cs473: Algorithms Lecture 4: Dynamic Programming

Michael A. Forbes

University of Illinois at Urbana-Champaign

September 9, 2019

logistics:

logistics:

■ pset2 due R5

logistics:

• pset2 due R5 — can submit in *groups* of \leq 3

logistics:

• pset2 due R5 — can submit in *groups* of \leq 3

last lecture:

logistics:

■ pset2 due R5 — can submit in *groups* of \leq 3

last lecture:

dynamic programming

logistics:

■ pset2 due R5 — can submit in *groups* of \leq 3

last lecture:

■ dynamic programming *on trees*

logistics:

■ pset2 due R5 — can submit in *groups* of \leq 3

last lecture:

- dynamic programming *on trees*
- maximum independent set

logistics:

■ pset2 due R5 — can submit in *groups* of \leq 3

last lecture:

- dynamic programming *on trees*
- maximum independent set
- dominating set

logistics:

■ pset2 due R5 — can submit in *groups* of \leq 3

last lecture:

- dynamic programming on trees
- maximum independent set
- dominating set

today:

logistics:

■ pset2 due R5 — can submit in *groups* of \leq 3

last lecture:

- dynamic programming *on trees*
- maximum independent set
- dominating set

today:

shortest paths

logistics:

■ pset2 due R5 — can submit in *groups* of \leq 3

last lecture:

- dynamic programming *on trees*
- maximum independent set
- dominating set

today:

- shortest paths
 - with negative lengths

logistics:

■ pset2 due R5 — can submit in *groups* of \leq 3

last lecture:

- dynamic programming *on trees*
- maximum independent set
- dominating set

today:

- shortest paths
 - with negative lengths
 - all-pairs

questions:

questions:

questions:

questions:

questions:

questions:

what is the length of the shortest path between s and t?

total cost:

questions:

what is the length of the shortest path between s and t?

total cost: 9 + 10 + (-16) + 16 =

questions:

what is the length of the shortest path between s and t?

total cost: 9 + 10 + (-16) + 16 = 19

questions:

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?

total cost:

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?

total cost: -16 + 11 + 3 =

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?

total cost: -16 + 11 + 3 = -3

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?

total cost: -16 + 11 + 3 = -3

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

total cost:

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

total cost:

9 + 10 +

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

total cost:

$$9 + 10 + (-16 + 11 + 3)$$

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

total cost:

$$9 + 10 + (-16 + 11 + 3) \cdot k$$

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

total cost:

 $9 + 10 + (-16 + 11 + 3) \cdot k + (-16) + 16$

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

total cost:

$$9 + 10 + (-16 + 11 + 3) \cdot k + (-16) + 16$$
$$= 19 - 3k$$

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

total cost:

$$9 + 10 + (-16 + 11 + 3) \cdot k + (-16) + 16$$
$$= 19 - 3k \rightarrow -\infty$$

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

total cost:

$$9 + 10 + (-16 + 11 + 3) \cdot k + (-16) + 16$$

= 19 - 3k \rightarrow -\infty

questions:

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

total cost:

$$9 + 10 + (-16 + 11 + 3) \cdot k + (-16) + 16$$

= 19 - 3k \rightarrow -\infty

questions:

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

remarks:

■ computing the length of the shortest simple s ~→ t path

total cost:

$$9 + 10 + (-16 + 11 + 3) \cdot k + (-16) + 16$$
$$= 19 - 3k \rightarrow -\infty$$

questions:

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

remarks:

■ computing the length of the shortest simple s ~→ t path (with possibly negative lengths)

total cost:

$$9 + 10 + (-16 + 11 + 3) \cdot k + (-16) + 16$$
$$= 19 - 3k \rightarrow -\infty$$

questions:

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

remarks:

■ computing the length of the shortest simple s ~→ t path (with possibly negative lengths) is NP-hard

total cost:

$$9 + 10 + (-16 + 11 + 3) \cdot k + (-16) + 16$$
$$= 19 - 3k \rightarrow -\infty$$

questions:

- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

remarks:

■ computing the length of the shortest simple s ~→ t path (with possibly negative lengths) is NP-hard contains the Hamiltonian path problem

Definition

Definition

G = (V, E) directed (simple) graph,

Definition

Definition

- G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.
 - A **path in** *G* is a sequence of *distinct* vertices

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

• A path in G is a sequence of *distinct* vertices $v_0, v_1, \ldots, v_k \in V$

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

• A path in G is a sequence of distinct vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*.

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

• A path in G is a sequence of distinct vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all i. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.

Definition

- A path in G is a sequence of distinct vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all i. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in G is a sequence of vertices

Definition

- A path in G is a sequence of distinct vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all i. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in G is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*.

Definition

- A path in G is a sequence of *distinct* vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in *G* is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.

Definition

- A path in G is a sequence of *distinct* vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in *G* is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.
- The **length of a walk** is the sum of the edge lengths $\sum_i \ell(v_i, v_{i+1})$.

Definition

- A path in G is a sequence of *distinct* vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in *G* is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.
- The **length of a walk** is the sum of the edge lengths $\sum_i \ell(v_i, v_{i+1})$.
- The distance from *s* to *t* in *G*,

Definition

- A path in G is a sequence of *distinct* vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in *G* is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.
- The **length of a walk** is the sum of the edge lengths $\sum_i \ell(v_i, v_{i+1})$.
- The distance from s to t in G, denoted dist(s, t),

Definition

- A path in G is a sequence of *distinct* vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in *G* is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.
- The **length of a walk** is the sum of the edge lengths $\sum_i \ell(v_i, v_{i+1})$.
- The **distance from** *s* **to** *t* **in** *G*, denoted dist(*s*, *t*), is the length of the shortest (*s*, *t*)-walk,

Definition

- A path in G is a sequence of distinct vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in *G* is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.
- The **length of a walk** is the sum of the edge lengths $\sum_i \ell(v_i, v_{i+1})$.
- The **distance from** *s* **to** *t* **in** *G*, denoted dist(*s*, *t*), is the length of the shortest (s, t)-walk, dist $(s, t) := \min_{(s,t)-\text{walk } w} \ell(w)$.

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

- A path in G is a sequence of *distinct* vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in *G* is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.
- The **length of a walk** is the sum of the edge lengths $\sum_i \ell(v_i, v_{i+1})$.
- The **distance from** *s* **to** *t* **in** *G*, denoted dist(*s*, *t*), is the length of the shortest (s, t)-walk, dist $(s, t) := \min_{(s,t)-\text{walk } w} \ell(w)$.

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

- A path in G is a sequence of *distinct* vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in *G* is a sequence of vertices $v_0, v_1, ..., v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.
- The **length of a walk** is the sum of the edge lengths $\sum_i \ell(v_i, v_{i+1})$.
- The **distance from** *s* **to** *t* **in** *G*, denoted dist(*s*, *t*), is the length of the shortest (s, t)-walk, dist $(s, t) := \min_{(s,t)-\text{walk } w} \ell(w)$.

remarks:

• (s, t)-walk containing a negative length cycle

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

- A path in G is a sequence of distinct vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all i. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in *G* is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.
- The **length of a walk** is the sum of the edge lengths $\sum_i \ell(v_i, v_{i+1})$.
- The **distance from** *s* **to** *t* **in** *G*, denoted dist(*s*, *t*), is the length of the shortest (s, t)-walk, dist $(s, t) := \min_{(s,t)-\text{walk } w} \ell(w)$.

remarks:

• (s, t)-walk containing a negative length cycle \implies dist(s, t) = $-\infty$

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

- A path in G is a sequence of *distinct* vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in *G* is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.
- The **length of a walk** is the sum of the edge lengths $\sum_i \ell(v_i, v_{i+1})$.
- The **distance from** s to t in G, denoted dist(s, t), is the length of the shortest (s, t)-walk, dist $(s, t) := \min_{(s,t)-\text{walk } w} \ell(w)$.

- (s, t)-walk containing a negative length cycle \implies dist(s, t) = $-\infty$
- no(s, t)-walk containing a negative length cycle

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

- A path in G is a sequence of *distinct* vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in *G* is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.
- The **length of a walk** is the sum of the edge lengths $\sum_i \ell(v_i, v_{i+1})$.
- The **distance from** *s* **to** *t* **in** *G*, denoted dist(*s*, *t*), is the length of the shortest (s, t)-walk, dist $(s, t) := \min_{(s,t)-\text{walk } w} \ell(w)$.

- (s, t)-walk containing a negative length cycle \implies dist $(s, t) = -\infty$
- no (s, t)-walk containing a negative length cycle \implies shortest walk is a path

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

- A path in G is a sequence of distinct vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in *G* is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.
- The **length of a walk** is the sum of the edge lengths $\sum_i \ell(v_i, v_{i+1})$.
- The **distance from** *s* **to** *t* **in** *G*, denoted dist(*s*, *t*), is the length of the shortest (s, t)-walk, dist $(s, t) := \min_{(s,t)-\text{walk } w} \ell(w)$.

- (s, t)-walk containing a negative length cycle \implies dist $(s, t) = -\infty$
- no (s, t)-walk containing a negative length cycle \implies shortest walk is a path \implies shortest walk $\le n 1$ edges
Shortest Paths, with Negative Lengths (II)

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

- A path in G is a sequence of distinct vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in *G* is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all *i*. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.
- The **length of a walk** is the sum of the edge lengths $\sum_i \ell(v_i, v_{i+1})$.
- The **distance from** *s* **to** *t* **in** *G*, denoted dist(*s*, *t*), is the length of the shortest (s, t)-walk, dist $(s, t) := \min_{(s,t)-\text{walk } w} \ell(w)$.

- (s, t)-walk containing a negative length cycle \implies dist(s, t) = $-\infty$
- no (s, t)-walk containing a negative length cycle \implies shortest walk is a path \implies shortest walk $\le n 1$ edges and is of finite length

Shortest Paths, with Negative Lengths (III)

Shortest Paths, with Negative Lengths (III)

Definition

Shortest Paths, with Negative Lengths (III)

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

given $s, t \in V$,

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

given $s, t \in V$, find a minimum length (s, t)-path

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

■ given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

■ given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle (\implies dist $(s, t) = -\infty$)

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle (\implies dist $(s, t) = -\infty$)
- given $s \in V$,

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle (\implies dist $(s, t) = -\infty$)
- given $s \in V$, compute dist(s, t) for all $t \in V$

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle (\implies dist $(s, t) = -\infty$)
- given $s \in V$, compute dist(s, t) for all $t \in V$

■ determine if *G* has *any* negative cycle

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle (\implies dist $(s, t) = -\infty$)
- given $s \in V$, compute dist(s, t) for all $t \in V$

■ determine if *G* has *any* negative cycle

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle (\implies dist $(s, t) = -\infty$)
- given $s \in V$, compute dist(s, t) for all $t \in V$
- determine if *G* has *any* negative cycle

remarks:

negative lengths can be natural in modelling real life

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle (\implies dist $(s, t) = -\infty$)
- given $s \in V$, compute dist(s, t) for all $t \in V$
- determine if *G* has *any* negative cycle

- negative lengths can be natural in modelling real life
 - e.g., demand/supply on an electrical grid,

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle (\implies dist $(s, t) = -\infty$)
- given $s \in V$, compute dist(s, t) for all $t \in V$
- determine if *G* has *any* negative cycle

- negative lengths can be natural in modelling real life
 - e.g., demand/supply on an electrical grid, negative cycles manifest as *arbitrage*

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle (\implies dist $(s, t) = -\infty$)
- given $s \in V$, compute dist(s, t) for all $t \in V$
- determine if *G* has *any* negative cycle

- negative lengths can be natural in modelling real life
 - e.g., demand/supply on an electrical grid, negative cycles manifest as *arbitrage*
- negative lengths can arise as by-products of other algorithms,

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s, t \in V$, find a minimum length (s, t)-path or find an (s, t)-walk with a negative cycle (\implies dist $(s, t) = -\infty$)
- given $s \in V$, compute dist(s, t) for all $t \in V$
- determine if *G* has *any* negative cycle

- negative lengths can be natural in modelling real life
 - e.g., demand/supply on an electrical grid, negative cycles manifest as *arbitrage*
- negative lengths can arise as by-products of other algorithms, e.g., flows in graphs

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's algorithm: greedily grow shortest paths from source s

remarks:

greedy exploration,

Dijkstra's algorithm: greedily grow shortest paths from source s

remarks:

• greedy exploration, ordering vertices $v \in V$ by dist(s, v)

Dijkstra's algorithm: greedily grow shortest paths from source s

remarks:

• greedy exploration, ordering vertices $v \in V$ by dist(s, v) — without updates!

