3}\right)$ time


## Floyd-Warshall

$$
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})
$$

$$
\begin{aligned}
& \text { for } \begin{array}{l}
1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j)
\end{array} \\
& \text { for } \begin{array}{r}
1 \leq k \leq n \\
\\
\text { for } 1 \leq i, j \leq n
\end{array} \\
& \qquad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
& \text { for } 1 \leq i \leq n \\
& \text { if } d^{n}[i][i]<0 \\
& \quad \text { return ''negative cycle detected') } \\
& \text { return } d^{n}[\cdot][\cdot]
\end{aligned}
$$

## remarks:

■ compute actual paths by storing pointers indicating how $d^{k}[\cdot][\cdot]$ was updated

## complexity:

- $O\left(n^{3}\right)$ time
- space


## Floyd-Warshall

$$
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})
$$

$$
\begin{aligned}
& \text { for } \begin{array}{l}
1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j)
\end{array} \\
& \text { for } \begin{array}{r}
1 \leq k \leq n \\
\\
\text { for } 1 \leq i, j \leq n
\end{array} \\
& \qquad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
& \text { for } 1 \leq i \leq n \\
& \text { if } d^{n}[i][i]<0 \\
& \quad \text { return ''negative cycle detected') } \\
& \text { return } d^{n}[\cdot][\cdot]
\end{aligned}
$$

## remarks:

■ compute actual paths by storing pointers indicating how $d^{k}[\cdot][\cdot]$ was updated

## complexity:

- $O\left(n^{3}\right)$ time
- space
- clearly $O\left(n^{3}\right)$


## Floyd-Warshall

$$
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})
$$

$$
\begin{aligned}
& \text { for } \begin{array}{l}
1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j)
\end{array} \\
& \text { for } \begin{array}{r}
1 \leq k \leq n \\
\\
\text { for } 1 \leq i, j \leq n
\end{array} \\
& \qquad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
& \text { for } 1 \leq i \leq n \\
& \text { if } d^{n}[i][i]<0 \\
& \quad \text { return ''negative cycle detected') } \\
& \text { return } d^{n}[\cdot][\cdot]
\end{aligned}
$$

## remarks:

■ compute actual paths by storing pointers indicating how $d^{k}[\cdot][\cdot]$ was updated

## complexity:

- $O\left(n^{3}\right)$ time
- space
- clearly $O\left(n^{3}\right)$

■ better:

## Floyd-Warshall

$$
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})
$$

$$
\begin{aligned}
& \text { for } \begin{array}{l}
1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j)
\end{array} \\
& \text { for } \begin{aligned}
& 1 \leq k \leq n \\
& \text { for } 1 \leq i, j \leq n \\
& \qquad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
& \text { for } 1 \leq i \leq n \\
& \text { if } d^{n}[i][i]<0 \\
& \quad \text { return ''negative cycle detected'' } \\
& \text { return } d^{n}[\cdot][\cdot]
\end{aligned}
\end{aligned}
$$

## remarks:

■ compute actual paths by storing pointers indicating how $d^{k}[\cdot][\cdot]$ was updated

## complexity:

- $O\left(n^{3}\right)$ time
- space
- clearly $O\left(n^{3}\right)$
- better: only store $d^{\text {cur }}[\cdot][\cdot]$ and $d^{\text {prev }}[\cdot][\cdot]$


## Floyd-Warshall

$$
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})
$$

$$
\begin{aligned}
& \text { for } \begin{array}{l}
1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j)
\end{array} \\
& \text { for } \begin{aligned}
& 1 \leq k \leq n \\
& \text { for } 1 \leq i, j \leq n \\
& \qquad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
& \text { for } 1 \leq i \leq n \\
& \text { if } d^{n}[i][i]<0 \\
& \quad \text { return ''negative cycle detected'' } \\
& \text { return } d^{n}[\cdot][\cdot]
\end{aligned}
\end{aligned}
$$

## remarks:

■ compute actual paths by storing pointers indicating how $d^{k}[\cdot][\cdot]$ was updated

## complexity:

- $O\left(n^{3}\right)$ time
- space
- clearly $O\left(n^{3}\right)$
- better: only store $d^{\text {cur }}[\cdot][\cdot]$ and $d^{\text {prev }}[\cdot][\cdot] \Longrightarrow O\left(n^{2}\right)$


