
cs473: Algorithms
Lecture 4: Dynamic Programming

Michael A. Forbes

University of Illinois at Urbana-Champaign

September 9, 2019

1 / 27

Overview

logistics:

pset2 due R5 — can submit in groups of ≤ 3

last lecture:

dynamic programming on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs

2 / 27

Overview

logistics:

pset2 due R5 — can submit in groups of ≤ 3

last lecture:

dynamic programming on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs

2 / 27

Overview

logistics:

pset2 due R5

— can submit in groups of ≤ 3

last lecture:

dynamic programming on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs

2 / 27

Overview

logistics:

pset2 due R5 — can submit in groups of ≤ 3

last lecture:

dynamic programming on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs

2 / 27

Overview

logistics:

pset2 due R5 — can submit in groups of ≤ 3

last lecture:

dynamic programming on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs

2 / 27

Overview

logistics:

pset2 due R5 — can submit in groups of ≤ 3

last lecture:

dynamic programming

on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs

2 / 27

Overview

logistics:

pset2 due R5 — can submit in groups of ≤ 3

last lecture:

dynamic programming on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs

2 / 27

Overview

logistics:

pset2 due R5 — can submit in groups of ≤ 3

last lecture:

dynamic programming on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs

2 / 27

Overview

logistics:

pset2 due R5 — can submit in groups of ≤ 3

last lecture:

dynamic programming on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs

2 / 27

Overview

logistics:

pset2 due R5 — can submit in groups of ≤ 3

last lecture:

dynamic programming on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs

2 / 27

Overview

logistics:

pset2 due R5 — can submit in groups of ≤ 3

last lecture:

dynamic programming on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs

2 / 27

Overview

logistics:

pset2 due R5 — can submit in groups of ≤ 3

last lecture:

dynamic programming on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs

2 / 27

Overview

logistics:

pset2 due R5 — can submit in groups of ≤ 3

last lecture:

dynamic programming on trees

maximum independent set

dominating set

today:

shortest paths

with negative lengths

all-pairs

2 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

9 + 10 + (−16) + 16 =

19

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost: 9 + 10 + (−16) + 16 =

19

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost: 9 + 10 + (−16) + 16 = 19

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

−16 + 11 + 3 =

− 3

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost: −16 + 11 + 3 =

− 3

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost: −16 + 11 + 3 = − 3

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost: −16 + 11 + 3 = − 3

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

9 + 10+

(−16 + 11 + 3) · k

+ (−16) + 16

= 19− 3k → −∞

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

9 + 10+

(−16 + 11 + 3) · k

+ (−16) + 16

= 19− 3k → −∞

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

9 + 10+(−16 + 11 + 3)

· k

+ (−16) + 16

= 19− 3k → −∞

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

9 + 10+(−16 + 11 + 3) · k

+ (−16) + 16

= 19− 3k → −∞

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

9 + 10+(−16 + 11 + 3) · k + (−16) + 16

= 19− 3k → −∞

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

9 + 10+(−16 + 11 + 3) · k + (−16) + 16

= 19− 3k

→ −∞

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

9 + 10+(−16 + 11 + 3) · k + (−16) + 16

= 19− 3k → −∞

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

9 + 10+(−16 + 11 + 3) · k + (−16) + 16

= 19− 3k → −∞

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

9 + 10+(−16 + 11 + 3) · k + (−16) + 16

= 19− 3k → −∞

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path

(with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

9 + 10+(−16 + 11 + 3) · k + (−16) + 16

= 19− 3k → −∞

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths)

is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

9 + 10+(−16 + 11 + 3) · k + (−16) + 16

= 19− 3k → −∞

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard

—

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths

s

a b

c

d

e

f t

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

9

6

15

10

−16
193

611

16

18

30

−8

20

44

total cost:

9 + 10+(−16 + 11 + 3) · k + (−16) + 16

= 19− 3k → −∞

questions:

what is the length of the shortest

path between s and t?

what is the length of the shortest

path from s to every other node?

what happens if we get lost?

how to deal with negative cycles?

remarks:

computing the length of the shortest

simple s t path (with possibly

negative lengths) is NP-hard —

contains the Hamiltonian path

problem

3 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph,

with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices

v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V

such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i .

An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices

v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i .

An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G ,

denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t),

is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk,

dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle

=⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞

no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle

=⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges

and is of finite length

4 / 27

Shortest Paths, with Negative Lengths (II)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

A path in G is a sequence of distinct vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-path is a path where v0 = s and vk = t.

A walk in G is a sequence of vertices v0, v1, . . . , vk ∈ V such that

(vi , vi+1) ∈ E for all i . An (s, t)-walk is a walk where v0 = s and vk = t.

The length of a walk is the sum of the edge lengths
∑
i `(vi , vi+1).