Dijkstra's algorithm: greedily grow shortest paths from source s

- greedy exploration, ordering vertices $v \in V$ by dist(s, v) without updates!
- \implies algorithm assumes the distance only grows as the graph is explored

Dijkstra's algorithm: greedily grow shortest paths from source s

- greedy exploration, ordering vertices $v \in V$ by dist(s, v) without updates!
- \implies algorithm assumes the distance only grows as the graph is explored
 - \equiv assumes all edge lengths are non-negative

Shortest Paths, with Negative Lengths (IV)

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0$

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1$

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2$

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots$

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk,

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then $s \to v_1 \to \cdots \to v_i$ is a shortest (s, v_i) -walk,

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then **1** $s \to v_1 \to \cdots \to v_i$ is a shortest (s, v_i) -walk, for i < k

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then

1 $s \rightarrow v_1 \rightarrow \cdots \rightarrow v_i$ is a shortest (s, v_i) -walk, for $i \leq k$

2 if ℓ is non-negative,

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then **1** $s \to v_1 \to \cdots \to v_i$ is a shortest (s, v_i) -walk, for $i \le k$

2 if ℓ is non-negative, dist $(s, v_i) \leq \text{dist}(s, v_{i+1})$ for all i

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then

- 1 $s \rightarrow v_1 \rightarrow \cdots \rightarrow v_i$ is a shortest (s, v_i) -walk, for $i \leq k$
- **2** if ℓ is non-negative, dist $(s, v_i) \leq dist(s, v_{i+1})$ for all i

Proof.

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then

- **1** $s \rightarrow v_1 \rightarrow \cdots \rightarrow v_i$ is a shortest (s, v_i) -walk, for $i \leq k$
- **2** if ℓ is non-negative, dist $(s, v_i) \leq dist(s, v_{i+1})$ for all i

Proof.

(1) Cut and paste.

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then

- 1 $s \rightarrow v_1 \rightarrow \cdots \rightarrow v_i$ is a shortest (s, v_i) -walk, for $i \leq k$
- **2** if ℓ is non-negative, dist $(s, v_i) \leq dist(s, v_{i+1})$ for all i

Proof.

(1) Cut and paste. (2) Clear.

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then $s \to v_1 \to \cdots \to v_i$ is a shortest (s, v_i) -walk, for $i \le k$

2 if ℓ is non-negative, dist $(s, v_i) \leq dist(s, v_{i+1})$ for all i

Proof.

(1) Cut and paste. (2) Clear.

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then **1** $s \to v_1 \to \cdots \to v_i$ is a shortest (s, v_i) -walk, for $i \le k$

2 if ℓ is non-negative, dist $(s, v_i) \leq dist(s, v_{i+1})$ for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

■ shortest walks *are* shortest paths,

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then **1** $s \to v_1 \to \cdots \to v_i$ is a shortest (s, v_i) -walk, for $i \le k$

2 if ℓ is non-negative, dist $(s, v_i) \leq dist(s, v_{i+1})$ for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then **1** $s \to v_1 \to \cdots \to v_i$ is a shortest (s, v_i) -walk, for $i \le k$

2 if ℓ is non-negative, dist $(s, v_i) \leq dist(s, v_{i+1})$ for all i

Proof.

(1) Cut and paste. (2) Clear.

- shortest walks are shortest paths, if no negative cycle
- Dijkstra's algorithm defines subproblems

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then 1 $s \to v_1 \to \cdots \to v_i$ is a shortest (s, v_i) -walk, for $i \le k$ 2 if ℓ is non-negative, dist $(s, v_i) < \text{dist}(s, v_{i+1})$ for all i

Proof.

(1) Cut and paste. (2) Clear.

- shortest walks are shortest paths, if no negative cycle
- Dijkstra's algorithm defines subproblems by restricting the graph by $dist(s, \cdot)$

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then 1 $s \to v_1 \to \cdots \to v_i$ is a shortest (s, v_i) -walk, for $i \le k$ 2 if ℓ is non-negative, dist $(s, v_i) < \text{dist}(s, v_{i+1})$ for all i

Proof.

(1) Cut and paste. (2) Clear.

- shortest walks are shortest paths, if no negative cycle
- Dijkstra's algorithm defines subproblems by restricting the graph by dist(s, ·)
 idea:

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then 1 $s \to v_1 \to \cdots \to v_i$ is a shortest (s, v_i) -walk, for $i \le k$ 2 if ℓ is non-negative, dist $(s, v_i) < \text{dist}(s, v_{i+1})$ for all i

Proof.

(1) Cut and paste. (2) Clear.

- shortest walks are shortest paths, if no negative cycle
- **D**ijkstra's algorithm defines subproblems by restricting the graph by $dist(s, \cdot)$
- *idea:* parameterize subproblems by *number* of edges in a walk,

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then 1 $s \to v_1 \to \cdots \to v_i$ is a shortest (s, v_i) -walk, for $i \le k$ 2 if ℓ is non-negative, dist $(s, v_i) \le dist(s, v_{i+1})$ for all i

Proof.

(1) Cut and paste. (2) Clear.

- shortest walks are shortest paths, if no negative cycle
- **D**ijkstra's algorithm defines subproblems by restricting the graph by $dist(s, \cdot)$
- *idea:* parameterize subproblems by *number* of edges in a walk, *and* allow updates to dist(*s*, ·)

Shortest Paths, with Negative Lengths (V)

Shortest Paths, with Negative Lengths (V)

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. For $s, t \in V$, define dist_k(s, t) to be the length of the shortest (s, t)-walk using $\leq k$ edges.

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. For $s, t \in V$, define dist_k(s, t) to be the length of the shortest (s, t)-walk using $\leq k$ edges.

$$\mathsf{dist}_k(s,t) := \min_{\substack{(s,t)-\mathsf{walk } w \\ |w| \le k}} \ell(w) \ .$$

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. For $s, t \in V$, define dist_k(s, t) to be the length of the shortest (s, t)-walk using $\leq k$ edges.

$$\mathsf{dist}_k(s,t) := \min_{\substack{(s,t)-\mathsf{walk } w \\ |w| \le k}} \ell(w) \ .$$

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. For $s, t \in V$, define dist_k(s, t) to be the length of the shortest (s, t)-walk using $\leq k$ edges.

$$\mathsf{dist}_k(s,t) := \min_{\substack{(s,t)-\mathsf{walk } w \\ |w| \le k}} \ell(w) \ .$$

dist_k
$$(s, t) = \infty$$
 if no $(\leq k)$ -edge (s, t) -walk

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. For $s, t \in V$, define dist_k(s, t) to be the length of the shortest (s, t)-walk using $\leq k$ edges.

$$\mathsf{dist}_k(s,t) := \min_{\substack{(s,t)-\mathsf{walk } w \\ |w| \le k}} \ell(w) \ .$$

remarks:

• dist_k(s, t) = ∞ if no (\leq k)-edge (s, t)-walk

dist₀(s, s) = 0,
Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. For $s, t \in V$, define dist_k(s, t) to be the length of the shortest (s, t)-walk using $\leq k$ edges.

$$\mathsf{dist}_k(s,t) := \min_{\substack{(s,t)-\mathsf{walk } w \\ |w| \le k}} \ell(w) \ .$$

remarks:

- dist_k $(s, t) = \infty$ if no $(\leq k)$ -edge (s, t)-walk
- dist₀(s, s) = 0, dist₀(s, v) = ∞ for $v \neq s$

$$G=(V,E),$$

$$G = (V, E), \ell : E \to \mathbb{Z}.$$

Lemma

$G = (V, E), \ell : E \to \mathbb{Z}.$ Then for all $s, t \in V$,

Lemma

$$G = (V, E), \ell : E \to \mathbb{Z}$$
. Then for all $s, t \in V$,

 $dist_k(s,t) =$

$$G = (V, E), \ \ell : E \to \mathbb{Z}.$$
 Then for all $s, t \in V$,
 $\operatorname{dist}_k(s, t) = \min \left\{$

$$G = (V, E), \ \ell : E \to \mathbb{Z}.$$
 Then for all $s, t \in V$,
 $\operatorname{dist}_k(s, t) = \min \left\{ \begin{aligned} \operatorname{dist}_{k-1}(s, t) \\ \end{aligned} \right.$

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}. \text{ Then for all } s, t \in V,$ $\operatorname{dist}_k(s, t) = \min \begin{cases} \operatorname{dist}_{k-1}(s, t) \\ \min_{v \in V} \end{cases}$

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}. \ Then \ for \ all \ s, t \in V,$ $\operatorname{dist}_k(s, t) = \min \begin{cases} \operatorname{dist}_{k-1}(s, t) \\ \min_{v \in V} \{\operatorname{dist}_{k-1}(s, v) + v\} \end{cases}$

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}. \ \text{Then for all } s, t \in V,$ $\operatorname{dist}_k(s, t) = \min \begin{cases} \operatorname{dist}_{k-1}(s, t) \\ \min_{v \in V} \left\{ \operatorname{dist}_{k-1}(s, v) + \ell(v, t) \right\} \end{cases}.$

Lemma

$G = (V, E), \ell : E \to \mathbb{Z}.$ Then for all $s, t \in V$, $\operatorname{dist}_k(s, t) = \min \left\{ \operatorname{dist}_{k-1}(s, t) \right\}$

$$\operatorname{st}_{k}(s,t) = \min \left\{ \begin{array}{l} \operatorname{dist}_{k-1}(s,v) \\ \min_{v \in V} \left\{ \operatorname{dist}_{k-1}(s,v) + \ell(v,t) \right\} \end{array} \right\}$$

Proof.

.

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}. \text{ Then for all } s, t \in V,$ $\operatorname{dist}_k(s, t) = \min \begin{cases} \operatorname{dist}_{k-1}(s, t) \\ \min_{v \in V} \left\{ \operatorname{dist}_{k-1}(s, v) + \ell(v, t) \right\} \end{cases}.$

Proof.

Let $s = v_0$

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}. \text{ Then for all } s, t \in V,$ $\operatorname{dist}_k(s, t) = \min \begin{cases} \operatorname{dist}_{k-1}(s, t) \\ \min_{v \in V} \left\{ \operatorname{dist}_{k-1}(s, v) + \ell(v, t) \right\} \end{cases}.$

Proof.

Let $s = v_0 \rightarrow v_1$

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}. \text{ Then for all } s, t \in V,$ $\operatorname{dist}_k(s, t) = \min \begin{cases} \operatorname{dist}_{k-1}(s, t) \\ \min_{v \in V} \{\operatorname{dist}_{k-1}(s, v) + \ell(v, t)\} \end{cases}.$

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow v_2$

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}. \text{ Then for all } s, t \in V,$ $\operatorname{dist}_k(s, t) = \min \begin{cases} \operatorname{dist}_{k-1}(s, t) \\ \min_{v \in V} \left\{ \operatorname{dist}_{k-1}(s, v) + \ell(v, t) \right\} \end{cases}.$

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots$

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}. \ \text{Then for all } s, t \in V,$ $\operatorname{dist}_k(s, t) = \min \begin{cases} \operatorname{dist}_{k-1}(s, t) \\ \min_{v \in V} \left\{ \operatorname{dist}_{k-1}(s, v) + \ell(v, t) \right\} \end{cases}.$

Proof.

Let
$$s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_j = t$$

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}.$ Then for all $s, t \in V$, $\operatorname{dist}_k(s, t) = \min \left\{ \operatorname{dist}_{k-1}(s, t) \right\}$

$$k(s,t) = \min \left\{ \min_{v \in V} \left\{ \operatorname{dist}_{k-1}(s,v) + \ell(v,t) \right\} \right\}$$

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_j = t$ be a shortest length $j \leq k$ (s, t)-walk.

.

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}.$ Then for all $s, t \in V$, $\operatorname{dist}_{k}(s, t) = \min \begin{cases} \operatorname{dist}_{k-1}(s, t) \end{cases}$

$$\mathsf{t}_{k}(s,t) = \min \left\{ \min_{v \in V} \left\{ \mathsf{dist}_{k-1}(s,v) + \ell(v,t) \right\} \right\}$$

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_j = t$ be a shortest length $j \le k$ (s, t)-walk. Then, j < k:

.