## Floyd-Warshall

$$
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})
$$

$$
\begin{aligned}
& \text { for } \begin{array}{l}
1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j)
\end{array} \\
& \text { for } \begin{aligned}
& 1 \leq k \leq n \\
& \text { for } 1 \leq i, j \leq n \\
& \qquad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
& \text { for } 1 \leq i \leq n \\
& \text { if } d^{n}[i][i]<0 \\
& \quad \text { return ''negative cycle detected'' } \\
& \text { return } d^{n}[\cdot][\cdot]
\end{aligned}
\end{aligned}
$$

## remarks:

■ compute actual paths by storing pointers indicating how $d^{k}[\cdot][\cdot]$ was updated

## Floyd-Warshall

$$
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})
$$

$$
\begin{aligned}
& \text { for } \begin{array}{l}
1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j)
\end{array} \\
& \text { for } \begin{array}{l}
1 \leq k \leq n \\
\text { for } 1 \leq i, j \leq n \\
\qquad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
\text { for } 1 \leq i \leq n \\
\text { if } d^{n}[i][i]<0 \\
\quad \text { return ''negative cycle detected'' } \\
\text { return } d^{n}[\cdot][\cdot]
\end{array}
\end{aligned}
$$

## remarks:

■ compute actual paths by storing pointers indicating how $d^{k}[\cdot][\cdot]$ was updated

## complexity:

- $O\left(n^{3}\right)$ time
- space
- clearly $O\left(n^{3}\right)$
- better: only store $d^{\text {cur }}[\cdot][\cdot]$ and $d^{\text {prev }}[\cdot][\cdot] \Longrightarrow O\left(n^{2}\right)$


## correctness:

■ if no negative cycles, correctness is clear

## Floyd-Warshall

$$
\text { FloydWarshall }(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})
$$

$$
\text { for } 1 \leq i, j \leq n
$$

$$
d^{0}[i][j]=\ell(i, j)
$$

$$
\text { for } 1 \leq k \leq n
$$

$$
\text { for } 1 \leq i, j \leq n
$$

for $1 \leq i \leq n$

$$
d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right.
$$

if $d^{n}[i][i]<0$
return ''negative cycle detected''
return $d^{n}[\cdot][\cdot]$

## complexity:

- $O\left(n^{3}\right)$ time
- space

■ clearly $O\left(n^{3}\right)$

- better: only store $d^{\text {cur }}[\cdot][\cdot]$ and $d^{\text {prev }}[\cdot][\cdot] \Longrightarrow O\left(n^{2}\right)$


## correctness:

■ if no negative cycles, correctness is clear

■ if some negative cycle, ???

## remarks:

- compute actual paths by storing pointers indicating how $d^{k}[\cdot][\cdot]$ was updated

Floyd-Warshall (II)

Floyd-Warshall (II)

## Proposition <br> $$
G=(V, E), \ell: E \rightarrow \mathbb{Z},
$$

Floyd-Warshall (II)

## Proposition <br> $G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle.

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Floyd-Warshall (II)

## Proposition

 $G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.
## Proof.

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle k

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\mathrm{min}_{\text {negative length }} C$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle $k=\min _{\text {negative length }} c \max _{i: v_{i} \in C} i$.

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle $k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$,

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0}$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i}$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$.

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,
■ $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i)$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,
■ $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i) \leq \ell\left(w_{0}, w_{1}\right)$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,
■ $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i) \leq \ell\left(w_{0}, w_{1}\right)$
■ $d^{k-1}[i][k]=\operatorname{dist}^{k-1}(i, k)$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,
■ $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i) \leq \ell\left(w_{0}, w_{1}\right)$
$\square d^{k-1}[i][k]=\operatorname{dist}^{k-1}(i, k) \leq \ell\left(w_{1}, w_{2}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,

- $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i) \leq \ell\left(w_{0}, w_{1}\right)$
$\square d^{k-1}[i][k]=\operatorname{dist}^{k-1}(i, k) \leq \ell\left(w_{1}, w_{2}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)$
$\Longrightarrow d^{k}[k][k]$


## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,
■ $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i) \leq \ell\left(w_{0}, w_{1}\right)$
■ $d^{k-1}[i][k]=\operatorname{dist}^{k-1}(i, k) \leq \ell\left(w_{1}, w_{2}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)$
$\Longrightarrow d^{k}[k][k] \leq d^{k-1}[k][i]+d^{k-1}[i][k]$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,
■ $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i) \leq \ell\left(w_{0}, w_{1}\right)$
■ $d^{k-1}[i][k]=\operatorname{dist}^{k-1}(i, k) \leq \ell\left(w_{1}, w_{2}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)$
$\Longrightarrow d^{k}[k][k] \leq d^{k-1}[k][i]+d^{k-1}[i][k]=\ell\left(w_{0}, w_{1}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,
■ $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i) \leq \ell\left(w_{0}, w_{1}\right)$
■ $d^{k-1}[i][k]=\operatorname{dist}^{k-1}(i, k) \leq \ell\left(w_{1}, w_{2}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)$
$\Longrightarrow d^{k}[k][k] \leq d^{k-1}[k][i]+d^{k-1}[i][k]=\ell\left(w_{0}, w_{1}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)=\ell(C)$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,
■ $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i) \leq \ell\left(w_{0}, w_{1}\right)$
■ $d^{k-1}[i][k]=\operatorname{dist}^{k-1}(i, k) \leq \ell\left(w_{1}, w_{2}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)$
$\Longrightarrow d^{k}[k][k] \leq d^{k-1}[k][i]+d^{k-1}[i][k]=\ell\left(w_{0}, w_{1}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)=\ell(C)<0$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,
■ $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i) \leq \ell\left(w_{0}, w_{1}\right)$
■ $d^{k-1}[i][k]=\operatorname{dist}^{k-1}(i, k) \leq \ell\left(w_{1}, w_{2}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)$
$\Longrightarrow d^{k}[k][k] \leq d^{k-1}[k][i]+d^{k-1}[i][k]=\ell\left(w_{0}, w_{1}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)=\ell(C)<0$
$\Longrightarrow d^{k+1}[k][k]$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,
■ $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i) \leq \ell\left(w_{0}, w_{1}\right)$
■ $d^{k-1}[i][k]=\operatorname{dist}^{k-1}(i, k) \leq \ell\left(w_{1}, w_{2}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)$
$\Longrightarrow d^{k}[k][k] \leq d^{k-1}[k][i]+d^{k-1}[i][k]=\ell\left(w_{0}, w_{1}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)=\ell(C)<0$
$\Longrightarrow d^{k+1}[k][k] \leq d^{k}[k][k]$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,
■ $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i) \leq \ell\left(w_{0}, w_{1}\right)$
■ $d^{k-1}[i][k]=\operatorname{dist}^{k-1}(i, k) \leq \ell\left(w_{1}, w_{2}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)$
$\Longrightarrow d^{k}[k][k] \leq d^{k-1}[k][i]+d^{k-1}[i][k]=\ell\left(w_{0}, w_{1}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)=\ell(C)<0$
$\Longrightarrow d^{k+1}[k][k] \leq d^{k}[k][k]<0$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,
■ $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i) \leq \ell\left(w_{0}, w_{1}\right)$
■ $d^{k-1}[i][k]=\operatorname{dist}^{k-1}(i, k) \leq \ell\left(w_{1}, w_{2}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)$
$\Longrightarrow d^{k}[k][k] \leq d^{k-1}[k][i]+d^{k-1}[i][k]=\ell\left(w_{0}, w_{1}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)=\ell(C)<0$
$\Longrightarrow d^{k+1}[k][k] \leq d^{k}[k][k]<0$
$\Longrightarrow d^{n}[k][k]<0$

## Floyd-Warshall (II)

## Proposition

$G=(V, E), \ell: E \rightarrow \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

## Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
$k=\min _{\text {negative length }} C \max _{i: v_{i} \in C} i$. Pick such a cycle $C$, where $C$ is
$v_{k}=w_{0} \rightarrow w_{1}=v_{i} \rightarrow \cdots \rightarrow w_{j}=v_{k}$. By choice of $k$,
■ $d^{k-1}[k][i]=\operatorname{dist}^{k-1}(k, i) \leq \ell\left(w_{0}, w_{1}\right)$
■ $d^{k-1}[i][k]=\operatorname{dist}^{k-1}(i, k) \leq \ell\left(w_{1}, w_{2}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)$
$\Longrightarrow d^{k}[k][k] \leq d^{k-1}[k][i]+d^{k-1}[i][k]=\ell\left(w_{0}, w_{1}\right)+\cdots+\ell\left(w_{j-1}, w_{j}\right)=\ell(C)<0$
$\Longrightarrow d^{k+1}[k][k] \leq d^{k}[k][k]<0$
$\Longrightarrow d^{n}[k][k]<0 \Longrightarrow$ negative cycle detected