The distance from s to t in G , denoted dist(s, t), is the length of the shortest

(s, t)-walk, dist(s, t) := min(s,t)-walk w `(w).

remarks:

(s, t)-walk containing a negative length cycle =⇒ dist(s, t) = −∞
no (s, t)-walk containing a negative length cycle =⇒ shortest walk is a path

=⇒ shortest walk ≤ n − 1 edges and is of finite length
4 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V ,

find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path

or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle

(=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V ,

compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid,

negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms,

e.g., flows in

graphs

5 / 27

Shortest Paths, with Negative Lengths (III)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. The

(single-source) shortest path problem (with negative weights) is to:

given s, t ∈ V , find a minimum length (s, t)-path or find an (s, t)-walk with a

negative cycle (=⇒ dist(s, t) = −∞)

given s ∈ V , compute dist(s, t) for all t ∈ V

determine if G has any negative cycle

remarks:

negative lengths can be natural in modelling real life

e.g., demand/supply on an electrical grid, negative cycles manifest as arbitrage

negative lengths can arise as by-products of other algorithms, e.g., flows in

graphs

5 / 27

Dijkstra’s Algorithm

Dijkstra’s algorithm: greedily grow shortest paths from source s

s

b

1

a

2

c

3

t
1

4

6 / 27

Dijkstra’s Algorithm

Dijkstra’s algorithm:

greedily grow shortest paths from source s

s

b

1

a

2

c

3

t
1

4

6 / 27

Dijkstra’s Algorithm

Dijkstra’s algorithm: greedily grow shortest paths from source s

s

b

1

a

2

c

3

t
1

4

6 / 27

Dijkstra’s Algorithm

Dijkstra’s algorithm: greedily grow shortest paths from source s

s

b

1

a

2

c

3

t
1

4

6 / 27

Dijkstra’s Algorithm

Dijkstra’s algorithm: greedily grow shortest paths from source s

s
0

b

1

a

2

c

3

t
1

4

6 / 27

Dijkstra’s Algorithm

Dijkstra’s algorithm: greedily grow shortest paths from source s

s
0

b

1

1

a

2

c

3

t
1

4

6 / 27

Dijkstra’s Algorithm

Dijkstra’s algorithm: greedily grow shortest paths from source s

s
0

b

1

1

a
2

2

c

3

t
1

4

6 / 27

Dijkstra’s Algorithm

Dijkstra’s algorithm: greedily grow shortest paths from source s

s
0

b

1

1

a
2

2

c

43

t
1

4

6 / 27

Dijkstra’s Algorithm

Dijkstra’s algorithm: greedily grow shortest paths from source s

s
0

b

1

1

a
2

2

c

43

t

5

1

4

6 / 27

Dijkstra’s Algorithm,

with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts

b

1

c

1

−55

1

2

remarks:

greedy exploration, ordering vertices v ∈ V by dist(s, v) — without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative

7 / 27

Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts

b

1

c

1

−55

1

2

remarks:

greedy exploration, ordering vertices v ∈ V by dist(s, v) — without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative

7 / 27

Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts

b

1

c

1

−55

1

2

remarks:

greedy exploration, ordering vertices v ∈ V by dist(s, v) — without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative

7 / 27

Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts

b

1

c

1

−55

1

2

remarks:

greedy exploration, ordering vertices v ∈ V by dist(s, v) — without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative

7 / 27

Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts
0

b

1

c

1

−55

1

2

remarks:

greedy exploration, ordering vertices v ∈ V by dist(s, v) — without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative

7 / 27

Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts
0

b

1

1

c

1

−55

1

2

remarks:

greedy exploration, ordering vertices v ∈ V by dist(s, v) — without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative

7 / 27

Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts
0

b

1

1

c

21

−55

1

2

remarks:

greedy exploration, ordering vertices v ∈ V by dist(s, v) — without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative

7 / 27

Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts
0

b

1

1

c

21

−55

1

2

remarks:

greedy exploration, ordering vertices v ∈ V by dist(s, v) — without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative

7 / 27

Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts
0

b

1

1

c

21

−55

1

2

remarks:

greedy exploration, ordering vertices v ∈ V by dist(s, v) — without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative

7 / 27

Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts
0

b

1

1

c

21

−55

1

2

remarks:

greedy exploration,

ordering vertices v ∈ V by dist(s, v) — without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative

7 / 27

Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts
0

b

1

1

c

21

−55

1

2

remarks:

greedy exploration, ordering vertices v ∈ V by dist(s, v)

— without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative

7 / 27

Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts
0

b

1

1

c

21

−55

1

2

remarks:

greedy exploration, ordering vertices v ∈ V by dist(s, v) — without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative

7 / 27

Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts
0

b

1

1

c

21

−55

1

2

remarks:

greedy exploration, ordering vertices v ∈ V by dist(s, v) — without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative

7 / 27

Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source s

a

ts
0

b

1

1

c

21

−55

1

2

remarks:

greedy exploration, ordering vertices v ∈ V by dist(s, v) — without updates!

=⇒ algorithm assumes the distance only grows as the graph is explored

≡ assumes all edge lengths are non-negative
7 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0

→ v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1

→ v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2

→ · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · ·

→ vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t

is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk,

then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk,

for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative,

dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste.