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}.$ Then for all $s, t \in V$,

$$\mathsf{dist}_k(s,t) = \min \begin{cases} \mathsf{dist}_{k-1}(s,t) \\ \min_{v \in V} \{\mathsf{dist}_{k-1}(s,v) + \ell(v,t)\} \end{cases}$$

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_j = t$ be a shortest length $j \le k$ (s, t)-walk. Then, j < k: hence this is a $(\le k - 1)$ -edge (s, t)-walk of length dist_{k-1}(s, t)

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}.$ Then for all $s, t \in V$,

$$\mathsf{dist}_k(s,t) = \min \begin{cases} \mathsf{dist}_{k-1}(s,t) \\ \min_{v \in V} \{\mathsf{dist}_{k-1}(s,v) + \ell(v,t)\} \end{cases}$$

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_j = t$ be a shortest length $j \le k$ (s, t)-walk. Then,

■ j < k: hence this is a ($\leq k - 1$)-edge (s, t)-walk of length dist_{k-1}(s, t)

•
$$j = k$$
:

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}.$ Then for all $s, t \in V$,

$$\mathsf{dist}_k(s,t) = \min \begin{cases} \mathsf{dist}_{k-1}(s,t) \\ \min_{v \in V} \{ \mathsf{dist}_{k-1}(s,v) + \ell(v,t) \} \end{cases}$$

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_j = t$ be a shortest length $j \leq k$ (s, t)-walk. Then,

■ j < k: hence this is a ($\leq k - 1$)-edge (s, t)-walk of length dist_{k-1}(s, t)

■
$$j = k$$
: hence $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{k-1}$ is a shortest length $(\leq k-1)$ -edge (s, v_{k-1}) walk

.

Lemma

$G = (V, E), \ell : E \to \mathbb{Z}$. Then for all $s, t \in V$,

$$\mathsf{dist}_k(s,t) = \min \begin{cases} \mathsf{dist}_{k-1}(s,t) \\ \min_{v \in V} \{ \mathsf{dist}_{k-1}(s,v) + \ell(v,t) \} \end{cases}$$

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_j = t$ be a shortest length $j \le k$ (s, t)-walk. Then,

■ j < k: hence this is a ($\leq k - 1$)-edge (s, t)-walk of length dist_{k-1}(s, t)

■
$$j = k$$
: hence $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{k-1}$ is a shortest length $(\leq k-1)$ -edge (s, v_{k-1}) walk \implies can add $\ell(v_{k-1}, t)$ to reach t

Lemma

$G = (V, E), \ell : E \to \mathbb{Z}$. Then for all $s, t \in V$,

$$\mathsf{dist}_k(s,t) = \min \begin{cases} \mathsf{dist}_{k-1}(s,t) \\ \min_{v \in V} \{ \mathsf{dist}_{k-1}(s,v) + \ell(v,t) \} \end{cases}$$

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_j = t$ be a shortest length $j \le k$ (s, t)-walk. Then,

■ j < k: hence this is a ($\leq k - 1$)-edge (s, t)-walk of length dist_{k-1}(s, t)

■
$$j = k$$
: hence $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{k-1}$ is a shortest length $(\leq k-1)$ -edge (s, v_{k-1}) walk \implies can add $\ell(v_{k-1}, t)$ to reach t

remark:

.

Lemma

$G = (V, E), \ell : E \rightarrow \mathbb{Z}.$ Then for all $s, t \in V$,

$$\mathsf{dist}_k(s,t) = \min \begin{cases} \mathsf{dist}_{k-1}(s,t) \\ \min_{v \in V} \{ \mathsf{dist}_{k-1}(s,v) + \ell(v,t) \} \end{cases}$$

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_j = t$ be a shortest length $j \le k$ (s, t)-walk. Then,

■ j < k: hence this is a ($\leq k - 1$)-edge (s, t)-walk of length dist_{k-1}(s, t)

■
$$j = k$$
: hence $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{k-1}$ is a shortest length $(\leq k-1)$ -edge (s, v_{k-1}) walk \implies can add $\ell(v_{k-1}, t)$ to reach t

remark: $\ell(v, t) = \infty$ if there is no edge

$$G = (V, E), \ell : E \to \mathbb{Z},$$

$$G = (V, E), \ell : E \to \mathbb{Z}, s \in V,$$

Theorem

$G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s.

- $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s.
 - 1 If there are no negative length cycles,

Theorem

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s.

1 If there are no negative length cycles, then for all $v \in V$,

- $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s.
 - 1 If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v)

Theorem

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s.

1 If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v),

Theorem

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s.

■ If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) ≤ dist_n(s, v), and even dist_{n-1}(s, v) = dist(s, v).
Theorem

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s.

1 If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v), and even dist_{n-1}(s, v) = dist(s, v).

2 If for all
$$v \in V$$
, dist_{n-1} $(s, v) \leq \text{dist}_n(s, v)$,

Theorem

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s.

■ If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) ≤ dist_n(s, v), and even dist_{n-1}(s, v) = dist(s, v).

2 If for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v), then there are no negative length cycles.

Lemma

$G = (V, E), \ \ell : E \to \mathbb{Z}. \ Then \ for \ all \ s, t \in V,$ $\operatorname{dist}_k(s, t) = \min \begin{cases} \operatorname{dist}_{k-1}(s, t) \\ \min_{v \in V} \{ \operatorname{dist}_{k-1}(s, v) + \ell(v, t) \} \end{cases} .$

Lemma

$$G = (V, E), \ \ell : E \to \mathbb{Z}. \text{ Then for all } s, t \in V,$$
$$\operatorname{dist}_k(s, t) = \min \begin{cases} \operatorname{dist}_{k-1}(s, t) \\ \min_{v \in V} \{\operatorname{dist}_{k-1}(s, v) + \ell(v, t)\} \end{cases}$$

Corollary

Lemma

$$G = (V, E), \ \ell : E \to \mathbb{Z}. \ Then \ for \ all \ s, t \in V,$$
$$dist_k(s, t) = \min \begin{cases} dist_{k-1}(s, t) \\ \min_{v \in V} \{ dist_{k-1}(s, v) + \ell(v, t) \} \end{cases}$$

Corollary

For all $k \geq 0$,

Lemma

$$G = (V, E), \ \ell : E \to \mathbb{Z}. \text{ Then for all } s, t \in V,$$
$$\operatorname{dist}_k(s, t) = \min \begin{cases} \operatorname{dist}_{k-1}(s, t) \\ \min_{v \in V} \{ \operatorname{dist}_{k-1}(s, v) + \ell(v, t) \} \end{cases}$$

Corollary

For all $k \geq 0$,

• all
$$v \in V$$
, dist_k $(s, v) \leq dist_{k-1}(s, v)$

Lemma

$$G = (V, E), \ \ell : E \to \mathbb{Z}. \ Then \ for \ all \ s, t \in V,$$
$$dist_k(s, t) = \min \begin{cases} dist_{k-1}(s, t) \\ \min_{v \in V} \{ dist_{k-1}(s, v) + \ell(v, t) \} \end{cases}$$

Corollary

For all $k \geq 0$,

- all $v \in V$, $\operatorname{dist}_k(s, v) \leq \operatorname{dist}_{k-1}(s, v)$
- If all $v \in V$,

Lemma

$$G = (V, E), \ \ell : E \to \mathbb{Z}. \ Then \ for \ all \ s, t \in V,$$
$$dist_k(s, t) = \min \begin{cases} dist_{k-1}(s, t) \\ \min_{v \in V} \{ dist_{k-1}(s, v) + \ell(v, t) \} \end{cases}$$

Corollary

For all $k \geq 0$,

■ all
$$v \in V$$
, dist_k(s, v) ≤ dist_{k-1}(s, v)

If all
$$v \in V$$
, dist_k $(s, v) = dist_{k-1}(s, v)$

Lemma

$$G = (V, E), \ \ell : E \to \mathbb{Z}. \ Then \ for \ all \ s, t \in V,$$
$$dist_k(s, t) = \min \begin{cases} dist_{k-1}(s, t) \\ \min_{v \in V} \{ dist_{k-1}(s, v) + \ell(v, t) \} \end{cases}$$

Corollary

For all $k \geq 0$,

• all
$$v \in V$$
, $\operatorname{dist}_k(s, v) \leq \operatorname{dist}_{k-1}(s, v)$

If all
$$v \in V$$
, dist_k $(s, v) = dist_{k-1}(s, v)$

 \implies all $v \in V$,

Lemma

$$G = (V, E), \ \ell : E \to \mathbb{Z}. \ Then \ for \ all \ s, t \in V,$$
$$dist_k(s, t) = \min \begin{cases} dist_{k-1}(s, t) \\ \min_{v \in V} \{ dist_{k-1}(s, v) + \ell(v, t) \} \end{cases}$$

Corollary

For all $k \geq 0$,

• all
$$v \in V$$
, dist_k $(s, v) \leq dist_{k-1}(s, v)$

If all
$$v \in V$$
, dist_k $(s, v) = dist_{k-1}(s, v)$

 \implies all $v \in V$, dist_{k+1}(s, v)

Lemma

$$G = (V, E), \ \ell : E \to \mathbb{Z}. \ Then \ for \ all \ s, t \in V,$$
$$dist_k(s, t) = \min \begin{cases} dist_{k-1}(s, t) \\ \min_{v \in V} \{ dist_{k-1}(s, v) + \ell(v, t) \} \end{cases}$$

Corollary

For all $k \geq 0$,

■ all
$$v \in V$$
, dist_k(s, v) ≤ dist_{k-1}(s, v)

If all
$$v \in V$$
, dist_k $(s, v) = dist_{k-1}(s, v)$

$$\implies$$
 all $v \in V$, dist_{k+1}(s, v) = dist_k(s, v)

Lemma

$$G = (V, E), \ \ell : E \to \mathbb{Z}. \ Then \ for \ all \ s, t \in V,$$
$$dist_k(s, t) = \min \begin{cases} dist_{k-1}(s, t) \\ \min_{v \in V} \{ dist_{k-1}(s, v) + \ell(v, t) \} \end{cases}$$

Corollary

For all $k \geq 0$,

• all
$$v \in V$$
, $\operatorname{dist}_k(s, v) \leq \operatorname{dist}_{k-1}(s, v)$

If all
$$v \in V$$
, dist_k $(s, v) = dist_{k-1}(s, v)$

$$\implies$$
 all $v \in V$, dist_{k+1}(s, v) = dist_k(s, v)

$$\implies$$
 all $v \in V$, dist_{k+2}(s, v) = dist_{k+1}(s, v)

Lemma

$$G = (V, E), \ \ell : E \to \mathbb{Z}. \text{ Then for all } s, t \in V,$$
$$\operatorname{dist}_k(s, t) = \min \begin{cases} \operatorname{dist}_{k-1}(s, t) \\ \min_{v \in V} \{ \operatorname{dist}_{k-1}(s, v) + \ell(v, t) \} \end{cases}$$

Corollary

For all $k \geq 0$,

- all $v \in V$, $\operatorname{dist}_k(s, v) \leq \operatorname{dist}_{k-1}(s, v)$
- If all $v \in V$, dist_k $(s, v) = dist_{k-1}(s, v)$
- \implies all $v \in V$, dist_{k+1}(s, v) = dist_k(s, v)
- \implies all $v \in V$, dist_{k+2}(s, v) = dist_{k+1}(s, v) \implies \cdots

Proposition

Proposition

$$G = (V, E), \ \ell : E \to \mathbb{Z}, \ s \in V,$$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles,

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$,

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v)

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

Proof.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_k = v$ be a walk of $(\leq n)$ -edges,

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

Proof.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_k = v$ be a walk of $(\leq n)$ -edges, with length $dist_n(s, v)$.

If k < n,

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_k = v$ be a walk of $(\leq n)$ -edges, with length dist_n(s, v).

If k < n, then this is a (< n)-edge walk and hence of length $\geq \text{dist}_{n-1}(s, v)$.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_k = v$ be a walk of $(\leq n)$ -edges, with length dist_n(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ dist_{n-1}(s, v).
If k = n,

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

Proof.