## Floyd-Warshall

FloydWarshall $(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})$

$$
\begin{aligned}
& \text { for } \begin{array}{l}
1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j) \\
\text { for } 1 \leq k \leq n \\
\\
\text { for } 1 \leq i, j \leq n \\
\qquad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
\text { for } 1 \leq i \leq n \\
\text { if } d^{n}[i][i]<0 \\
\quad \text { return ''negative cycle detected', } \\
\text { return } d^{n}[\cdot][\cdot]
\end{array}
\end{aligned}
$$

## remarks:

■ compute actual paths by storing pointers indicating how $d^{k}[\cdot][\cdot]$ was updated

## complexity:

- $O\left(n^{3}\right)$ time

■ space

- clearly $O\left(n^{3}\right)$
- better: only store $d^{\text {cur }}[\cdot][\cdot]$ and $d^{\text {prev }}[\cdot][\cdot] \Longrightarrow O\left(n^{2}\right)$


## correctness:

■ if no negative cycles, correctness is clear

■ if some negative cycle, ???

## Floyd-Warshall

FloydWarshall $(G=(V, E), \quad \ell: V \rightarrow \mathbb{Z})$

$$
\begin{aligned}
& \text { for } \begin{array}{l}
1 \leq i, j \leq n \\
d^{0}[i][j]=\ell(i, j) \\
\text { for } 1 \leq k \leq n \\
\\
\text { for } 1 \leq i, j \leq n \\
\qquad d^{k}[i][j]=\min \left\{\begin{array}{l}
d^{k-1}[i][j] \\
d^{k-1}[i][k]+d^{k-1}[k][j]
\end{array}\right. \\
\text { for } 1 \leq i \leq n \\
\text { if } d^{n}[i][i]<0 \\
\quad \text { return ''negative cycle detected', } \\
\text { return } d^{n}[\cdot][\cdot]
\end{array}
\end{aligned}
$$

## remarks:

■ compute actual paths by storing pointers indicating how $d^{k}[\cdot][\cdot]$ was updated

## complexity:

- $O\left(n^{3}\right)$ time
- space
- clearly $O\left(n^{3}\right)$
- better: only store $d^{\text {cur }}[\cdot][\cdot]$ and $d^{\text {prev }}[\cdot][\cdot] \Longrightarrow O\left(n^{2}\right)$


## correctness:

- if no negative cycles, correctness is clear
- if some negative cycle, correctness is now done


## Overview (II)

## today:

■ shortest paths
■ with negative lengths - Bellman-Ford in $O(m n)$ time

- all-pairs - Floyd-Warshall in $O\left(n^{3}\right)$ time
next lecture:
■ more dynamic programming


## logistics:

■ pset2 due R5 - can submit in groups of $\leq 3$

1 Title
2 Overview
3 Shortest Paths, with Negative Lengths
4 Shortest Paths, with Negative Lengths (II)
5 Shortest Paths, with Negative Lengths (III)
6 Dijkstra's Algorithm
7 Dijkstra's Algorithm, with Negative Lengths?
8 Shortest Paths, with Negative Lengths (IV)
9 Shortest Paths, with Negative Lengths (V)
10 Shortest Paths, with Negative Lengths (VI)
11 Shortest Paths, with Negative Lengths (VII)
12 Shortest Paths, with Negative Lengths (VIII)
13 Shortest Paths, with Negative Lengths (IX)

14 Shortest Paths, with Negative Lengths (X)
15 Shortest Paths, with Negative Lengths (XI)
16 Shortest Paths, with Negative Lengths (XII)
17 Shortest Paths, with Negative Lengths (VII)
18 Bellman-Ford
19 Bellman-Ford (II)
20 All-Pairs Shortest Paths
21 All-Pairs Shortest Paths (II)
22 All-Pairs Shortest Paths (III)
23 All-Pairs Shortest Paths (IV)
24 Floyd-Warshall
25 Floyd-Warshall (II)
26 Floyd-Warshall
27 Overview (II)