(2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths,

if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems

by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)

idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea:

parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk,

and allow

updates to dist(s, ·)

8 / 27

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. If

s = v0 → v1 → v2 → · · · → vk = t is a shortest (s, t)-walk, then

1 s → v1 → · · · → vi is a shortest (s, vi)-walk, for i ≤ k

2 if ` is non-negative, dist(s, vi) ≤ dist(s, vi+1) for all i

Proof.

(1) Cut and paste. (2) Clear.

remarks:

shortest walks are shortest paths, if no negative cycle

Dijkstra’s algorithm defines subproblems by restricting the graph by dist(s, ·)
idea: parameterize subproblems by number of edges in a walk, and allow

updates to dist(s, ·)
8 / 27

Shortest Paths, with Negative Lengths (V)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. For

s, t ∈ V , define distk(s, t) to be the length of the shortest (s, t)-walk using ≤ k

edges.

distk(s, t) := min
(s,t)-walk w
|w |≤k

`(w) .

remarks:

distk(s, t) =∞ if no (≤ k)-edge (s, t)-walk

dist0(s, s) = 0, dist0(s, v) =∞ for v 6= s

9 / 27

Shortest Paths, with Negative Lengths (V)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

For

s, t ∈ V , define distk(s, t) to be the length of the shortest (s, t)-walk using ≤ k

edges.

distk(s, t) := min
(s,t)-walk w
|w |≤k

`(w) .

remarks:

distk(s, t) =∞ if no (≤ k)-edge (s, t)-walk

dist0(s, s) = 0, dist0(s, v) =∞ for v 6= s

9 / 27

Shortest Paths, with Negative Lengths (V)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. For

s, t ∈ V , define distk(s, t) to be the length of the shortest (s, t)-walk using ≤ k

edges.

distk(s, t) := min
(s,t)-walk w
|w |≤k

`(w) .

remarks:

distk(s, t) =∞ if no (≤ k)-edge (s, t)-walk

dist0(s, s) = 0, dist0(s, v) =∞ for v 6= s

9 / 27

Shortest Paths, with Negative Lengths (V)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. For

s, t ∈ V , define distk(s, t) to be the length of the shortest (s, t)-walk using ≤ k

edges.

distk(s, t) := min
(s,t)-walk w
|w |≤k

`(w) .

remarks:

distk(s, t) =∞ if no (≤ k)-edge (s, t)-walk

dist0(s, s) = 0, dist0(s, v) =∞ for v 6= s

9 / 27

Shortest Paths, with Negative Lengths (V)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. For

s, t ∈ V , define distk(s, t) to be the length of the shortest (s, t)-walk using ≤ k

edges.

distk(s, t) := min
(s,t)-walk w
|w |≤k

`(w) .

remarks:

distk(s, t) =∞ if no (≤ k)-edge (s, t)-walk

dist0(s, s) = 0, dist0(s, v) =∞ for v 6= s

9 / 27

Shortest Paths, with Negative Lengths (V)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. For

s, t ∈ V , define distk(s, t) to be the length of the shortest (s, t)-walk using ≤ k

edges.

distk(s, t) := min
(s,t)-walk w
|w |≤k

`(w) .

remarks:

distk(s, t) =∞ if no (≤ k)-edge (s, t)-walk

dist0(s, s) = 0, dist0(s, v) =∞ for v 6= s

9 / 27

Shortest Paths, with Negative Lengths (V)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. For

s, t ∈ V , define distk(s, t) to be the length of the shortest (s, t)-walk using ≤ k

edges.

distk(s, t) := min
(s,t)-walk w
|w |≤k

`(w) .

remarks:

distk(s, t) =∞ if no (≤ k)-edge (s, t)-walk

dist0(s, s) = 0,

dist0(s, v) =∞ for v 6= s

9 / 27

Shortest Paths, with Negative Lengths (V)

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. For

s, t ∈ V , define distk(s, t) to be the length of the shortest (s, t)-walk using ≤ k

edges.

distk(s, t) := min
(s,t)-walk w
|w |≤k

`(w) .

remarks:

distk(s, t) =∞ if no (≤ k)-edge (s, t)-walk

dist0(s, s) = 0, dist0(s, v) =∞ for v 6= s

9 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E),

` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z.

Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) =

min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{

distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V

{distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) +

`(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0

→ v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1

→ v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2

→ · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · ·

→ vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t

be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk.

Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k :

hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k :

hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk

=⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark:

`(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VI)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Proof.

Let s = v0 → v1 → v2 → · · · → vj = t be a shortest length j ≤ k (s, t)-walk. Then,

j < k : hence this is a (≤ k − 1)-edge (s, t)-walk of length distk−1(s, t)

j = k : hence s = v0 → v1 → v2 → · · · → vk−1 is a shortest length

(≤ k − 1)-edge (s, vk−1) walk =⇒ can add `(vk−1, t) to reach t

remark: `(v , t) =∞ if there is no edge

10 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), and even distn−1(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

11 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), and even distn−1(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

11 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z,

s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), and even distn−1(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

11 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V ,

with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), and even distn−1(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

11 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), and even distn−1(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

11 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles,

then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), and even distn−1(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

11 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), and even distn−1(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

11 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v)

≤ distn(s, v), and even distn−1(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

11 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v),

and even distn−1(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

11 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), and even distn−1(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

11 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), and even distn−1(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v),

then there are no negative length

cycles.