- If k < n, then this is a (< n)-edge walk and hence of length $\geq \text{dist}_{n-1}(s, v)$.
- If k = n, then the walk visits n + 1 vertices

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

Proof.

- If k < n, then this is a (< n)-edge walk and hence of length $\geq \text{dist}_{n-1}(s, v)$.
- If k = n, then the walk visits n + 1 vertices \implies some vertex is repeated

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

Proof.

- If k < n, then this is a (< n)-edge walk and hence of length $\geq \text{dist}_{n-1}(s, v)$.
- If k = n, then the walk visits n + 1 vertices \implies some vertex is repeated \equiv there is a cycle.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

Proof.

- If k < n, then this is a (< n)-edge walk and hence of length $\geq \text{dist}_{n-1}(s, v)$.
- If k = n, then the walk visits n + 1 vertices \implies some vertex is repeated \equiv there is a cycle. As the cycle is of non-negative length $C \ge 0$,

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

Proof.

- If k < n, then this is a (< n)-edge walk and hence of length $\geq \text{dist}_{n-1}(s, v)$.
- If k = n, then the walk visits n + 1 vertices \implies some vertex is repeated \equiv there is a cycle. As the cycle is of non-negative length $C \ge 0$, we can remove it to obtain a (< n)-edge (s, v)-walk of value $d = \text{dist}_n(s, v) C$

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

Proof.

- If k < n, then this is a (< n)-edge walk and hence of length $\geq \text{dist}_{n-1}(s, v)$.
- If k = n, then the walk visits n + 1 vertices ⇒ some vertex is repeated ≡ there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it to obtain a (< n)-edge (s, v)-walk of value d = dist_n(s, v) C with dist_n(s, v) ≥ d

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v).

Proof.

- If k < n, then this is a (< n)-edge walk and hence of length $\geq \text{dist}_{n-1}(s, v)$.
- If k = n, then the walk visits n + 1 vertices \implies some vertex is repeated \equiv there is a cycle. As the cycle is of non-negative length $C \ge 0$, we can remove it to obtain a (< n)-edge (s, v)-walk of value $d = \text{dist}_n(s, v) C$ with $\text{dist}_n(s, v) \ge d \ge \text{dist}_{n-1}(s, v)$.
Proposition

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $dist_{n-1}(s, v)$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $dist_{n-1}(s, v) \leq dist_n(s, v)$,

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$, then $\lim_{k\to\infty} \operatorname{dist}_k(s, v)$ is finite for all $v \in V$.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$, then $\lim_{k\to\infty} \operatorname{dist}_k(s, v)$ is finite for all $v \in V$.

Proof.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$, then $\lim_{k\to\infty} \operatorname{dist}_k(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary,

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$, then $\lim_{k\to\infty} \operatorname{dist}_k(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, dist_{*n*-1}(*s*, *v*)

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$, then $\lim_{k\to\infty} \operatorname{dist}_k(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, dist_{*n*-1}(*s*, *v*) \leq dist_{*n*}(*s*, *v*)

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$, then $\lim_{k\to\infty} \operatorname{dist}_k(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $dist_{n-1}(s, v) \leq dist_n(s, v) \implies$ for all $v \in V$, $dist_{n-1}(s, v) = dist_n(s, v)$

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$, then $\lim_{k\to\infty} \operatorname{dist}_k(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $dist_{n-1}(s, v) \leq dist_n(s, v) \implies$ for all $v \in V$, $dist_{n-1}(s, v) = dist_n(s, v) = dist_{n+1}(s, v)$

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$, then $\lim_{k\to\infty} \operatorname{dist}_k(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $dist_{n-1}(s, v) \leq dist_n(s, v) \implies$ for all $v \in V$, $dist_{n-1}(s, v) = dist_n(s, v) = dist_{n+1}(s, v) = dist_{n+2}(s, v)$

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$, then $\lim_{k\to\infty} \operatorname{dist}_k(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $dist_{n-1}(s, v) \leq dist_n(s, v) \implies$ for all $v \in V$, $dist_{n-1}(s, v) = dist_n(s, v) = dist_{n+1}(s, v) = dist_{n+2}(s, v) = \cdots$.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$, then $\lim_{k\to\infty} \operatorname{dist}_k(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v) \implies$ for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) = \operatorname{dist}_n(s, v) = \operatorname{dist}_{n+1}(s, v) = \operatorname{dist}_{n+2}(s, v) = \cdots$. As all v are reachable from s

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$, then $\lim_{k\to\infty} \operatorname{dist}_k(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v) \implies$ for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) = \operatorname{dist}_n(s, v) = \operatorname{dist}_{n+1}(s, v) = \operatorname{dist}_{n+2}(s, v) = \cdots$. As all v are reachable from $s \implies -\infty < \operatorname{dist}_{n-1}(s, v) < \infty$ for all k and v.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$, then $\lim_{k\to\infty} \operatorname{dist}_k(s, v)$ is finite for all $v \in V$.

Proof.

By previous corollary, for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v) \Longrightarrow$ for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) = \operatorname{dist}_n(s, v) = \operatorname{dist}_{n+1}(s, v) = \operatorname{dist}_{n+2}(s, v) = \cdots$. As all v are reachable from $s \Longrightarrow -\infty < \operatorname{dist}_{n-1}(s, v) < \infty$ for all k and v. Hence $\operatorname{lim}_{k\to\infty} \operatorname{dist}_k(s, v) = \operatorname{dist}_{n-1}(s, v)$ is finite for all v.

Proposition

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle,

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

Proof.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

Proof.

Let $s \rightsquigarrow u \rightsquigarrow v$ be an (s, v)-walk with length L,

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

Proof.

Let $s \rightsquigarrow u \rightsquigarrow v$ be an (s, v)-walk with length L, where $u \rightsquigarrow u$ is a negative length cycle of length -C < 0.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

Proof.

Let $s \rightsquigarrow u \rightsquigarrow v$ be an (s, v)-walk with length L, where $u \rightsquigarrow u$ is a negative length cycle of length -C < 0. Then consider the (s, v)-walk $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$,

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

Proof.

Let $s \rightsquigarrow u \rightsquigarrow v$ be an (s, v)-walk with length L, where $u \rightsquigarrow u$ is a negative length cycle of length -C < 0. Then consider the (s, v)-walk $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$, which is of value L - C.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

Proof.

Let $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$ be an (s, v)-walk with length L, where $u \rightsquigarrow u$ is a negative length cycle of length -C < 0. Then consider the (s, v)-walk $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$, which is of value L - C. Hence, for any j there is (s, v)-walk of length $L - C \cdot j$.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

Proof.

Let $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$ be an (s, v)-walk with length L, where $u \rightsquigarrow u$ is a negative length cycle of length -C < 0. Then consider the (s, v)-walk $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$, which is of value L - C. Hence, for any j there is (s, v)-walk of length $L - C \cdot j$. Hence $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $dist_{n-1}(s, v) \leq dist_n(s, v)$, $lim_{k\to\infty} dist_k(s, v)$ is finite for all $v \in V$.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $dist_{n-1}(s, v) \leq dist_n(s, v)$, $lim_{k\to\infty} dist_k(s, v)$ is finite for all $v \in V$.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $dist_{n-1}(s, v) \leq dist_n(s, v)$, $lim_{k\to\infty} dist_k(s, v)$ is finite for all $v \in V$.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

Corollary

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $dist_{n-1}(s, v) \leq dist_n(s, v)$, $lim_{k\to\infty} dist_k(s, v)$ is finite for all $v \in V$.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

Corollary

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s.

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $dist_{n-1}(s, v) \leq dist_n(s, v)$, $lim_{k\to\infty} dist_k(s, v)$ is finite for all $v \in V$.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

Corollary

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $dist_{n-1}(s, v) \leq dist_n(s, v)$,

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $dist_{n-1}(s, v) \leq dist_n(s, v)$, $lim_{k\to\infty} dist_k(s, v)$ is finite for all $v \in V$.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k\to\infty} \text{dist}_k(s, v) = -\infty$.

Corollary

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s. If for all $v \in V$, $dist_{n-1}(s, v) \leq dist_n(s, v)$, then there are no negative length cycles.
Shortest Paths, with Negative Lengths (VII)

Theorem

Theorem

 $G = (V, E), \ell : E \to \mathbb{Z}, s \in V$, with every vertex reachable from s.

- 1 If there are no negative length cycles, then for all $v \in V$, dist_{*n*-1}(*s*, *v*) \leq dist_{*n*}(*s*, *v*), and dist_{*n*-1}(*s*, *v*) = lim_{*k*\to\infty} dist_{*k*}(*s*, *v*) = dist(*s*, *v*).
- **2** If for all $v \in V$, dist_{n-1}(s, v) \leq dist_n(s, v), then there are no negative length cycles.

(single source) shortest paths:

(single source) shortest paths: source $s \in V$,

(single source) shortest paths: source $s \in V$, can reach every other node

(single source) shortest paths: source $s \in V$, can reach every other node

 $\texttt{BellmanFord}(G = (V, E), \ \ell : V \to \mathbb{Z}, \ s \in V)$

(single source) shortest paths: source $s \in V$, can reach every other node BellmanFord(G = (V, E), $\ell : V \to \mathbb{Z}$, $s \in V$) for $v \in V$

(single source) shortest paths: source $s \in V$, can reach every other node BellmanFord(G = (V, E), $\ell : V \to \mathbb{Z}$, $s \in V$) for $v \in V$ $d_0[s][v] = \infty$

```
(single source) shortest paths: source s \in V,
can reach every other node
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
for v \in V
d_0[s][v] = \infty
d_0[s][s] = 0
```

```
(single source) shortest paths: source s \in V,
can reach every other node
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
for v \in V
d_0[s][v] = \infty
d_0[s][s] = 0
for 1 \le k \le n.
```

```
(single source) shortest paths: source s \in V,
can reach every other node
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
for v \in V
d_0[s][v] = \infty
d_0[s][s] = 0
for 1 \le k \le n, v \in V
```

```
(single source) shortest paths: source s \in V,
can reach every other node
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
for v \in V
d_0[s][v] = \infty
d_0[s][s] = 0
for 1 \le k \le n, v \in V
d_k[s][v] = d_{k-1}[s][v]
```

```
(single source) shortest paths: source s \in V,
can reach every other node
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
for v \in V
d_0[s][v] = \infty
d_0[s][s] = 0
for 1 \le k \le n, v \in V
d_k[s][v] = d_{k-1}[s][v]
for u \in N^-(v)
```

```
(single source) shortest paths: source s \in V,
can reach every other node
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
for v \in V
d_0[s][v] = \infty
d_0[s][s] = 0
for 1 \le k \le n, v \in V
d_k[s][v] = d_{k-1}[s][v]
for u \in N^-(v)
d_k[s][v] =
```

```
(single source) shortest paths: source s \in V,
can reach every other node
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
for v \in V
d_0[s][v] = \infty
d_0[s][s] = 0
for 1 \le k \le n, v \in V
d_k[s][v] = d_{k-1}[s][v]
for u \in N^-(v)
d_k[s][v] = \min\{d_k[s][v],
```

```
(single source) shortest paths: source s \in V,
can reach every other node
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
for v \in V
d_0[s][v] = \infty
d_0[s][s] = 0
for 1 \le k \le n, v \in V
d_k[s][v] = d_{k-1}[s][v]
for u \in N^-(v)
d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + v
```

```
(single source) shortest paths: source s \in V,
can reach every other node
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
for v \in V
d_0[s][v] = \infty
d_0[s][s] = 0
for 1 \le k \le n, v \in V
d_k[s][v] = d_{k-1}[s][v]
for u \in N^-(v)
d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
```

```
(single source) shortest paths: source s \in V,
can reach every other node
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
for v \in V
d_0[s][v] = \infty
d_0[s][s] = 0
for 1 \le k \le n, v \in V
d_k[s][v] = d_{k-1}[s][v]
for u \in N^-(v)
d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
for v \in V
```

```
(single source) shortest paths: source s \in V,
can reach every other node
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
          d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 \le k \le n, v \in V
          d_k[s][v] = d_{k-1}[s][v]
          for u \in N^-(v)
                d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
          if d_n[s][v] < d_{n-1}[s][v]
```

```
(single source) shortest paths: source s \in V,
can reach every other node
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
          d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 \le k \le n, v \in V
          d_k[s][v] = d_{k-1}[s][v]
          for u \in N^-(v)
               d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
          if d_n[s][v] < d_{n-1}[s][v]
               return ''negative cycle detected''
```

```
(single source) shortest paths: source s \in V,
can reach every other node
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
          d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 \le k \le n, v \in V
          d_k[s][v] = d_{k-1}[s][v]
          for u \in N^-(v)
               d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
          if d_n[s][v] < d_{n-1}[s][v]
                return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

(single source) shortest paths: source $s \in V$,

can reach every other node