11 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), and even distn−1(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

11 / 27

Shortest Paths, with Negative Lengths (VIII)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Corollary

For all k ≥ 0,

all v ∈ V , distk(s, v) ≤ distk−1(s, v)

If all v ∈ V , distk(s, v) = distk−1(s, v)

=⇒ all v ∈ V , distk+1(s, v) = distk(s, v)

=⇒ all v ∈ V , distk+2(s, v) = distk+1(s, v) =⇒ · · ·

12 / 27

Shortest Paths, with Negative Lengths (VIII)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Corollary

For all k ≥ 0,

all v ∈ V , distk(s, v) ≤ distk−1(s, v)

If all v ∈ V , distk(s, v) = distk−1(s, v)

=⇒ all v ∈ V , distk+1(s, v) = distk(s, v)

=⇒ all v ∈ V , distk+2(s, v) = distk+1(s, v) =⇒ · · ·

12 / 27

Shortest Paths, with Negative Lengths (VIII)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Corollary

For all k ≥ 0,

all v ∈ V , distk(s, v) ≤ distk−1(s, v)

If all v ∈ V , distk(s, v) = distk−1(s, v)

=⇒ all v ∈ V , distk+1(s, v) = distk(s, v)

=⇒ all v ∈ V , distk+2(s, v) = distk+1(s, v) =⇒ · · ·

12 / 27

Shortest Paths, with Negative Lengths (VIII)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Corollary

For all k ≥ 0,

all v ∈ V , distk(s, v) ≤ distk−1(s, v)

If all v ∈ V , distk(s, v) = distk−1(s, v)

=⇒ all v ∈ V , distk+1(s, v) = distk(s, v)

=⇒ all v ∈ V , distk+2(s, v) = distk+1(s, v) =⇒ · · ·

12 / 27

Shortest Paths, with Negative Lengths (VIII)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Corollary

For all k ≥ 0,

all v ∈ V , distk(s, v) ≤ distk−1(s, v)

If all v ∈ V , distk(s, v) = distk−1(s, v)

=⇒ all v ∈ V , distk+1(s, v) = distk(s, v)

=⇒ all v ∈ V , distk+2(s, v) = distk+1(s, v) =⇒ · · ·

12 / 27

Shortest Paths, with Negative Lengths (VIII)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Corollary

For all k ≥ 0,

all v ∈ V , distk(s, v) ≤ distk−1(s, v)

If all v ∈ V ,

distk(s, v) = distk−1(s, v)

=⇒ all v ∈ V , distk+1(s, v) = distk(s, v)

=⇒ all v ∈ V , distk+2(s, v) = distk+1(s, v) =⇒ · · ·

12 / 27

Shortest Paths, with Negative Lengths (VIII)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Corollary

For all k ≥ 0,

all v ∈ V , distk(s, v) ≤ distk−1(s, v)

If all v ∈ V , distk(s, v) = distk−1(s, v)

=⇒ all v ∈ V , distk+1(s, v) = distk(s, v)

=⇒ all v ∈ V , distk+2(s, v) = distk+1(s, v) =⇒ · · ·

12 / 27

Shortest Paths, with Negative Lengths (VIII)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Corollary

For all k ≥ 0,

all v ∈ V , distk(s, v) ≤ distk−1(s, v)

If all v ∈ V , distk(s, v) = distk−1(s, v)

=⇒ all v ∈ V ,

distk+1(s, v) = distk(s, v)

=⇒ all v ∈ V , distk+2(s, v) = distk+1(s, v) =⇒ · · ·

12 / 27

Shortest Paths, with Negative Lengths (VIII)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Corollary

For all k ≥ 0,

all v ∈ V , distk(s, v) ≤ distk−1(s, v)

If all v ∈ V , distk(s, v) = distk−1(s, v)

=⇒ all v ∈ V , distk+1(s, v)

= distk(s, v)

=⇒ all v ∈ V , distk+2(s, v) = distk+1(s, v) =⇒ · · ·

12 / 27

Shortest Paths, with Negative Lengths (VIII)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Corollary

For all k ≥ 0,

all v ∈ V , distk(s, v) ≤ distk−1(s, v)

If all v ∈ V , distk(s, v) = distk−1(s, v)

=⇒ all v ∈ V , distk+1(s, v) = distk(s, v)

=⇒ all v ∈ V , distk+2(s, v) = distk+1(s, v) =⇒ · · ·

12 / 27

Shortest Paths, with Negative Lengths (VIII)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Corollary

For all k ≥ 0,

all v ∈ V , distk(s, v) ≤ distk−1(s, v)

If all v ∈ V , distk(s, v) = distk−1(s, v)

=⇒ all v ∈ V , distk+1(s, v) = distk(s, v)

=⇒ all v ∈ V , distk+2(s, v) = distk+1(s, v)

=⇒ · · ·

12 / 27

Shortest Paths, with Negative Lengths (VIII)

Lemma

G = (V , E), ` : E → Z. Then for all s, t ∈ V ,

distk(s, t) = min

{
distk−1(s, t)

minv∈V {distk−1(s, v) + `(v , t)}
.