```
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
           d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 \le k \le n, v \in V
           d_k[s][v] = d_{k-1}[s][v]
          for u \in N^-(v)
                d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
           if d_n[s][v] < d_{n-1}[s][v]
                return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

(single source) shortest paths: source $s \in V$,

can reach every other node

```
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
           d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 \le k \le n, v \in V
           d_k[s][v] = d_{k-1}[s][v]
          for u \in N^-(v)
                d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
           if d_n[s][v] < d_{n-1}[s][v]
                return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

correctness:

(single source) shortest paths: source $s \in V$,

can reach every other node

```
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
           d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 \le k \le n, v \in V
           d_k[s][v] = d_{k-1}[s][v]
          for u \in N^-(v)
                d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
           if d_n[s][v] < d_{n-1}[s][v]
                return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

correctness: clear

(single source) shortest paths: source $s \in V$,

complexity:

can reach every other node

```
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
           d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 \le k \le n, v \in V
           d_k[s][v] = d_{k-1}[s][v]
          for u \in N^-(v)
                d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
           if d_n[s][v] < d_{n-1}[s][v]
                return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

correctness: clear

(single source) shortest paths: source $s \in V$, can reach every other node BellmanFord($G = (V, E), \ell : V \to \mathbb{Z}, s \in V$) for $v \in V$ $d_0[s][v] = \infty$ $d_0[s][s] = 0$ for $1 \le k \le n$, $v \in V$ $d_k[s][v] = d_{k-1}[s][v]$ for $u \in N^-(v)$ $d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}$ for $v \in V$ if $d_n[s][v] < d_{n-1}[s][v]$ return ''negative cycle detected'' return $d_{n-1}[s][\cdot]$

correctness: clear

complexity:

time

(single source) shortest paths: source $s \in V$, can reach every other node

```
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
           d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 \le k \le n, v \in V
           d_k[s][v] = d_{k-1}[s][v]
           for u \in N^-(v)
                d_{k}[s][v] = \min\{d_{k}[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
           if d_n[s][v] < d_{n-1}[s][v]
                 return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

complexity:

• clearly $O(n^3)$

correctness: clear

(single source) shortest paths: source $s \in V$, can reach every other node

```
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
           d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 \le k \le n, v \in V
           d_k[s][v] = d_{k-1}[s][v]
           for u \in N^-(v)
                d_{k}[s][v] = \min\{d_{k}[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
           if d_n[s][v] < d_{n-1}[s][v]
                 return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

complexity:

• time • clearly $O(n^3)$

better:

correctness: clear

(single source) shortest paths: source $s \in V$, can reach every other node

```
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
           d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 \le k \le n, v \in V
           d_k[s][v] = d_{k-1}[s][v]
           for u \in N^-(v)
                d_{k}[s][v] = \min\{d_{k}[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
           if d_n[s][v] < d_{n-1}[s][v]
                 return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

correctness: clear

complexity:

time
 clearly O(n³)
 better: O(mn).

(single source) shortest paths: source $s \in V$, can reach every other node

```
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
           d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 \le k \le n, v \in V
           d_k[s][v] = d_{k-1}[s][v]
           for \mu \in N^{-}(v)
                d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
           if d_n[s][v] < d_{n-1}[s][v]
                 return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

correctness: clear

complexity:

- time
 - clearly $O(n^3)$
 - better: O(mn), d_k[s][·] updates along edges

(single source) shortest paths: source $s \in V$, can reach every other node

```
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
           d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 \le k \le n, v \in V
           d_k[s][v] = d_{k-1}[s][v]
           for \mu \in N^{-}(v)
                d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
           if d_n[s][v] < d_{n-1}[s][v]
                 return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

correctness: clear

complexity:time

 clearly O(n³)
 better: O(mn), d_k[s][·] updates along edges

space

(single source) shortest paths: source $s \in V$, can reach every other node

```
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
           d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 < k < n, v \in V
           d_k[s][v] = d_{k-1}[s][v]
           for \mu \in N^{-}(v)
                d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
           if d_n[s][v] < d_{n-1}[s][v]
                return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

correctness: clear

complexity:

time

- clearly $O(n^3)$
- better: O(mn), d_k[s][·] updates along edges

space

• clearly $O(n^2)$

(single source) shortest paths: source $s \in V$, can reach every other node

```
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
           d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 < k < n, v \in V
           d_k[s][v] = d_{k-1}[s][v]
           for \mu \in N^{-}(v)
                d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
           if d_n[s][v] < d_{n-1}[s][v]
                return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

correctness: clear

complexity:

time

- clearly $O(n^3)$
- better: O(mn), d_k[s][·] updates along edges

space

• clearly $O(n^2)$

better:

(single source) shortest paths: source $s \in V$, can reach every other node

```
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
           d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 < k < n, v \in V
           d_k[s][v] = d_{k-1}[s][v]
           for \mu \in N^{-}(v)
                d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
           if d_n[s][v] < d_{n-1}[s][v]
                return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

correctness: clear

complexity:

time

- clearly $O(n^3)$
- better: O(mn), d_k[s][·] updates along edges

space

 clearly O(n²)
 better: only store d_{cur}[s][·] and d_{prev}[s][·]

(single source) shortest paths: source $s \in V$, can reach every other node

```
BellmanFord(G = (V, E), \ell : V \to \mathbb{Z}, s \in V)
     for v \in V
           d_0[s][v] = \infty
     d_0[s][s] = 0
     for 1 < k < n, v \in V
           d_k[s][v] = d_{k-1}[s][v]
           for \mu \in N^{-}(v)
                d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
     for v \in V
           if d_n[s][v] < d_{n-1}[s][v]
                return ''negative cycle detected''
     return d_{n-1}[s][\cdot]
```

correctness: clear

complexity:

- time
 - clearly $O(n^3)$
 - better: O(mn), d_k[s][·] updates along edges

space

• clearly $O(n^2)$ • better: only store $d_{cur}[s][\cdot]$ and $d_{prev}[s][\cdot] \implies O(n)$
remarks:

remarks:

compute actual paths

remarks:

remarks:

compute actual paths by storing pointers indicating how d_k[s][·] was updated, e.g.,

 V_{k-1}

remarks:

compute actual paths by storing pointers indicating how d_k[s][·] was updated,
e.g.,
v_{k-1} = arg min

$$u \in V$$

remarks:

• compute actual paths by storing pointers indicating how $d_k[s][\cdot]$ was updated, e.g., $v_{k-1} = \arg\min\{\text{dist}_{k-1}(s, \mu) +$

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \right.$$

remarks:

$$v_{k-1} = \underset{u \in V}{\arg\min} \{ \text{dist}_{k-1}(s, u) + \ell(u, v_k) \} .$$

remarks:

• compute actual paths by storing pointers indicating how $d_k[s][\cdot]$ was updated, e.g., $(s, u) + \ell(u, v_k)$

$$v_{k-1} = \arg\min_{u \in V} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

detecting negative cycles

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - \implies one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in *G*

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - \implies one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G $\implies O(mn^2)$ time

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - \implies one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G $\implies O(mn^2)$ time
 - better:

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - \implies one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G $\implies O(mn^2)$ time
 - *better:* consider G' =

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - ⇒ one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G⇒ $O(mn^2)$ time
 - *better:* consider $G' = (V \cup \{s'\},$

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - ⇒ one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G⇒ $O(mn^2)$ time
 - *better:* consider $G' = (V \cup \{s'\}, E \cup$

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - ⇒ one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G⇒ $O(mn^2)$ time
 - *better:* consider $G' = (V \cup \{s'\}, E \cup \{(s', v)\}_{v \in V})$

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - ⇒ one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G⇒ $O(mn^2)$ time
 - better: consider $G' = (V \cup \{s'\}, E \cup \{(s', v)\}_{v \in V})$ with $\ell'(s', v) = 0$

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - ⇒ one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G⇒ $O(mn^2)$ time
 - better: consider $G' = (V \cup \{s'\}, E \cup \{(s', v)\}_{v \in V})$ with $\ell'(s', v) = 0$
 - \implies all negative cycles in G are reachable from s' in G'

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - ⇒ one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G⇒ $O(mn^2)$ time
 - better: consider $G' = (V \cup \{s'\}, E \cup \{(s', v)\}_{v \in V})$ with $\ell'(s', v) = 0$
 - \implies all negative cycles in G are reachable from s' in G'
 - \implies one Bellman-Ford required

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - ⇒ one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G⇒ $O(mn^2)$ time
 - better: consider $G' = (V \cup \{s'\}, E \cup \{(s', v)\}_{v \in V})$ with $\ell'(s', v) = 0$
 - \implies all negative cycles in G are reachable from s' in G'
 - \implies one Bellman-Ford required \implies O(mn) time

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - ⇒ one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G⇒ $O(mn^2)$ time
 - better: consider $G' = (V \cup \{s'\}, E \cup \{(s', v)\}_{v \in V})$ with $\ell'(s', v) = 0$
 - \implies all negative cycles in G are reachable from s' in G'
 - \implies one Bellman-Ford required \implies O(mn) time
- directed *acyclic* graphs

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - ⇒ one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G⇒ $O(mn^2)$ time
 - better: consider $G' = (V \cup \{s'\}, E \cup \{(s', v)\}_{v \in V})$ with $\ell'(s', v) = 0$
 - \implies all negative cycles in G are reachable from s' in G'
 - \implies one Bellman-Ford required \implies O(mn) time
- directed acyclic graphs
 - no (negative) cycles

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - ⇒ one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G⇒ $O(mn^2)$ time
 - better: consider $G' = (V \cup \{s'\}, E \cup \{(s', v)\}_{v \in V})$ with $\ell'(s', v) = 0$
 - \implies all negative cycles in G are reachable from s' in G'
 - \implies one Bellman-Ford required \implies O(mn) time
- directed acyclic graphs
 - no (negative) cycles
 - can simplify Bellman-Ford so dist_k (s, \cdot) only updates v_k ,

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - ⇒ one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G⇒ $O(mn^2)$ time
 - better: consider $G' = (V \cup \{s'\}, E \cup \{(s', v)\}_{v \in V})$ with $\ell'(s', v) = 0$
 - \implies all negative cycles in G are reachable from s' in G'
 - \implies one Bellman-Ford required \implies O(mn) time
- directed acyclic graphs
 - no (negative) cycles
 - can simplify Bellman-Ford so dist_k(s, ·) only updates v_k, according to topological ordering v₁ ≺ v₂ ≺ · · · ≺ v_n

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - \implies one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G $\implies O(mn^2)$ time
 - better: consider $G' = (V \cup \{s'\}, E \cup \{(s', v)\}_{v \in V})$ with $\ell'(s', v) = 0$
 - \implies all negative cycles in G are reachable from s' in G'
 - \implies one Bellman-Ford required \implies O(mn) time
- directed acyclic graphs
 - no (negative) cycles
 - can simplify Bellman-Ford so dist_k(s, ·) only updates v_k, according to topological ordering v₁ ≺ v₂ ≺ ··· ≺ v_n yields Dijkstra-esque algorithm

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - \implies one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G $\implies O(mn^2)$ time
 - better: consider $G' = (V \cup \{s'\}, E \cup \{(s', v)\}_{v \in V})$ with $\ell'(s', v) = 0$
 - \implies all negative cycles in G are reachable from s' in G'
 - \implies one Bellman-Ford required \implies O(mn) time
- directed acyclic graphs
 - no (negative) cycles
 - can simplify Bellman-Ford so dist_k(s,·) only updates v_k , according to topological ordering $v_1 \prec v_2 \prec \cdots \prec v_n$ yields Dijkstra-esque algorithm
 - $\implies O(m+n)$ time

remarks:

$$v_{k-1} = \underset{u \in V}{\operatorname{arg\,min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from s in G
 - \implies one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G $\implies O(mn^2)$ time
 - better: consider $G' = (V \cup \{s'\}, E \cup \{(s', v)\}_{v \in V})$ with $\ell'(s', v) = 0$
 - \implies all negative cycles in G are reachable from s' in G'
 - \implies one Bellman-Ford required \implies O(mn) time
- directed acyclic graphs
 - no (negative) cycles
 - can simplify Bellman-Ford so dist_k(s,·) only updates v_k , according to topological ordering $v_1 \prec v_2 \prec \cdots \prec v_n$ yields Dijkstra-esque algorithm
 - $\implies O(m+n)$ time (exercise)

Definition

Definition

$$G = (V, E)$$
 directed (simple) graph, $\ell : E \to \mathbb{Z}$.

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to: given $s, t \in V$,

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

• given $s, t \in V$, find a minimum length (s, t)-path

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

• given $s, t \in V$, find a minimum length (s, t)-path