Corollary

For all k ≥ 0,

all v ∈ V , distk(s, v) ≤ distk−1(s, v)

If all v ∈ V , distk(s, v) = distk−1(s, v)

=⇒ all v ∈ V , distk+1(s, v) = distk(s, v)

=⇒ all v ∈ V , distk+2(s, v) = distk+1(s, v) =⇒ · · ·

12 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V ,

with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles,

then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v)

≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges,

with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n,

then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n,

then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices

=⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated

≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle.

As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0,

we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C

with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d

≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (IX)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there are no

negative length cycles, then for all v ∈ V , distn−1(s, v) ≤ distn(s, v).

Proof.

Let s = v0 → v1 → · · · → vk−1 → vk = v be a walk of (≤ n)-edges, with length

distn(s, v).

If k < n, then this is a (< n)-edge walk and hence of length ≥ distn−1(s, v).

If k = n, then the walk visits n + 1 vertices =⇒ some vertex is repeated ≡
there is a cycle. As the cycle is of non-negative length C ≥ 0, we can remove it

to obtain a (< n)-edge (s, v)-walk of value d = distn(s, v)− C with

distn(s, v) ≥ d ≥ distn−1(s, v).

13 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v)

≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v),

then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary,

for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v)

≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v)

=⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v)

= distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v)

= distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v)

= · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · .

As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s

=⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v .

Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (X)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then limk→∞ distk(s, v) is finite for all v ∈ V .

Proof.

By previous corollary, for all v ∈ V , distn−1(s, v) ≤ distn(s, v) =⇒ for all v ∈ V ,

distn−1(s, v) = distn(s, v) = distn+1(s, v) = distn+2(s, v) = · · · . As all v are

reachable from s =⇒ −∞ < distn−1(s, v) <∞ for all k and v . Hence

limk→∞ distk(s, v) = distn−1(s, v) is finite for all v .

14 / 27

Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Proof.

Let s u u v be an (s, v)-walk with length L, where u u is a negative

length cycle of length −C < 0. Then consider the (s, v)-walk s u u u v ,

which is of value L− C . Hence, for any j there is (s, v)-walk of length L− C · j .

Hence limk→∞ distk(s, v) = −∞.

15 / 27

Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Proof.

Let s u u v be an (s, v)-walk with length L, where u u is a negative

length cycle of length −C < 0. Then consider the (s, v)-walk s u u u v ,

which is of value L− C . Hence, for any j there is (s, v)-walk of length L− C · j .

Hence limk→∞ distk(s, v) = −∞.

15 / 27

Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Proof.

Let s u u v be an (s, v)-walk with length L, where u u is a negative

length cycle of length −C < 0. Then consider the (s, v)-walk s u u u v ,

which is of value L− C . Hence, for any j there is (s, v)-walk of length L− C · j .

Hence limk→∞ distk(s, v) = −∞.

15 / 27

Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle,

then limk→∞ distk(s, v) = −∞.

Proof.

Let s u u v be an (s, v)-walk with length L, where u u is a negative

length cycle of length −C < 0. Then consider the (s, v)-walk s u u u v ,

which is of value L− C . Hence, for any j there is (s, v)-walk of length L− C · j .

Hence limk→∞ distk(s, v) = −∞.

15 / 27

Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Proof.

Let s u u v be an (s, v)-walk with length L, where u u is a negative

length cycle of length −C < 0. Then consider the (s, v)-walk s u u u v ,

which is of value L− C . Hence, for any j there is (s, v)-walk of length L− C · j .

Hence limk→∞ distk(s, v) = −∞.

15 / 27

Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Proof.

Let s u u v be an (s, v)-walk with length L, where u u is a negative

length cycle of length −C < 0. Then consider the (s, v)-walk s u u u v ,

which is of value L− C . Hence, for any j there is (s, v)-walk of length L− C · j .

Hence limk→∞ distk(s, v) = −∞.

15 / 27

Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Proof.

Let s u u v be an (s, v)-walk with length L,

where u u is a negative

length cycle of length −C < 0. Then consider the (s, v)-walk s u u u v ,

which is of value L− C . Hence, for any j there is (s, v)-walk of length L− C · j .

Hence limk→∞ distk(s, v) = −∞.

15 / 27

Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Proof.

Let s u u v be an (s, v)-walk with length L, where u u is a negative

length cycle of length −C < 0.

Then consider the (s, v)-walk s u u u v ,

which is of value L− C . Hence, for any j there is (s, v)-walk of length L− C · j .

Hence limk→∞ distk(s, v) = −∞.

15 / 27

Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Proof.

Let s u u v be an (s, v)-walk with length L, where u u is a negative

length cycle of length −C < 0. Then consider the (s, v)-walk s u u u v ,

which is of value L− C . Hence, for any j there is (s, v)-walk of length L− C · j .

Hence limk→∞ distk(s, v) = −∞.