```
• given s \in V,
```

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- **given** $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$
Definition

- **given** $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)

Definition

- **given** $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$

Definition

- **given** $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

single-source:

Dijkstra:

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- Dijkstra:
 - non-negative lengths

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- Dijkstra:
 - non-negative lengths
 - $O((m+n)\log n)$ time

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- Dijkstra:
 - non-negative lengths
 - $O((m+n)\log n)$ time (heaps),

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- Dijkstra:
 - non-negative lengths
 - $O((m+n)\log n)$ time (heaps), $O(m+n\log n)$

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- Dijkstra:
 - non-negative lengths
 - $O((m+n)\log n)$ time (heaps), $O(m+n\log n)$ (Fibonacci heaps)

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- Dijkstra:
 - non-negative lengths
 - $O((m+n)\log n)$ time (heaps), $O(m+n\log n)$ (Fibonacci heaps)
- Bellman-Ford:

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- Dijkstra:
 - non-negative lengths
 - $O((m+n)\log n)$ time (heaps), $O(m+n\log n)$ (Fibonacci heaps)
- Bellman-Ford:
 - arbitrary weights

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- Dijkstra:
 - non-negative lengths
 - $O((m+n)\log n)$ time (heaps), $O(m+n\log n)$ (Fibonacci heaps)
- Bellman-Ford:
 - arbitrary weights
 - O(mn) time

Definition

$$G = (V, E)$$
 directed (simple) graph, $\ell : E \to \mathbb{Z}$.

Definition

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- **given** $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

all-pairs:

n runs of Dijkstra:

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- **given** $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- n runs of Dijkstra:
 - non-negative lengths

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- n runs of Dijkstra:
 - non-negative lengths
 - $O(n \cdot (m+n) \log n)$ time (heaps),

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- n runs of Dijkstra:
 - non-negative lengths
 - $O(n \cdot (m+n) \log n)$ time (heaps), $O(n \cdot (m+n \log n))$ (Fibonacci heaps)

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- n runs of Dijkstra:
 - non-negative lengths
 - $O(n \cdot (m+n) \log n)$ time (heaps), $O(n \cdot (m+n \log n))$ (Fibonacci heaps)
- *n* runs of *Bellman-Ford*:

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- n runs of Dijkstra:
 - non-negative lengths
 - $O(n \cdot (m+n) \log n)$ time (heaps), $O(n \cdot (m+n \log n))$ (Fibonacci heaps)
- *n* runs of *Bellman-Ford*:
 - arbitrary weights

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- n runs of Dijkstra:
 - non-negative lengths
 - $O(n \cdot (m+n) \log n)$ time (heaps), $O(n \cdot (m+n \log n))$ (Fibonacci heaps)
- *n* runs of *Bellman-Ford*:
 - arbitrary weights
 - $O(n \cdot mn)$ time

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- **given** $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

- n runs of Dijkstra:
 - non-negative lengths
 - $O(n \cdot (m+n) \log n)$ time (heaps), $O(n \cdot (m+n \log n))$ (Fibonacci heaps)
- *n* runs of *Bellman-Ford*:
 - arbitrary weights
 - $O(n \cdot mn)$ time $\mapsto \Theta(n^4)$ if $m = \Theta(n^2)$

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- **given** $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

all-pairs:

- n runs of Dijkstra:
 - non-negative lengths
 - $O(n \cdot (m+n) \log n)$ time (heaps), $O(n \cdot (m+n \log n))$ (Fibonacci heaps)
- *n* runs of *Bellman-Ford*:
 - arbitrary weights
 - $O(n \cdot mn)$ time $\mapsto \Theta(n^4)$ if $m = \Theta(n^2)$

question: can we do better?

idea:

idea: use a new parameterization of the subproblems

idea: use a new parameterization of the subproblems

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

idea: use a new parameterization of the subproblems

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. Order V as $v_1 \prec v_2 \prec \cdots \prec v_n$.

idea: use a new parameterization of the subproblems

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. Order V as $v_1 \prec v_2 \prec \cdots \prec v_n$. A (u, v)-walk $u = w_0 \to w_1 \to \cdots \to w_i = v$

idea: use a new parameterization of the subproblems

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. Order V as $v_1 \prec v_2 \prec \cdots \prec v_n$. A (u, v)-walk $u = w_0 \to w_1 \to \cdots \to w_i = v$ has **intermediate index** $\leq j$,

idea: use a new parameterization of the subproblems

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. Order V as $v_1 \prec v_2 \prec \cdots \prec v_n$. A (u, v)-walk $u = w_0 \to w_1 \to \cdots \to w_i = v$ has **intermediate index** $\leq j$, if $w_1, \ldots, w_{i-1} \in \{v_1, \ldots, v_j\}$.

idea: use a new parameterization of the subproblems

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. Order V as $v_1 \prec v_2 \prec \cdots \prec v_n$. A (u, v)-walk $u = w_0 \to w_1 \to \cdots \to w_i = v$ has **intermediate index** $\leq j$, if $w_1, \ldots, w_{i-1} \in \{v_1, \ldots, v_j\}$. For $s, t \in V$,

idea: use a new parameterization of the subproblems

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. Order V as $v_1 \prec v_2 \prec \cdots \prec v_n$. A (u, v)-walk $u = w_0 \to w_1 \to \cdots \to w_i = v$ has **intermediate index** $\leq j$, if $w_1, \ldots, w_{i-1} \in \{v_1, \ldots, v_j\}$. For $s, t \in V$, define dist^k(s, t)
Definition

Definition

Definition

Definition

• dist⁰(
$$v_3, v_4$$
) =

Definition

• dist⁰(
$$v_3, v_4$$
) = $\ell(v_3, v_4)$ = 8

Definition

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. Order V as $v_1 \prec v_2 \prec \cdots \prec v_n$. A (u, v)-walk $u = w_0 \to w_1 \to \cdots \to w_i = v$ has **intermediate index** $\leq j$, if $w_1, \ldots, w_{i-1} \in \{v_1, \ldots, v_j\}$. For $s, t \in V$, define dist^k(s, t) to be the length of the shortest (s, t)-walk of intermediate index $\leq k$.

dist⁰(v₃, v₄) = ℓ(v₃, v₄) = 8
dist¹(v₃, v₄) = 5

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. Order V as $v_1 \prec v_2 \prec \cdots \prec v_n$. A (u, v)-walk $u = w_0 \to w_1 \to \cdots \to w_i = v$ has **intermediate index** $\leq j$, if $w_1, \ldots, w_{i-1} \in \{v_1, \ldots, v_j\}$. For $s, t \in V$, define dist^k(s, t) to be the length of the shortest (s, t)-walk of intermediate index $\leq k$.

• dist⁰(v_3, v_4) = $\ell(v_3, v_4) = 8$

• dist¹
$$(v_3, v_4) = 5$$

• dist²(v_3, v_4) =

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. Order V as $v_1 \prec v_2 \prec \cdots \prec v_n$. A (u, v)-walk $u = w_0 \to w_1 \to \cdots \to w_i = v$ has **intermediate index** $\leq j$, if $w_1, \ldots, w_{i-1} \in \{v_1, \ldots, v_j\}$. For $s, t \in V$, define dist^k(s, t) to be the length of the shortest (s, t)-walk of intermediate index $\leq k$.

• dist⁰(v_3, v_4) = $\ell(v_3, v_4) = 8$

• dist¹(
$$v_3, v_4$$
) = 5

• dist²(v_3, v_4) = 4

Lemma

$$G = (V, E),$$

Lemma

$$G = (V, E), \ell : E \to \mathbb{Z},$$

Lemma

G = (V, E), $\ell : E \to \mathbb{Z}$, with no negative cycles.

Lemma

G = (V, E), $\ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$,

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^{0}(s, t) = \ell(s, t)$,

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$dist^k(s,t) =$$

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, dist⁰ $(s, t) = \ell(s, t)$, and

$$\operatorname{dist}^{k}(s,t) = \min \left\{ \right.$$

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^{0}(s, t) = \ell(s, t)$, and

dist^k(s, t) = min
$$\begin{cases} dist^{k-1}(s, t) \\ \end{cases}$$

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$\mathsf{dist}^k(s,t) = \min egin{cases} \mathsf{dist}^{k-1}(s,t) \ \mathsf{dist}^{k-1}(s,v_k) + \end{cases}$$

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$dist^{k}(s,t) = \min \begin{cases} dist^{k-1}(s,t) \\ dist^{k-1}(s,v_{k}) + dist^{k-1}(v_{k},t) \end{cases}$$

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$\mathsf{dist}^{k}(s,t) = \min \begin{cases} \mathsf{dist}^{k-1}(s,t) \\ \mathsf{dist}^{k-1}(s,v_{k}) + \mathsf{dist}^{k-1}(v_{k},t) \end{cases}$$

Proof.

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$\mathsf{dist}^{k}(s,t) = \min \begin{cases} \mathsf{dist}^{k-1}(s,t) \\ \mathsf{dist}^{k-1}(s,v_{k}) + \mathsf{dist}^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0$

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$\mathsf{dist}^{k}(s,t) = \min \begin{cases} \mathsf{dist}^{k-1}(s,t) \\ \mathsf{dist}^{k-1}(s,v_{k}) + \mathsf{dist}^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1$

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$\mathsf{dist}^{k}(s,t) = \min \begin{cases} \mathsf{dist}^{k-1}(s,t) \\ \mathsf{dist}^{k-1}(s,v_{k}) + \mathsf{dist}^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2$

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$\mathsf{dist}^{k}(s,t) = \min \begin{cases} \mathsf{dist}^{k-1}(s,t) \\ \mathsf{dist}^{k-1}(s,v_{k}) + \mathsf{dist}^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots$

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$\mathsf{dist}^{k}(s,t) = \min \begin{cases} \mathsf{dist}^{k-1}(s,t) \\ \mathsf{dist}^{k-1}(s,v_{k}) + \mathsf{dist}^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_i = t$

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$\mathsf{dist}^{k}(s,t) = \min \begin{cases} \mathsf{dist}^{k-1}(s,t) \\ \mathsf{dist}^{k-1}(s,v_{k}) + \mathsf{dist}^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_i = t$ be a shortest length (s, t)-walk

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$\operatorname{dist}^{k}(s,t) = \min \begin{cases} \operatorname{dist}^{k-1}(s,t) \\ \operatorname{dist}^{k-1}(s,v_{k}) + \operatorname{dist}^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_i = t$ be a shortest length (s, t)-walk of intermediate index $\leq k$

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$\operatorname{dist}^{k}(s,t) = \min \begin{cases} \operatorname{dist}^{k-1}(s,t) \\ \operatorname{dist}^{k-1}(s,v_{k}) + \operatorname{dist}^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_i = t$ be a shortest length (s, t)-walk of intermediate index $\leq k$ and length dist^k(s, t).

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$dist^{k}(s,t) = \min \begin{cases} dist^{k-1}(s,t) \\ dist^{k-1}(s,v_{k}) + dist^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_i = t$ be a shortest length (s, t)-walk of intermediate index $\leq k$ and length dist^k(s, t). There are two cases:

• index < k:

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$dist^{k}(s,t) = \min \begin{cases} dist^{k-1}(s,t) \\ dist^{k-1}(s,v_{k}) + dist^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_i = t$ be a shortest length (s, t)-walk of intermediate index $\leq k$ and length dist^k(s, t). There are two cases:

• index < k: hence is of value dist^{k-1}(s, t)

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$dist^{k}(s,t) = \min \begin{cases} dist^{k-1}(s,t) \\ dist^{k-1}(s,v_{k}) + dist^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_i = t$ be a shortest length (s, t)-walk of intermediate index $\leq k$ and length dist^k(s, t). There are two cases:

• index
$$< k$$
: hence is of value dist^{k-1}(s, t)

• index =
$$k$$
:

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$\operatorname{dist}^{k}(s,t) = \min \begin{cases} \operatorname{dist}^{k-1}(s,t) \\ \operatorname{dist}^{k-1}(s,v_{k}) + \operatorname{dist}^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_i = t$ be a shortest length (s, t)-walk of intermediate index $\leq k$ and length dist^k(s, t). There are two cases:

- index < k: hence is of value dist^{k-1}(s, t)
- index = k:

no negative cycles

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$dist^{k}(s,t) = \min \begin{cases} dist^{k-1}(s,t) \\ dist^{k-1}(s,v_{k}) + dist^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_i = t$ be a shortest length (s, t)-walk of intermediate index $\leq k$ and length dist^k(s, t). There are two cases:

- index < k: hence is of value dist^{k-1}(s, t)
- index = k:
 - no negative cycles \implies shortest walk is path

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$dist^{k}(s,t) = \min \begin{cases} dist^{k-1}(s,t) \\ dist^{k-1}(s,v_{k}) + dist^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_i = t$ be a shortest length (s, t)-walk of intermediate index $\leq k$ and length dist^k(s, t). There are two cases:

- index < k: hence is of value dist^{k-1}(s, t)
- index = k:

• no negative cycles \implies shortest *walk* is *path* \implies v_k appears exactly once

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$dist^{k}(s,t) = \min \begin{cases} dist^{k-1}(s,t) \\ dist^{k-1}(s,v_{k}) + dist^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_i = t$ be a shortest length (s, t)-walk of intermediate index $\leq k$ and length dist^k(s, t). There are two cases:

- index < k: hence is of value dist^{k-1}(s, t)
- index = k:

• no negative cycles \implies shortest *walk* is *path* \implies v_k appears exactly once

 \implies $s \rightsquigarrow v_k$ path and $v_k \rightsquigarrow t$ path
All-Pairs Shortest Paths (IV)

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$dist^{k}(s,t) = \min \begin{cases} dist^{k-1}(s,t) \\ dist^{k-1}(s,v_{k}) + dist^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_i = t$ be a shortest length (s, t)-walk of intermediate index $\leq k$ and length dist^k(s, t). There are two cases:

- index < k: hence is of value dist^{k-1}(s, t)
- index = k:

• no negative cycles \implies shortest walk is path \implies v_k appears exactly once

 \implies $s \rightsquigarrow v_k$ path and $v_k \rightsquigarrow t$ path are of index < k,

All-Pairs Shortest Paths (IV)

Lemma

 $G = (V, E), \ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$\operatorname{dist}^{k}(s,t) = \min \begin{cases} \operatorname{dist}^{k-1}(s,t) \\ \operatorname{dist}^{k-1}(s,v_{k}) + \operatorname{dist}^{k-1}(v_{k},t) \end{cases}$$

Proof.

Let $s = w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_i = t$ be a shortest length (s, t)-walk of intermediate index $\leq k$ and length dist^k(s, t). There are two cases:

- index < k: hence is of value dist^{k-1}(s, t)
- index = k:

• no negative cycles \implies shortest *walk* is *path* \implies v_k appears exactly once \implies $s \rightsquigarrow v_k$ path and $v_k \rightsquigarrow t$ path are of index < k, and must be *shortest* paths

FloydWarshall(G = (V, E), $\ell : V \to \mathbb{Z}$)

FloydWarshall(
$$G = (V, E)$$
, $\ell : V \to \mathbb{Z}$)
for $1 \le i, j \le n$

FloydWarshall(
$$G = (V, E)$$
, $\ell : V \to \mathbb{Z}$)
for $1 \le i, j \le n$
 $d^{0}[i][j] = \ell(i, j)$

```
FloydWarshall(G = (V, E), \ell : V \to \mathbb{Z})
for 1 \le i, j \le n
d^{0}[i][j] = \ell(i, j)
for 1 \le k \le n
```

```
FloydWarshall(G = (V, E), \ell : V \to \mathbb{Z})
for 1 \le i, j \le n
d^0[i][j] = \ell(i, j)
for 1 \le k \le n
for 1 \le i, j \le n
```

```
FloydWarshall(G = (V, E), \ell : V \to \mathbb{Z})
for 1 \le i, j \le n
d^0[i][j] = \ell(i, j)
for 1 \le k \le n
for 1 \le i, j \le n
d^k[i][j] =
```

```
FloydWarshall(G = (V, E), \ell : V \to \mathbb{Z})
for 1 \le i, j \le n
d^0[i][j] = \ell(i, j)
for 1 \le k \le n
for 1 \le i, j \le n
d^k[i][j] = \min \left\{
```

FloydWarshall(
$$G = (V, E)$$
, $\ell : V \to \mathbb{Z}$)
for $1 \le i, j \le n$
 $d^{0}[i][j] = \ell(i, j)$
for $1 \le k \le n$
for $1 \le i, j \le n$
 $d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \end{cases}$

FloydWarshall(
$$G = (V, E)$$
, $\ell : V \to \mathbb{Z}$)
for $1 \le i, j \le n$
 $d^0[i][j] = \ell(i, j)$
for $1 \le k \le n$
for $1 \le i, j \le n$
 $d^k[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] \end{cases}$

FloydWarshall (
$$G = (V, E)$$
, $\ell : V \to \mathbb{Z}$)
for $1 \le i, j \le n$
 $d^0[i][j] = \ell(i, j)$
for $1 \le k \le n$
for $1 \le i, j \le n$
 $d^k[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}$

ł

FloydWarshall(
$$G = (V, E)$$
, $\ell : V \to \mathbb{Z}$)
for $1 \le i, j \le n$
 $d^0[i][j] = \ell(i, j)$
for $1 \le k \le n$
for $1 \le i, j \le n$
 $d^k[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}$
for $1 \le i \le n$

FloydWarshall (
$$G = (V, E)$$
, $\ell : V \to \mathbb{Z}$)
for $1 \le i, j \le n$
 $d^0[i][j] = \ell(i, j)$
for $1 \le k \le n$
for $1 \le i, j \le n$
 $d^k[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}$
for $1 \le i \le n$
if $d^n[i][i] < 0$

$$\begin{aligned} \mathsf{FloydWarshall}(G = (V, E), \ \ell : V \to \mathbb{Z}) \\ & \text{for } 1 \leq i, j \leq n \\ & d^0[i][j] = \ell(i, j) \\ & \text{for } 1 \leq k \leq n \\ & \text{for } 1 \leq i, j \leq n \\ & d^k[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases} \\ & \text{for } 1 \leq i \leq n \\ & \text{if } d^n[i][i] < 0 \\ & \text{return ``negative cycle detected`,'} \end{aligned}$$

```
FloydWarshall(G = (V, E), \ell : V \to \mathbb{Z})
      for 1 < i, i < n
             d^{0}[i][j] = \ell(i, j)
      for 1 < k < n
            for 1 < i, j < n
                  d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
      for 1 \le i \le n
            if d^{n}[i][i] < 0
                   return ('negative cycle detected''
      return d^n[\cdot][\cdot]
```

```
FloydWarshall(G = (V, E), \ell : V \to \mathbb{Z})
      for 1 < i, i < n
             d^{0}[i][j] = \ell(i, j)
      for 1 < k < n
            for 1 < i, j < n
                  d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
      for 1 \le i \le n
            if d^{n}[i][i] < 0
                   return ('negative cycle detected''
      return d^n[\cdot][\cdot]
```

remarks:

FloydWarshall(
$$G = (V, E)$$
, $\ell : V \to \mathbb{Z}$)
for $1 \le i, j \le n$
 $d^0[i][j] = \ell(i, j)$
for $1 \le k \le n$
for $1 \le i, j \le n$
 $d^k[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}$
for $1 \le i \le n$
if $d^n[i][i] < 0$
return ''negative cycle detected',
return $d^n[\cdot][\cdot]$

remarks:

compute actual paths

```
FlovdWarshall(G = (V, E), \ell : V \to \mathbb{Z})
      for 1 < i, i < n
            d^{0}[i][i] = \ell(i, i)
      for 1 < k < n
            for 1 < i, j < n
                  d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
      for 1 < i < n
            if d^{n}[i][i] < 0
                   return ('negative cycle detected''
      return d^n[\cdot][\cdot]
```

remarks:

 compute actual paths by storing pointers indicating how d^k[·][·] was updated

```
FlovdWarshall(G = (V, E), \ell : V \to \mathbb{Z})
      for 1 < i, i < n
            d^{0}[i][i] = \ell(i, i)
      for 1 < k < n
            for 1 < i, j < n
                  d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
      for 1 < i < n
            if d^{n}[i][i] < 0
                   return ('negative cycle detected''
      return d^n[\cdot][\cdot]
```

remarks:

 compute actual paths by storing pointers indicating how d^k[·][·] was updated

complexity:

```
FlovdWarshall(G = (V, E), \ell : V \to \mathbb{Z})
      for 1 < i, i < n
            d^{0}[i][i] = \ell(i, i)
      for 1 < k < n
            for 1 < i, j < n
                  d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
      for 1 < i < n
            if d^{n}[i][i] < 0
                   return ('negative cycle detected''
      return d^n[\cdot][\cdot]
```

remarks:

 compute actual paths by storing pointers indicating how d^k[·][·] was updated

complexity: $O(n^3)$ time

```
FlovdWarshall(G = (V, E), \ell : V \to \mathbb{Z})
      for 1 < i, i < n
            d^{0}[i][i] = \ell(i, i)
      for 1 < k < n
            for 1 < i, j < n
                  d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
      for 1 < i < n
            if d^{n}[i][i] < 0
                   return ('negative cycle detected''
      return d^n[\cdot][\cdot]
```

remarks:

 compute actual paths by storing pointers indicating how d^k[·][·] was updated


```
FlovdWarshall(G = (V, E), \ell : V \to \mathbb{Z})
      for 1 < i, i < n
            d^{0}[i][i] = \ell(i, i)
      for 1 < k < n
            for 1 < i, j < n
                  d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
      for 1 < i < n
            if d^{n}[i][i] < 0
                   return ('negative cycle detected''
      return d^n[\cdot][\cdot]
```

remarks:

 compute actual paths by storing pointers indicating how d^k[·][·] was updated

complexity:

- $O(n^3)$ time
- space
 - clearly $O(n^3)$

```
FlovdWarshall(G = (V, E), \ell : V \to \mathbb{Z})
      for 1 < i, i < n
            d^{0}[i][i] = \ell(i, i)
      for 1 < k < n
            for 1 < i, j < n
                  d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
      for 1 < i < n
            if d^{n}[i][i] < 0
                   return ('negative cycle detected''
      return d^n[\cdot][\cdot]
```

remarks:

 compute actual paths by storing pointers indicating how d^k[·][·] was updated

complexity:

- $O(n^3)$ time
- space
 - clearly $O(n^3)$
 - better:

```
FlovdWarshall(G = (V, E), \ell : V \to \mathbb{Z})
      for 1 < i, i < n
            d^{0}[i][i] = \ell(i, i)
      for 1 < k < n
            for 1 < i, j < n
                  d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
      for 1 < i < n
            if d^{n}[i][i] < 0
                   return ('negative cycle detected''
      return d^n[\cdot][\cdot]
```

remarks:

 compute actual paths by storing pointers indicating how d^k[·][·] was updated

complexity:

• $O(n^3)$ time

space

- clearly $O(n^3)$
- better: only store d^{cur}[·][·] and d^{prev}[·][·]