15 / 27

Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Proof.

Let s u u v be an (s, v)-walk with length L, where u u is a negative

length cycle of length −C < 0. Then consider the (s, v)-walk s u u u v ,

which is of value L− C .

Hence, for any j there is (s, v)-walk of length L− C · j .

Hence limk→∞ distk(s, v) = −∞.

15 / 27

Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Proof.

Let s u u v be an (s, v)-walk with length L, where u u is a negative

length cycle of length −C < 0. Then consider the (s, v)-walk s u u u v ,

which is of value L− C . Hence, for any j there is (s, v)-walk of length L− C · j .

Hence limk→∞ distk(s, v) = −∞.

15 / 27

Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Proof.

Let s u u v be an (s, v)-walk with length L, where u u is a negative

length cycle of length −C < 0. Then consider the (s, v)-walk s u u u v ,

which is of value L− C . Hence, for any j there is (s, v)-walk of length L− C · j .

Hence limk→∞ distk(s, v) = −∞.

15 / 27

Shortest Paths, with Negative Lengths (XII)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), limk→∞ distk(s, v) is finite for all v ∈ V .

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Corollary

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then there are no negative length cycles.

16 / 27

Shortest Paths, with Negative Lengths (XII)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), limk→∞ distk(s, v) is finite for all v ∈ V .

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Corollary

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then there are no negative length cycles.

16 / 27

Shortest Paths, with Negative Lengths (XII)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), limk→∞ distk(s, v) is finite for all v ∈ V .

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Corollary

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then there are no negative length cycles.

16 / 27

Shortest Paths, with Negative Lengths (XII)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), limk→∞ distk(s, v) is finite for all v ∈ V .

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Corollary

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then there are no negative length cycles.

16 / 27

Shortest Paths, with Negative Lengths (XII)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), limk→∞ distk(s, v) is finite for all v ∈ V .

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Corollary

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then there are no negative length cycles.

16 / 27

Shortest Paths, with Negative Lengths (XII)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), limk→∞ distk(s, v) is finite for all v ∈ V .

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Corollary

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v),

then there are no negative length cycles.

16 / 27

Shortest Paths, with Negative Lengths (XII)

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), limk→∞ distk(s, v) is finite for all v ∈ V .

Proposition

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If there is a

(s, v)-walk containing a negative length cycle, then limk→∞ distk(s, v) = −∞.

Corollary

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s. If for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), then there are no negative length cycles.

16 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), and distn−1(s, v) = limk→∞ distk(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

17 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), and distn−1(s, v) = limk→∞ distk(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

17 / 27

Shortest Paths, with Negative Lengths (VII)

Theorem

G = (V , E), ` : E → Z, s ∈ V , with every vertex reachable from s.

1 If there are no negative length cycles, then for all v ∈ V ,

distn−1(s, v) ≤ distn(s, v), and distn−1(s, v) = limk→∞ distk(s, v) = dist(s, v).

2 If for all v ∈ V , distn−1(s, v) ≤ distn(s, v), then there are no negative length

cycles.

17 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths:

source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)

for v ∈ V
d0[s][v] =∞

d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞

d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n,

v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V

dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] =

min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v],

dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] +

`(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}

for v ∈ V
if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness:

clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better:

O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn),

dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better:

only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·]

=⇒ O(n)

18 / 27

Bellman-Ford

(single source) shortest paths: source s ∈ V ,

can reach every other node

BellmanFord(G = (V ,E), ` : V → Z, s ∈ V)
for v ∈ V

d0[s][v] =∞
d0[s][s] = 0

for 1 ≤ k ≤ n, v ∈ V
dk [s][v] = dk−1[s][v]

for u ∈ N−(v)

dk [s][v] = min{dk [s][v], dk−1[s][u] + `(u, v)}
for v ∈ V

if dn[s][v] < dn−1[s][v]

return ‘‘negative cycle detected’’

return dn−1[s][·]

correctness: clear

complexity:

time

clearly O(n3)

better: O(mn), dk [s][·]
updates along edges

space

clearly O(n2)

better: only store dcur[s][·]
and dprev[s][·] =⇒ O(n)

18 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths

by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1

= arg min
u∈V

{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V

{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) +

`(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles

Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better:

consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ =

(V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′},

E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪

{(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V)

with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required

=⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs

no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk ,

according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn

— yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time

(exercise)

19 / 27

Bellman-Ford (II)

remarks:

compute actual paths by storing pointers indicating how dk [s][·] was updated,

e.g.,
vk−1 = arg min

u∈V
{distk−1(s, u) + `(u, vk)} .

detecting negative cycles
Bellman-Ford will detect any negative cycles reachable from s in G

=⇒ one Bellman-Ford call per vertex will detect if there is any negative cycle in G

=⇒ O(mn2) time

better: consider G ′ = (V ∪ {s ′}, E ∪ {(s ′, v)}v∈V) with `′(s ′, v) = 0

=⇒ all negative cycles in G are reachable from s ′ in G ′

=⇒ one Bellman-Ford required =⇒ O(mn) time

directed acyclic graphs
no (negative) cycles

can simplify Bellman-Ford so distk(s, ·) only updates vk , according to topological

ordering v1 ≺ v2 ≺ · · · ≺ vn — yields Dijkstra-esque algorithm

=⇒ O(m + n) time (exercise)
19 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z.