```
FlovdWarshall(G = (V, E), \ell : V \to \mathbb{Z})
      for 1 < i, i < n
            d^{0}[i][i] = \ell(i, i)
      for 1 < k < n
            for 1 < i, j < n
                  d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
      for 1 < i < n
            if d^{n}[i][i] < 0
                   return ('negative cycle detected''
      return d^n[\cdot][\cdot]
```

remarks:

 compute actual paths by storing pointers indicating how d^k[·][·] was updated

complexity:

• $O(n^3)$ time

space

- clearly $O(n^3)$
- *better:* only store $d^{cur}[\cdot][\cdot]$ and $d^{prev}[\cdot][\cdot] \implies O(n^2)$

FlovdWarshall($G = (V, E), \ell : V \to \mathbb{Z}$) for 1 < i, i < n $d^{0}[i][i] = \ell(i, i)$ for 1 < k < nfor 1 < i, j < n $d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}$ **for** 1 < i < n**if** $d^{n}[i][i] < 0$ return ('negative cycle detected'' **return** $d^n[\cdot][\cdot]$

remarks:

 compute actual paths by storing pointers indicating how d^k[·][·] was updated

complexity:

- $O(n^3)$ time
- space
 - clearly $O(n^3)$ • better: only store $d^{cur}[\cdot][\cdot]$ and $d^{prev}[\cdot][\cdot] \implies O(n^2)$

correctness:

```
FlovdWarshall(G = (V, E), \ell : V \to \mathbb{Z})
      for 1 < i, i < n
            d^{0}[i][i] = \ell(i, i)
      for 1 < k < n
            for 1 < i, j < n
                  d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
      for 1 < i < n
            if d^{n}[i][i] < 0
                   return ('negative cycle detected''
      return d^n[\cdot][\cdot]
```

remarks:

 compute actual paths by storing pointers indicating how d^k[·][·] was updated

complexity:

• $O(n^3)$ time

space

- clearly $O(n^3)$
- *better:* only store $d^{cur}[\cdot][\cdot]$ and $d^{prev}[\cdot][\cdot] \implies O(n^2)$

correctness:

• if *no* negative cycles, correctness is clear

```
FlovdWarshall(G = (V, E), \ell : V \to \mathbb{Z})
      for 1 < i, i < n
            d^{0}[i][i] = \ell(i, i)
      for 1 < k < n
            for 1 < i, j < n
                  d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
      for 1 < i < n
            if d^{n}[i][i] < 0
                   return ('negative cycle detected''
      return d^n[\cdot][\cdot]
```

remarks:

 compute actual paths by storing pointers indicating how d^k[·][·] was updated

complexity:

• $O(n^3)$ time

space

- clearly $O(n^3)$
- *better:* only store $d^{cur}[\cdot][\cdot]$ and $d^{prev}[\cdot][\cdot] \implies O(n^2)$

correctness:

- if *no* negative cycles, correctness is clear
- if *some* negative cycle, ???

Proposition

$$G = (V, E), \ \ell : E \to \mathbb{Z},$$

Proposition

$$G = (V, E), \ell : E \to \mathbb{Z}$$
, with some negative cycle.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \leq n$ be the minimum index of a negative length cycle
Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \leq n$ be the minimum index of a negative length cycle k

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{n \in A} c_n$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{n \in A} \lim_{i \in C} \max_{i: v_i \in C} i$.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{n \in C} \max_{i: v_i \in C} i$. Pick such a cycle C,

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{negative length C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \leq n$ be the minimum index of a negative length cycle $k = \min_{\text{negative length } C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \leq n$ be the minimum index of a negative length cycle $k = \min_{\text{negative length } C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \leq n$ be the minimum index of a negative length cycle $k = \min_{\text{negative length } C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \leq n$ be the minimum index of a negative length cycle $k = \min_{\text{negative length } C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$.

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \leq n$ be the minimum index of a negative length cycle $k = \min_{\text{negative length } C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k,

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{\text{negative length } C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = \text{dist}^{k-1}(k, i)$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{\text{negative length } C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = \text{dist}^{k-1}(k, i) \le \ell(w_0, w_1)$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{negative length C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = \operatorname{dist}^{k-1}(k, i) \le \ell(w_0, w_1)$ $d^{k-1}[i][k] = \operatorname{dist}^{k-1}(i, k)$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{negative length C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = \operatorname{dist}^{k-1}(k, i) \le \ell(w_0, w_1)$ $d^{k-1}[i][k] = \operatorname{dist}^{k-1}(i, k) \le \ell(w_1, w_2) + \cdots + \ell(w_{j-1}, w_j)$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \leq n$ be the minimum index of a negative length cycle $k = \min_{negative length C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = \operatorname{dist}^{k-1}(k, i) \leq \ell(w_0, w_1)$ $d^{k-1}[i][k] = \operatorname{dist}^{k-1}(i, k) \leq \ell(w_1, w_2) + \cdots + \ell(w_{j-1}, w_j)$ $\Rightarrow d^k[k][k]$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \leq n$ be the minimum index of a negative length cycle $k = \min_{negative \ length \ C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = \operatorname{dist}^{k-1}(k, i) \leq \ell(w_0, w_1)$ $d^{k-1}[i][k] = \operatorname{dist}^{k-1}(i, k) \leq \ell(w_1, w_2) + \cdots + \ell(w_{j-1}, w_j)$ $\implies d^k[k][k] \leq d^{k-1}[k][i] + d^{k-1}[i][k]$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \leq n$ be the minimum index of a negative length cycle $k = \min_{negative length C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = \operatorname{dist}^{k-1}(k, i) \leq \ell(w_0, w_1)$ $d^{k-1}[i][k] = \operatorname{dist}^{k-1}(i, k) \leq \ell(w_1, w_2) + \cdots + \ell(w_{j-1}, w_j)$ $\Rightarrow d^k[k][k] \leq d^{k-1}[k][i] + d^{k-1}[i][k] = \ell(w_0, w_1) + \cdots + \ell(w_{j-1}, w_j)$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \leq n$ be the minimum index of a negative length cycle $k = \min_{negative length C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = \operatorname{dist}^{k-1}(k, i) \leq \ell(w_0, w_1)$ $d^{k-1}[i][k] = \operatorname{dist}^{k-1}(i, k) \leq \ell(w_1, w_2) + \cdots + \ell(w_{j-1}, w_j)$ $\Rightarrow d^k[k][k] \leq d^{k-1}[k][i] + d^{k-1}[i][k] = \ell(w_0, w_1) + \cdots + \ell(w_{j-1}, w_j) = \ell(C)$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{negative length C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = \operatorname{dist}^{k-1}(k, i) \le \ell(w_0, w_1)$ $d^{k-1}[i][k] = \operatorname{dist}^{k-1}(i, k) \le \ell(w_1, w_2) + \cdots + \ell(w_{j-1}, w_j)$ $\Rightarrow d^k[k][k] \le d^{k-1}[k][i] + d^{k-1}[i][k] = \ell(w_0, w_1) + \cdots + \ell(w_{j-1}, w_j) = \ell(C) < 0$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{negative length C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = dist^{k-1}(k, i) \le \ell(w_0, w_1)$ $d^{k-1}[i][k] = dist^{k-1}(i, k) \le \ell(w_1, w_2) + \cdots + \ell(w_{j-1}, w_j)$ $d^k[k][k] \le d^{k-1}[k][i] + d^{k-1}[i][k] = \ell(w_0, w_1) + \cdots + \ell(w_{j-1}, w_j) = \ell(C) < 0$ $d^{k+1}[k][k]$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{negative length C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = dist^{k-1}(k, i) \le \ell(w_0, w_1)$ $d^{k-1}[i][k] = dist^{k-1}(i, k) \le \ell(w_1, w_2) + \cdots + \ell(w_{j-1}, w_j)$ $d^k[k][k] \le d^{k-1}[k][i] + d^{k-1}[i][k] = \ell(w_0, w_1) + \cdots + \ell(w_{j-1}, w_j) = \ell(C) < 0$ $d^{k+1}[k][k] \le d^k[k][k]$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{negative length C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = dist^{k-1}(k, i) \le \ell(w_0, w_1)$ $d^{k-1}[i][k] = dist^{k-1}(i, k) \le \ell(w_1, w_2) + \cdots + \ell(w_{j-1}, w_j)$ $d^k[k][k] \le d^{k-1}[k][i] + d^{k-1}[i][k] = \ell(w_0, w_1) + \cdots + \ell(w_{j-1}, w_j) = \ell(C) < 0$ $d^{k+1}[k][k] \le d^k[k][k] < 0$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{negative length C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = dist^{k-1}(k, i) \le \ell(w_0, w_1)$ $d^{k-1}[i][k] = dist^{k-1}(i, k) \le \ell(w_1, w_2) + \cdots + \ell(w_{j-1}, w_j)$ $d^k[k][k] \le d^{k-1}[k][i] + d^{k-1}[i][k] = \ell(w_0, w_1) + \cdots + \ell(w_{j-1}, w_j) = \ell(C) < 0$ $d^{k+1}[k][k] \le d^k[k][k] < 0$ $d^n[k][k] < 0$

Proposition

 $G = (V, E), \ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle $k = \min_{negative length C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is $v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$. By choice of k, $d^{k-1}[k][i] = \operatorname{dist}^{k-1}(k, i) \le \ell(w_0, w_1)$ $d^{k-1}[i][k] = \operatorname{dist}^{k-1}(i, k) \le \ell(w_1, w_2) + \cdots + \ell(w_{j-1}, w_j)$ $\Rightarrow d^k[k][k] \le d^{k-1}[k][i] + d^{k-1}[i][k] = \ell(w_0, w_1) + \cdots + \ell(w_{j-1}, w_j) = \ell(C) < 0$ $\Rightarrow d^{k+1}[k][k] \le d^k[k][k] < 0$ $\Rightarrow d^n[k][k] < 0 \Rightarrow$ negative cycle detected

Floyd-Warshall

```
FlovdWarshall(G = (V, E), \ell : V \to \mathbb{Z})
for 1 < i, i < n
      d^{0}[i][i] = \ell(i, i)
for 1 < k < n
      for 1 < i, j < n
            d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
for 1 < i < n
      if d^{n}[i][i] < 0
             return ''negative cycle detected''
return d^n[\cdot][\cdot]
```

remarks:

 compute actual paths by storing pointers indicating how d^k[·][·] was updated

complexity:

• $O(n^3)$ time

space

- clearly $O(n^3)$
- *better:* only store $d^{\text{cur}}[\cdot][\cdot]$ and $d^{\text{prev}}[\cdot][\cdot] \implies O(n^2)$

correctness:

- if *no* negative cycles, correctness is clear
- if *some* negative cycle, ???

Floyd-Warshall

```
FlovdWarshall(G = (V, E), \ell : V \to \mathbb{Z})
for 1 < i, i < n
      d^{0}[i][i] = \ell(i, i)
for 1 < k < n
      for 1 < i, j < n
            d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}
for 1 < i < n
      if d^{n}[i][i] < 0
             return ''negative cycle detected''
return d^n[\cdot][\cdot]
```

remarks:

 compute actual paths by storing pointers indicating how d^k[·][·] was updated

complexity:

• $O(n^3)$ time

space

- clearly $O(n^3)$
- *better:* only store $d^{cur}[\cdot][\cdot]$ and $d^{prev}[\cdot][\cdot] \implies O(n^2)$

correctness:

- if *no* negative cycles, correctness is clear
- if *some* negative cycle, correctness is now done

Overview (II)

today:

- shortest paths
 - with negative lengths Bellman-Ford in O(mn) time
 - all-pairs Floyd-Warshall in $O(n^3)$ time

next lecture:

more dynamic programming

logistics:

■ pset2 due R5 — can submit in *groups* of \leq 3

1 Title

2 Overview

- 3 Shortest Paths, with Negative Lengths
- 4 Shortest Paths, with Negative Lengths (II)
- 5 Shortest Paths, with Negative Lengths (III)

6 Dijkstra's Algorithm

- 7 Dijkstra's Algorithm, with Negative Lengths?
- 8 Shortest Paths, with Negative Lengths (IV)
- 9 Shortest Paths, with Negative Lengths (V)
- 10 Shortest Paths, with Negative Lengths (VI)
- 11 Shortest Paths, with Negative Lengths (VII)
- 12 Shortest Paths, with Negative Lengths (VIII)
- 13 Shortest Paths, with Negative Lengths (IX)
- Shortest Paths, with Negative Lengths (X) 14 Shortest Paths, with Negative Lengths (XI) Shortest Paths, with Negative Lengths (XII) 16 Shortest Paths, with Negative Lengths (VII) 17Bellman-Ford 18 Bellman-Ford (II) 19All-Pairs Shortest Paths 20 All-Pairs Shortest Paths (II) 21All-Pairs Shortest Paths (III) 22 All-Pairs Shortest Paths (IV) Flovd-Warshall 24 25 Flovd-Warshall (II) Flovd-Warshall 26 Overview (II) 27