The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V ,

find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V ,

compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V

(single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V

(all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time

(heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps),

O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n)

(Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

single-source:

Dijkstra:

non-negative lengths

O((m + n) log n) time (heaps), O(m + n log n) (Fibonacci heaps)

Bellman-Ford:

arbitrary weights

O(mn) time

20 / 27

All-Pairs Shortest Paths (II)

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps), O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time 7→ Θ(n4) if m = Θ(n2)

question: can we do better?

21 / 27

All-Pairs Shortest Paths (II)

Definition

G = (V , E) directed (simple) graph, ` : E → Z.

The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps), O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time 7→ Θ(n4) if m = Θ(n2)

question: can we do better?

21 / 27

All-Pairs Shortest Paths (II)

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps), O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time 7→ Θ(n4) if m = Θ(n2)

question: can we do better?

21 / 27

All-Pairs Shortest Paths (II)

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps), O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time 7→ Θ(n4) if m = Θ(n2)

question: can we do better?

21 / 27

All-Pairs Shortest Paths (II)

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps), O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time 7→ Θ(n4) if m = Θ(n2)

question: can we do better?

21 / 27

All-Pairs Shortest Paths (II)

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps), O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time 7→ Θ(n4) if m = Θ(n2)

question: can we do better?

21 / 27

All-Pairs Shortest Paths (II)

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps),

O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time 7→ Θ(n4) if m = Θ(n2)

question: can we do better?

21 / 27

All-Pairs Shortest Paths (II)

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps), O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time 7→ Θ(n4) if m = Θ(n2)

question: can we do better?

21 / 27

All-Pairs Shortest Paths (II)

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps), O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time 7→ Θ(n4) if m = Θ(n2)

question: can we do better?

21 / 27

All-Pairs Shortest Paths (II)

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps), O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time 7→ Θ(n4) if m = Θ(n2)

question: can we do better?

21 / 27

All-Pairs Shortest Paths (II)

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps), O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time

7→ Θ(n4) if m = Θ(n2)

question: can we do better?

21 / 27

All-Pairs Shortest Paths (II)

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps), O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time 7→ Θ(n4) if m = Θ(n2)

question: can we do better?

21 / 27

All-Pairs Shortest Paths (II)

Definition

G = (V , E) directed (simple) graph, ` : E → Z. The shortest path problem is to:

given s, t ∈ V , find a minimum length (s, t)-path

given s ∈ V , compute dist(s, t) for all t ∈ V (single-source)

compute dist(s, t) for all s, t ∈ V (all pairs)

all-pairs:

n runs of Dijkstra:

non-negative lengths

O(n · (m + n) log n) time (heaps), O(n · (m + n log n)) (Fibonacci heaps)

n runs of Bellman-Ford:

arbitrary weights

O(n ·mn) time 7→ Θ(n4) if m = Θ(n2)

question: can we do better?
21 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea:

use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z.

Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn.

A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v

has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j ,

if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}.

For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V ,

define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t)

to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk

of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) =

`(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4

4

2

8

3

1
1

4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) =

5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4

4

2

8

3

1
14

2

8

3

1
1

4

2

8

3

1
1

4

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4
4

2

8

3

1
1

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) =

4

22 / 27

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V , E) directed (simple) graph, with edge length function ` : E → Z. Order V

as v1 ≺ v2 ≺ · · · ≺ vn. A (u, v)-walk u = w0 → w1 → · · · → wi = v has

intermediate index ≤ j , if w1, . . . , wi−1 ∈ {v1, . . . , vj}. For s, t ∈ V , define

distk(s, t) to be the length of the shortest (s, t)-walk of intermediate index ≤ k .

v3

v1

v2

v4

4

2

8

3

1
14

2

8

3

1
14

2

8

3

1
1

4

2

8

3

1
1

dist0(v3, v4) = `(v3, v4) = 8

dist1(v3, v4) = 5

dist2(v3, v4) = 4

22 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E),

` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z,

with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles.

Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t),

and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) =

min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{

distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) +

distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0

→ w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1

→ w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2

→ · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · ·

→ wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t

be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk

of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k

and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t).

There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k :

hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles

=⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path

=⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path

are of index < k , and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k ,

and must be shortest paths

23 / 27

All-Pairs Shortest Paths (IV)

Lemma

G = (V , E), ` : E → Z, with no negative cycles. Then for all s, t ∈ V ,

dist0(s, t) = `(s, t), and

distk(s, t) = min

{
distk−1(s, t)

distk−1(s, vk) + distk−1(vk , t)
.

Proof.

Let s = w0 → w1 → w2 → · · · → wi = t be a shortest length (s, t)-walk of

intermediate index ≤ k and length distk(s, t). There are two cases:

index < k : hence is of value distk−1(s, t)

index = k :

no negative cycles =⇒ shortest walk is path =⇒ vk appears exactly once

=⇒ s vk path and vk t path are of index < k , and must be shortest paths

23 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)

for 1 ≤ i , j ≤ n
d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n

for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] =

min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{

dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k]

+ dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n

if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths

by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better:

only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·]

=⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

24 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z,

with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle.

Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k

= minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C

maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i .

Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C ,

where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0

→ w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1

= vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi

→ · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj

= vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk .

By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i)

≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k)

≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k]

≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k]

= `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj)

= `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C)

< 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k]

≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k]

< 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0

=⇒ negative cycle detected

25 / 27

Floyd-Warshall (II)

Proposition

G = (V , E), ` : E → Z, with some negative cycle. Then the Floyd-Warshall

algorithm correctly detects this cycle.

Proof.

Let k ≤ n be the minimum index of a negative length cycle

k = minnegative length C maxi :vi∈C i . Pick such a cycle C , where C is

vk = w0 → w1 = vi → · · · → wj = vk . By choice of k ,

dk−1[k][i] = distk−1(k , i) ≤ `(w0, w1)

dk−1[i][k] = distk−1(i , k) ≤ `(w1, w2) + · · ·+ `(wj−1, wj)

=⇒ dk [k][k] ≤ dk−1[k][i] + dk−1[i][k] = `(w0, w1) + · · ·+ `(wj−1, wj) = `(C) < 0

=⇒ dk+1[k][k] ≤ dk [k][k] < 0

=⇒ dn[k][k] < 0 =⇒ negative cycle detected

25 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, ???

26 / 27

Floyd-Warshall

FloydWarshall(G = (V ,E), ` : V → Z)
for 1 ≤ i , j ≤ n

d0[i][j] = `(i , j)

for 1 ≤ k ≤ n
for 1 ≤ i , j ≤ n

dk [i][j] = min

{
dk−1[i][j]

dk−1[i][k] + dk−1[k][j]

for 1 ≤ i ≤ n
if dn[i][i] < 0

return ‘‘negative cycle detected’’

return dn[·][·]

remarks:

compute actual paths by storing

pointers indicating how dk [·][·] was

updated

complexity:

O(n3) time

space

clearly O(n3)

better: only store dcur[·][·] and

dprev[·][·] =⇒ O(n2)

correctness:

if no negative cycles, correctness is

clear

if some negative cycle, correctness is

now done

26 / 27

Overview (II)

today:

shortest paths

with negative lengths — Bellman-Ford in O(mn) time

all-pairs — Floyd-Warshall in O(n3) time

next lecture:

more dynamic programming

logistics:

pset2 due R5 — can submit in groups of ≤ 3

27 / 27

TOC

1 Title

2 Overview

3 Shortest Paths, with Negative Lengths

4 Shortest Paths, with Negative Lengths (II)

5 Shortest Paths, with Negative Lengths (III)

6 Dijkstra’s Algorithm

7 Dijkstra’s Algorithm, with Negative Lengths?

8 Shortest Paths, with Negative Lengths (IV)

9 Shortest Paths, with Negative Lengths (V)

10 Shortest Paths, with Negative Lengths (VI)

11 Shortest Paths, with Negative Lengths (VII)

12 Shortest Paths, with Negative Lengths (VIII)

13 Shortest Paths, with Negative Lengths (IX)

14 Shortest Paths, with Negative Lengths (X)

15 Shortest Paths, with Negative Lengths (XI)

16 Shortest Paths, with Negative Lengths (XII)

17 Shortest Paths, with Negative Lengths (VII)

18 Bellman-Ford

19 Bellman-Ford (II)

20 All-Pairs Shortest Paths

21 All-Pairs Shortest Paths (II)

22 All-Pairs Shortest Paths (III)

23 All-Pairs Shortest Paths (IV)

24 Floyd-Warshall

25 Floyd-Warshall (II)

26 Floyd-Warshall

27 Overview (II)

27 / 27

	Title
	Overview
	Shortest Paths, with Negative Lengths
	Shortest Paths, with Negative Lengths (II)
	Shortest Paths, with Negative Lengths (III)
	Dijkstra's Algorithm
	Dijkstra's Algorithm, with Negative Lengths?
	Shortest Paths, with Negative Lengths (IV)
	Shortest Paths, with Negative Lengths (V)
	Shortest Paths, with Negative Lengths (VI)
	Shortest Paths, with Negative Lengths (VII)
	Shortest Paths, with Negative Lengths (VIII)
	Shortest Paths, with Negative Lengths (IX)
	Shortest Paths, with Negative Lengths (X)
	Shortest Paths, with Negative Lengths (XI)
	Shortest Paths, with Negative Lengths (XII)
	Shortest Paths, with Negative Lengths (VII)
	Bellman-Ford
	Bellman-Ford (II)
	All-Pairs Shortest Paths
	All-Pairs Shortest Paths (II)
	All-Pairs Shortest Paths (III)
	All-Pairs Shortest Paths (IV)
	Floyd-Warshall
	Floyd-Warshall (II)
	Floyd-Warshall
	Overview (II)

